1
|
Huang F, Xu P, Fang G, Liang S. In-Depth Understanding of Interfacial Na + Behaviors in Sodium Metal Anode: Migration, Desolvation, and Deposition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405310. [PMID: 39152941 DOI: 10.1002/adma.202405310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Interfacial Na+ behaviors of sodium (Na) anode severely threaten the stability of sodium-metal batteries (SMBs). This review systematically and in-depth discusses the current fundamental understanding of interfacial Na+ behaviors in SMBs including Na+ migration, desolvation, diffusion, nucleation, and deposition. The key influencing factors and optimization strategies of these behaviors are further summarized and discussed. More importantly, the high-energy-density anode-free sodium metal batteries (AFSMBs) are highlighted by addressing key issues in the areas of limited Na sources and irreversible Na loss. Simultaneously, recent advanced characterization techniques for deeper insights into interfacial Na+ deposition behavior and composition information of SEI film are spotlighted to provide guidance for the advancement of SMBs and AFSMBs. Finally, the prominent perspectives are presented to guide and promote the development of SMBs and AFSMBs.
Collapse
Affiliation(s)
- Fei Huang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, P. R. China
| | - Peng Xu
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, P. R. China
| | - Guozhao Fang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, P. R. China
- National Energy Metal Resources and New Materials Key Laboratory, Central South University, Changsha, 410083, P. R. China
| | - Shuquan Liang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
2
|
Lin L, Wu R, Zhuang Y, Zhang Y, Xia L, Wang J, Zhang C, Sa B, Luo Q, Wang L, Lin J, Lin Y, Peng DL, Xie Q. An autotransferable alloy overlayer toward stable sodium metal anodes. J Colloid Interface Sci 2024; 670:215-222. [PMID: 38761574 DOI: 10.1016/j.jcis.2024.05.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Sodium (Na) metal anodes receive significant attention due to their high theoretical specific energy and cost-effectiveness. However, the high reactivity of Na foil anodes and the irregular surfaces have posed challenges to the operability and reliability of Na metals in battery applications. In the absence of inert environmental protection conditions, constructing a uniform, dense, and sodiophilic Na metal anode surface is crucial for homogenizing Na deposition, but remains less-explored. Herein, we fabricated a Tin (Sn) nanoparticle-assembled film conforming to separator pores, which provided ample space for accommodating volumetric expansion during the Na alloying process. Subsequently, a seamless Na-Sn alloy overlayer was formed and transferred onto the Na foil during Na plating through a separator-assisted technique, thereby overcoming conventional operational limitations of metallic Na. As compared to traditional volumetrically expanded cracked ones, the present autotransferable, highly sodiophilic, ion-conductive, and seamless Na-Sn alloy overlayer serves as uniform nucleation sites, thereby reducing nucleation and diffusion barriers and facilitating the compact deposition of metallic Na. Consequently, the autotransferable alloy layer enables a high average Coulombic efficiency of 99.9 % at 3.0 mA cm-2 and 3.0 mAh cm-2 in the half cells as well as minimal polarization overpotentials in symmetric cells, both during prolonged cycling 1200 h. Furthermore, the assembled Na||Sn-1.0h-PP||Na3V2(PO4)3@C@CNTs full cell delivers high capacity retention of 97.5 % after 200 cycles at a high cathodic mass loading.
Collapse
Affiliation(s)
- Liang Lin
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Renkang Wu
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Yanping Zhuang
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Yinggan Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Li Xia
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Jin Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Chengkun Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Baisheng Sa
- Multiscale Computational Materials Facility, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China
| | - Qing Luo
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Laisen Wang
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Jie Lin
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China
| | - Yingbin Lin
- Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
| | - Dong-Liang Peng
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China.
| | - Qingshui Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Dai W, Lu J, Wang Y, Cheng X, Yu L, Wang C, Fu Z. High Young's Modulus Li xTiO 2 Layer Suppressing the Pulverization and Deactivation of Lithiophilic Ag Nanoparticles. CHEMSUSCHEM 2024:e202401535. [PMID: 39243152 DOI: 10.1002/cssc.202401535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/09/2024]
Abstract
Anode-free Lithium metal batteries, with their high energy density (>500 Wh/kg), are emerging as a promising solution for high-energy-density rechargeable batteries. However, the Coulombic Efficiency and capacity often decline due to interface side reactions. To address this, a lithiophilic layer is introduced, promoting stable and uniform Li deposition. Despite its effectiveness, this layer often undergoes electrochemical deactivation over time. This work investigates lithiophilic silver (Ag), prepared via magnetron sputtering on a copper (Cu) current collector. Finite element simulations identify stress changes from alloying reactions as a key cause of Ag particle pulverization and deactivation. A high Young's modulus coating layer is proposed to mitigate this. The Ag2TiO3@Ag@TiO2@Cu composite electrode, designed with multi-layer structures, demonstrates a slower deactivation process through galvanostatic electrochemical cycling. Characterization methods such as SEM, AFM, and TEM confirm the suppression of Ag particle pulverization, while uncoated Ag fractures and deactivates. This work uncovers a potential failure mechanism of lithiophilic metallic nanoparticles and proposes a strategy for deactivation suppression using an artificial coating layer.
Collapse
Affiliation(s)
- Wangqi Dai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China
| | - Jia Lu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yuke Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China
| | - Xinyu Cheng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China
| | - Le Yu
- Envision Dynamic Technology Jiangsu Ltd, Jiangyin, Jiangsu, People's Republic of China
| | - Chungeng Wang
- Envision Dynamic Technology Jiangsu Ltd, Jiangyin, Jiangsu, People's Republic of China
| | - Zhengwen Fu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China
| |
Collapse
|
4
|
Liu P, Miao L, Sun Z, Chen X, Jiao L. Sodiophilic Substrate Induces NaF-Rich Solid Electrolyte Interface for Dendrite-Free Sodium Metal Anode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406058. [PMID: 39097944 DOI: 10.1002/adma.202406058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/05/2024] [Indexed: 08/06/2024]
Abstract
3D substrate with abundant sodiophilic active sites holds promise for implementing dendrite-free sodium metal anodes and high-performance sodium batteries. However, the heightened electrode/electrolyte side reactions stemming from high specific surface area still hinder electrode structure stability and cycling reversibility, particularly under high current densities. Herein, the solid electrolyte interface (SEI) component is regulated and detrimental side reactions are restrained through the uniform loading of Na-Sn alloy onto a porous 3D nanofiber framework (NaSn-PCNF). The strong interaction between Na-Sn alloy and PF6 - anions facilitates the dissociation of sodium salts and releases more free sodium ions for effective charge transfer. Simultaneously, the modulations of the interfacial electrolyte solvation structure and the construction of a high NaF content SEI layer stabilize the electrode/electrolyte interface. NaSn-PCNF symmetrical battery demonstrates stable cycling for over 600 h with an ultralow overpotential of 24.5 mV under harsh condition of 10 mA cm-2 and 10 mAh cm-2. Moreover, the full cells and pouch cells exhibit accelerated reaction kinetics and splendid capacity retention, providing valuable insights into the development of advanced Na substrates for high-energy sodium metal batteries.
Collapse
Affiliation(s)
- Pei Liu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Licheng Miao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhiqin Sun
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xuchun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Jin E, Su J, Hou H, Pirayesh P, Wang Y, Yuan Y, Yan H, Popov G, Goncharova LV, Ketabi S, Dai F, Cao C, Chen L, Zhao Y. Electro-Chemo-Mechanically Stable and Sodiophilic Interface for Na Metal Anode in Liquid-based and Solid-State Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406837. [PMID: 38923606 DOI: 10.1002/adma.202406837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Na metal batteries (NMBs) are attracting increasing attention because of their high energy density. However, the widespread application of NMBs is hindered by the growth of Na dendrites and interface instability. The design of artificial solid electrolyte interphase (SEI) with tuned chemical/electrochemical/mechanical properties is the key to achieving high-performance NMBs. This work develops a metal-doped nanoscale polymeric film with tunable composition, sodiophilic sites and improved stiffness. The incorporation of metal crosslinkers in the polymer chains results in exceptional electrochemical stability for Na metal anodes, leading to a significantly prolonged lifespan even at high current densities, which is at the top of the reported literature. The mechanical properties measurements and electro-chemo-mechanical phase-field model are performed to interpret the impact of the ionic transportation capability (decoupled mechanical) and mechanic property in the metal-doped polymer interface. In addition, this approach provides a promising strategy for the rational design of electrode interfaces, providing enhanced mechanical stability and improved sodiophilicity, which can open up opportunities for the fabrication of next-generation energy storage.
Collapse
Affiliation(s)
- Enzhong Jin
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Jinrong Su
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Hongyu Hou
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, H3A 0C3, Canada
| | - Parham Pirayesh
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Yijia Wang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Yi Yuan
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| | - Hanghang Yan
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Guerman Popov
- Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Lyudmila V Goncharova
- Department of Physics and Astronomy, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Sanaz Ketabi
- General Motors Research and Development Center, 30470 Harley Earl Boulevard, Warren, Michigan, 48092, USA
| | - Fang Dai
- General Motors Research and Development Center, 30470 Harley Earl Boulevard, Warren, Michigan, 48092, USA
| | - Changhong Cao
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, H3A 0C3, Canada
| | - Lei Chen
- Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Yang Zhao
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, N6A 5B9, Canada
| |
Collapse
|
6
|
Zheng X, Zhang Z, Li Z, Shi C, Zhao J, Tang J. Design and Synthesis of Sb-Doped CuS@C Hollow Nanocubes as Efficient Anode Materials for Sodium-Ion Battery. CHEMSUSCHEM 2024:e202401271. [PMID: 39085053 DOI: 10.1002/cssc.202401271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Copper sulfide has received widespread attention for application as anode materials in sodium-ion batteries due to their potent capabilitiess and eco-friendly properties. However, it is a challenge to achieve a high rate capability and long cycle stability owing to the heterogeneous transfer of sodium ions during charge-discharge, the interior poor electron conductivity and repeated volumetric expansion of copper sulfide. In this study, Sb-doped copper sulfide hollow nanocubes coated with carbon shells (Sb-CuS@C) was designed and constructed as anode nanomaterials in sodium-ion batteries. Thanks to the intrinsic good electron conductivity and chemical stability of carbon shells, Sb-CuS@C possesses a higher overall electron transfer as anode material, avoids agglomeration and structural destruction during the cycling. As a result, the synthesized Sb-CuS@C achieved an excellent reversible capacity of 595 mA h g-1 after 100 cycles at 0.5 A g-1 and a good rate capability of 340 mA h g-1 at a higher 10 A g-1. DFT calculations clarify that the uniformly doped Sb would act as active sodiophilic nucleation sites to help adsorbing sodium-ion during discharging and leading uniform sodium deposition. This work provides a new insight into the structural and componential modification for common transition-metal sulfides towards application as anode materials in sodium-ion battery.
Collapse
Affiliation(s)
- Xiang Zheng
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zining Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhiqian Li
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chaohong Shi
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jianqing Zhao
- College of Energy, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| | - Jing Tang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Jiangsu Zoolnasm Technology Co., LTD, Suzhou, 215009, China
| |
Collapse
|
7
|
Park H, Kang M, Lee D, Park J, Kang SJ, Kang B. Activating reversible carbonate reactions in Nasicon solid electrolyte-based Na-air battery via in-situ formed catholyte. Nat Commun 2024; 15:2952. [PMID: 38580640 PMCID: PMC10997774 DOI: 10.1038/s41467-024-47415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
Out of practicality, ambient air rather than oxygen is preferred as a fuel in electrochemical systems, but CO2 and H2O present in air cause severe irreversible reactions, such as the formation of carbonates and hydroxides, which typically degrades performance. Herein, we report on a Na-air battery enabled by a reversible carbonate reaction (Na2CO3·xH2O, x = 0 or 1) in Nasicon solid electrolyte (Na3Zr2Si2PO12) that delivers a much higher discharge potential of 3.4 V than other metal-air batteries resulting in high energy density and achieves > 86 % energy efficiency at 0.1 mA cm-2 over 100 cycles. This cell design takes advantage of moisture in ambient air to form an in-situ catholyte via the deliquescent property of NaOH. As a result, not only reversible electrochemical reaction of Na2CO3·xH2O is activated but also its kinetics is facilitated. Our results demonstrate the reversible use of free ambient air as a fuel, enabled by the reversible electrochemical reaction of carbonates with a solid electrolyte.
Collapse
Affiliation(s)
- Heetaek Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongamro, Namgu, Pohang, Gyeongbuk, 37673, South Korea
| | - Minseok Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongamro, Namgu, Pohang, Gyeongbuk, 37673, South Korea
| | - Donghun Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongamro, Namgu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jaehyun Park
- Department of Energy Engineering School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil, Ulsan, 44919, South Korea
| | - Seok Ju Kang
- Department of Energy Engineering School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil, Ulsan, 44919, South Korea
| | - Byoungwoo Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongamro, Namgu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
8
|
Wang X, Lu J, Wu Y, Zheng W, Zhang H, Bai T, Liu H, Li D, Ci L. Building Stable Anodes for High-Rate Na-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311256. [PMID: 38181436 DOI: 10.1002/adma.202311256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/15/2023] [Indexed: 01/07/2024]
Abstract
Due to low cost and high energy density, sodium metal batteries (SMBs) have attracted growing interest, with great potential to power future electric vehicles (EVs) and mobile electronics, which require rapid charge/discharge capability. However, the development of high-rate SMBs has been impeded by the sluggish Na+ ion kinetics, particularly at the sodium metal anode (SMA). The high-rate operation severely threatens the SMA stability, due to the unstable solid-electrolyte interface (SEI), the Na dendrite growth, and large volume changes during Na plating-stripping cycles, leading to rapid electrochemical performance degradations. This review surveys key challenges faced by high-rate SMAs, and highlights representative stabilization strategies, including the general modification of SMB components (including the host, Na metal surface, electrolyte, separator, and cathode), and emerging solutions with the development of solid-state SMBs and liquid metal anodes; the working principle, performance, and application of these strategies are elaborated, to reduce the Na nucleation energy barriers and promote Na+ ion transfer kinetics for stable high-rate Na metal anodes. This review will inspire further efforts to stabilize SMAs and other metal (e.g., Li, K, Mg, Zn) anodes, promoting high-rate applications of high-energy metal batteries towards a more sustainable society.
Collapse
Affiliation(s)
- Xihao Wang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jingyu Lu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yehui Wu
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Weiran Zheng
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, 515063, China
- Department of Chemistry, Guangdong Technion-Israel Institute of Technology, Shantou, 515063, China
| | - Hongqiang Zhang
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Tiansheng Bai
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Hongbin Liu
- School of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, 310018, China
| | - Deping Li
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lijie Ci
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
9
|
Wang S, Zhang XG, Gu Y, Tang S, Fu Y. An Ultrastable Low-Temperature Na Metal Battery Enabled by Synergy between Weakly Solvating Solvents. J Am Chem Soc 2024; 146:3854-3860. [PMID: 38305733 DOI: 10.1021/jacs.3c11134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The low ionic conductivity and high desolvation barrier are the main challenges for organic electrolytes in rechargeable metal batteries, especially at low temperatures. The general strategy is to couple strong-solvation and weak-solvation solvents to give balanced physicochemical properties. However, the two challenges described above cannot be overcome at the same time. Herein, we combine two different kinds of weakly solvating solvents with a very low desolvation energy. Interestingly, the synergy between the weak-solvation solvents can break the locally ordered structure at a low temperature to enable higher ionic conductivity compared to those with individual solvents. Thus, facile desolvation and high ionic conductivity are achieved simultaneously, significantly improving the reversibility of electrode reactions at low temperatures. The Na metal anode can be stably cycled at 2 mA cm-2 at -40 °C for 1000 h. The Na||Na3V2(PO4)3 cell shows the reversible capacity of 64 mAh g-1 at 0.3 C after 300 cycles at -40 °C, and the capacity retention is 86%. This strategy is applicable to other sets of weak-solvation solvents, providing guidance for the development of electrolytes for low-temperature rechargeable metal batteries.
Collapse
Affiliation(s)
- Shuzhan Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, P. R. China
| | - Shuai Tang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
10
|
Lin L, Li J, Zhang Y, Zheng H, Huang Y, Zhang C, Sa B, Wang L, Lin J, Peng DL, Lu J, Amine K, Xie Q. Design principles of heterointerfacial redox chemistry for highly reversible lithium metal anode. Proc Natl Acad Sci U S A 2024; 121:e2315871121. [PMID: 38277439 PMCID: PMC10835077 DOI: 10.1073/pnas.2315871121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024] Open
Abstract
High electrochemical reversibility is required for the application of high-energy-density lithium (Li) metal batteries; however, inactive Li formation and SEI (solid electrolyte interface)-instability-induced electrolyte consumption cause low Coulombic efficiency (CE). The prior interfacial chemical designs in terms of alloying kinetics have been used to enhance the CE of Li metal anode; however, the role of its redox chemistry at heterointerfaces remains a mystery. Herein, the relationship between heterointerfacial redox chemistry and electrochemical transformation reversibility is investigated. It is demonstrated that the lower redox potential at heterointerface contributes to higher CE, and this enhancement in CE is primarily due to the regulation of redox chemistry to Li deposition behavior rather than the formation of SEI films. Low oxidation potential facilitates the formation of the surface with the highly electrochemical binding feature after Li stripping, and low reduction potential can maintain binding ability well during subsequent Li plating, both of which homogenize Li deposition and thus optimize CE. In particular, Mg hetero-metal with ultra-low redox potential enables Li metal anode with significantly improved CE (99.6%) and stable cycle life for 700 cycles at 3.0 mA cm-2. This work provides insight into the heterointerfacial design principle of next-generation negative electrodes for highly reversible metal batteries.
Collapse
Affiliation(s)
- Liang Lin
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen361005, China
| | - Jiantao Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Yinggan Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen361005, China
| | - Hongfei Zheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Youzhang Huang
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen361005, China
| | - Chengkun Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen361005, China
| | - Baisheng Sa
- Multiscale Computational Materials Facility, College of Materials Science and Engineering, Fuzhou University, Fuzhou350100, China
| | - Laisen Wang
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen361005, China
| | - Jie Lin
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen361005, China
| | - Dong-Liang Peng
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen361005, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
- Quzhou Institute of Power Battery and Grid Energy Storage, Quzhou324003, China
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Qingshui Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials (Xiamen University), College of Materials, Xiamen University, Xiamen361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen518000, China
| |
Collapse
|
11
|
Li M, Floetenmeyer M, Bryant E, Cooper E, Tao S, Knibbe R. Study of Na Deposition Formation in Mixed Ethylene: Propylene Carbonate Electrolytes by Inert/Cryoelectron Microscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53333-53341. [PMID: 37947473 DOI: 10.1021/acsami.3c09442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The sodium anode-free combines low-cost and high energy density, demonstrating a promising alternative to the Li battery counterpart. Nevertheless, the uptake of a sodium anode-free battery is greatly impeded by the uncontrollable dendrite proliferation upon the chemically active metallic Na. An insightful mechanistic understanding of Na deposition nucleation and growth behavior in ethylene carbonate and propylene carbonate (EC/PC, 1:1) is revealed via various inert and/or cryo-electron microscopy characterization techniques. The deposit morphology, size, and distribution were studied with different current densities and areal capacity. The Na deposit distribution changes from nonparametric distribution to normal distribution which can be attributed to the effect of interparticle diffusion coupling (IDP). The atomic information on the Na deposit was revealed via cryogenic transmission electron microscopy.
Collapse
Affiliation(s)
- Ming Li
- School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Matthias Floetenmeyer
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Ethan Bryant
- School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Emily Cooper
- School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Shiwei Tao
- School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Ruth Knibbe
- School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
12
|
Wang M, Meng Y, Gao P, Li K, Liu Z, Zhu Z, Ali M, Ahmad T, Chen N, Yuan Y, Xu Y, Chuai M, Sun J, Zheng X, Li X, Yang J, Chen W. Anions Regulation Engineering Enables a Highly Reversible and Dendrite-Free Nickel-Metal Anode with Ultrahigh Capacities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305368. [PMID: 37459236 DOI: 10.1002/adma.202305368] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Indexed: 09/21/2023]
Abstract
The development of safe and high-energy metal anodes represents a crucial research direction. Here, the achievement of highly reversible, dendrite-free transition metal anodes with ultrahigh capacities by regulating aqueous electrolytes is reported. Using nickel (Ni) as a model, theoretical and experimental evidence demonstrating the beneficial role of chloride ions in inhibiting and disrupting the nickel hydroxide passivation layer on the Ni electrode is provided. As a result, Ni anodes with an ultrahigh areal capacity of 1000 mAh cm-2 (volumetric capacity of ≈6000 mAh cm-3 ), and a Coulombic efficiency of 99.4% on a carbon substrate, surpassing the state-of-the-art metal electrodes by approximately two orders of magnitude, are realized. Furthermore, as a proof-of-concept, a series of full cells based on the Ni anode is developed. The designed Ni-MnO2 full battery exhibits a long lifespan of 2000 cycles, while the Ni-PbO2 full battery achieves a high areal capacity of 200 mAh cm-2 . The findings of this study are important for enlightening a new arena toward the advancement of dendrite-free Ni-metal anodes with ultrahigh capacities and long cycle life for various energy-storage devices.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pengfei Gao
- Hefei National Research Center for Physics Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin, Jiangsu, 214443, China
| | - Ke Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zaichun Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mohsin Ali
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Touqeer Ahmad
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Na Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuan Yuan
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yan Xu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mingyan Chuai
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jifei Sun
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xinhua Zheng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xingxing Li
- Hefei National Research Center for Physics Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jinlong Yang
- Hefei National Research Center for Physics Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
13
|
Zhuang R, Zhang X, Qu C, Xu X, Yang J, Ye Q, Liu Z, Kaskel S, Xu F, Wang H. Fluorinated porous frameworks enable robust anode-less sodium metal batteries. SCIENCE ADVANCES 2023; 9:eadh8060. [PMID: 37774016 PMCID: PMC11090372 DOI: 10.1126/sciadv.adh8060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/28/2023] [Indexed: 10/01/2023]
Abstract
Sodium metal batteries hold great promise for energy-dense and low-cost energy storage technology but are severely impeded by catastrophic dendrite issue. State-of-the-art strategies including sodiophilic seeding/hosting interphase design manifest great success on dendrite suppression, while neglecting unavoidable interphase-depleted Na+ before plating, which poses excessive Na use, sacrificed output voltage and ultimately reduced energy density. We here demonstrate that elaborate-designed fluorinated porous framework could simultaneously realize superior sodiophilicity yet negligible interphase-consumed Na+ for dendrite-free and durable Na batteries. As elucidated by physicochemical and theoretical characterizations, well-defined fluorinated edges on porous channels are responsible for both high affinities ensuring uniform deposition and low reactivity rendering superior Na+ utilization for plating. Accordingly, synergistic performance enhancement is achieved with stable 400 cycles and superior plateau to sloping capacity ratio in anode-free batteries. Proof-of-concept pouch cells deliver an energy density of 325 Watt-hours per kilogram and robust 300 cycles under anode-less condition, opening an avenue with great extendibility for the practical deployment of metal batteries.
Collapse
Affiliation(s)
- Rong Zhuang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
| | - Xiuhai Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
| | - Changzhen Qu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
| | - Xiaosa Xu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
| | - Jiaying Yang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
| | - Qian Ye
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Zhe Liu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
| | - Stefan Kaskel
- Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Fei Xu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
| |
Collapse
|
14
|
Li S, Zhu H, Liu Y, Wu Q, Cheng S, Xie J. Space-Confined Guest Synthesis to Fabricate Sn-Monodispersed N-Doped Mesoporous Host toward Anode-Free Na Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301967. [PMID: 37167932 DOI: 10.1002/adma.202301967] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Severe issues including volume change and dendrite growth on sodium metal anodes hinder the pursuit of applicable high-energy-density sodium metal batteries. Herein, an in situ reaction approach is developed that takes metal-organic frameworks as nano-reactor and pore-former to produce a mesoporous host comprised of nitrogen-doped carbon fibers embedded with monodispersed Sn clusters (SnNCNFs). The hybrid host shows outstanding sodiophilicity that enables rapid Na infusion and ultralow Na nucleation overpotential of 2 mV. Its porous structure holds a high Na content and guides uniform Na deposition. Such host provides favorable Na plating/stripping with an average Coulombic efficiency of 99.96% over 2000 cycles (at 3 mA cm-2 and 3 mA h cm-2 ). The Na-infused SnNCNF anode delivers extreme Na utilization of 86% in symmetric cells (at 10 mA cm-2 and 10 mA h cm-2 ), outstanding rate capability and cycle life in Na-SnNCNF||Na3 V2 (PO4 )3 full cells (at 1 A g-1 for over 1000 cycles with capacity retention of 92.1%). Furthermore, high-energy/power-density anode-less and anode-free Na cells are achieved. This work presents an effective heteroatom-doping approach for fabricating multifunctional porous carbon materials and developing high-performance metal batteries.
Collapse
Affiliation(s)
- Siwu Li
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Haolin Zhu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yuan Liu
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qiang Wu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shijie Cheng
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jia Xie
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
15
|
Iqbal S, Ma Y, Wei B, Ali M, Zhao T. Na Storage in Sb 2S 3@C Composite: A Synergistic Capacity Contribution Mechanism with Wider Temperature Adaptability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16692-16701. [PMID: 36962065 DOI: 10.1021/acsami.2c22068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The practical applications of metallic anodes are limited due to dendritic growth, propagation in an infinite volume during the plating process, and parasitic interfacial reactions between sodium (Na) and the electrolyte. Herein, we developed Sb2S3 microrods as a template to regulate the nucleation of metallic Na. Additionally, the propagation of the deposited metal could be spatially regulated via a "nanoconfinement effect", that is, within the conformal hard carbon (C) layer of nanothickness. Moreover, we carefully studied the seed effect of the in situ-formed Na-Sb and Na-S alloys within the hard C sheath during the Na plating process. The symmetrical cells of the Sb2S3@C composite anode achieved dendrite-free cycling at 1 mA cm-2 for 1100 h at a high capacity loading of 1 mA h cm-2 and considerably mitigated a nucleation overpotential of 20 mV. Pairing a NaVPO4F (NVPF) cathode (4.6 mg cm-2) with an in situ presodiation Sb2S3@C composite (2*Na excess) prototype delivered a high energy density and a high power density of 173.75 W h kg-1 and 868.57 W kg-1, respectively. Therefore, this study provides tremendous possibilities for employing the proposed hybrid storage mechanism in low-cost and practical applications of high-energy-density Na metal batteries.
Collapse
Affiliation(s)
- Sundas Iqbal
- School of Materials Science and Engineering Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-NCP Joint International Research Center on Advanced Nanomaterials & Defects Engineering, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yue Ma
- School of Materials Science and Engineering Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bingqing Wei
- Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Mustehsin Ali
- Institute of Metal Research Chinese Academy of Sciences, Shenyang 110016, China
| | - Tingkai Zhao
- NPU-NCP Joint International Research Center on Advanced Nanomaterials & Defects Engineering, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
16
|
Ye W, Li X, Zhang B, Liu W, Cheng Y, Fan X, Zhang H, Liu Y, Dong Q, Wang MS. Superfast Mass Transport of Na/K Via Mesochannels for Dendrite-Free Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210447. [PMID: 36656991 DOI: 10.1002/adma.202210447] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Fast ion diffusion in anode hosts enabling uniform distribution of Li/Na/K is essential for achieving dendrite-free alkali-metal batteries. Common strategies, e.g. expanding the interlayer spacing of anode materials, can enhance bulk diffusion of Li but are less efficient for Na and K due to their larger ionic radius. Herein, a universal strategy to drastically improve the mass-transport efficiency of Na/K by introducing open mesochannels in carbon hosts is proposed. Such pore engineering can increase the accessible surface area by one order of magnitude, thus remarkably accelerating surface diffusion, as visualized by in situ transmission electron microscopy. In particular, once the mesochannels are filled by the Na/K metals, they become the superfast channels for mass transport via the mechanism of interfacial diffusion. Thus-modified carbon hosts enable Na/K filling in their inner cavities and uniform deposition across the whole electrodes with fast kinetics. The resulting Na-metal anodes can exhibit stable dendrite-free cycling with outstanding rate performance at a high current density of up to 30 mA cm-2 . This work presents an inspiring attempt to address the sluggish transport issue of Na/K, as well as valuable insights into the mass-transport mechanism in porous anodes for high-performance alkali-metal storage.
Collapse
Affiliation(s)
- Weibin Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xin Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Bowen Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite, Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
| | - Weicheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yong Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xinhang Fan
- Interdisiplinary Centre for Advanced Materials Science, Ruhr University Bochum, North Rhine-Westphalia, 44801, Bochum, Germany
| | - Hehe Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yuanpeng Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite, Materials and Structures, Harbin Institute of Technology, Harbin, 150080, China
| | - Quanfeng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ming-Sheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
17
|
Dahunsi OJ, Gao S, Kaelin J, Li B, Abdul Razak IB, An B, Cheng Y. Anode-free Na metal batteries developed by nearly fully reversible Na plating on the Zn surface. NANOSCALE 2023; 15:3255-3262. [PMID: 36723051 DOI: 10.1039/d2nr06120a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The anode-free battery architecture has recently emerged as a promising platform for lithium and sodium metal batteries as it not only offers the highest possible energy density, but also eliminates the need for handling hazardous metal electrodes during cell manufacturing. However, such batteries usually suffer from much faster capacity decay and are much more sensitive to even trace levels of irreversible side reactions on the anode, especially for the more reactive Na metal. This work systematically investigates electrochemical interfaces for Na plating and stripping and describes the use of the Zn surface to develop nearly fully reversible Na anodes with 1.0 M NaPF6 in a diglyme-based electrolyte. The high performance includes consistently higher than 99.9% faradaic efficiencies for a wide range of cycling currents between 0.5 and 10 mA cm-2, much more stable interfacial resistance and nearly no formation of mossy Na after 500 cycles compared with conventional Al and Cu surfaces. This improved reversibility was further confirmed under lean electrolyte conditions with a wide range of electrolyte concentrations and cycling temperatures and can be attributed to the strong interfacial binding and intrinsic sodiophilic properties of the Zn surface with Na, which not only ensured uniform Na plating but also eliminated most side reactions that would otherwise cause electrolyte depletion. As a result, full cells assembled with Na-free Zn foil and a high capacity Na3V2(PO4)3 cathode delivered ∼90% capacity retention for 100 cycles, higher than the 73% retention of Cu foils and much higher than the 39% retention of Al foils. This work provides new approaches to enable stable cycling of anode-free batteries and contribute to their applications in practical devices.
Collapse
Affiliation(s)
- Olusola John Dahunsi
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | - Siyuan Gao
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | - Jacob Kaelin
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | - Bomin Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | | | - Bowen An
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| | - Yingwen Cheng
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
18
|
Zeng L, Zhu J, Chu PK, Huang L, Wang J, Zhou G, Yu XF. Catalytic Effects of Electrodes and Electrolytes in Metal-Sulfur Batteries: Progress and Prospective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204636. [PMID: 35903947 DOI: 10.1002/adma.202204636] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Metal-sulfur (M-S) batteries are promising energy-storage devices due to their advantages such as large energy density and the low cost of the raw materials. However, M-S batteries suffer from many drawbacks. Endowing the electrodes and electrolytes with the proper catalytic activity is crucial to improve the electrochemical properties of M-S batteries. With regard to the S cathodes, advanced electrode materials with enhanced electrocatalytic effects can capture polysulfides and accelerate electrochemical conversion and, as for the metal anodes, the proper electrode materials can provide active sites for metal deposition to reduce the deposition potential barrier and control the electroplating or stripping process. Moreover, an advanced electrolyte with desirable design can catalyze electrochemical reactions on the cathode and anode in high-performance M-S batteries. In this review, recent progress pertaining to the design of advanced electrode materials and electrolytes with the proper catalytic effects is summarized. The current progress of S cathodes and metal anodes in different types of M-S batteries are discussed and future development directions are described. The objective is to provide a comprehensive review on the current state-of-the-art S cathodes and metal anodes in M-S batteries and research guidance for future development of this important class of batteries.
Collapse
Affiliation(s)
- Linchao Zeng
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jianhui Zhu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Licong Huang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jiahong Wang
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Xue-Feng Yu
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| |
Collapse
|
19
|
Lin L, Zhang C, Huang Y, Zhuang Y, Fan M, Lin J, Wang L, Xie Q, Peng DL. Challenge and Strategies in Room Temperature Sodium-Sulfur Batteries: A Comparison with Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107368. [PMID: 35315576 DOI: 10.1002/smll.202107368] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Metal-sulfur batteries exhibit great potential as next-generation rechargeable batteries due to the low sulfur cost and high theoretical energy density. Sodium-sulfur (Na-S) batteries present higher feasibility of long-term development than lithium-sulfur (Li-S) batteries in technoeconomic and geopolitical terms. Both lithium and sodium are alkali metal elements with body-centered cubic structures, leading to similar physical and chemical properties and exposing similar issues when employed as the anode in metal-sulfur batteries. Indeed, some inspiration for mechanism researches and strategies in Na-S systems comes from the more mature Li-S systems. However, the dissimilarities in microscopic characteristics determine that Na-S is not a direct Li-S analogue. Herein, the daunting challenges derived by the differences of fundamental characteristics in Na-S and Li-S systems are discussed. And the corresponding strategies in Na-S batteries are reviewed. Finally, general conclusions and perspectives toward the research direction are presented based on the dissimilarities between both systems. This review attempts to provide important insights to facilitate the assimilation of the available knowledge on Li-S systems for accelerating the development of Na-S batteries on the basis of their dissimilarities.
Collapse
Affiliation(s)
- Liang Lin
- State Key Lab for Physical Chemistry of Solid Surfaces Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Chengkun Zhang
- State Key Lab for Physical Chemistry of Solid Surfaces Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Youzhang Huang
- State Key Lab for Physical Chemistry of Solid Surfaces Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Yangping Zhuang
- State Key Lab for Physical Chemistry of Solid Surfaces Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Mengjian Fan
- State Key Lab for Physical Chemistry of Solid Surfaces Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jie Lin
- State Key Lab for Physical Chemistry of Solid Surfaces Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Laisen Wang
- State Key Lab for Physical Chemistry of Solid Surfaces Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Qingshui Xie
- State Key Lab for Physical Chemistry of Solid Surfaces Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, P. R. China
| | - Dong-Liang Peng
- State Key Lab for Physical Chemistry of Solid Surfaces Fujian Key Laboratory of Materials Genome Collaborative Innovation Center of Chemistry for Energy Materials College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
20
|
Deng Y, Zheng J, Zhao Q, Yin J, Biswal P, Hibi Y, Jin S, Archer LA. Highly Reversible Sodium Metal Battery Anodes via Alloying Heterointerfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203409. [PMID: 35957538 DOI: 10.1002/smll.202203409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Indexed: 06/15/2023]
Abstract
As a promising pathway toward low-cost, long-duration energy storage, rechargeable sodium batteries are of increasing interest. Batteries that incorporate metallic sodium as anode promise a high theoretical specific capacity of 1166 mAh g-1 , and low reduction potential of -2.71 V. The high reactivity and poor electrochemical reversibility of sodium anodes render sodium metal anode (SMA) cells among the most challenging for practical implementation. Here, the failure mechanisms of Na anodes are investigated and the authors report that loss of morphological control is not the fundamental cause of failure. Rather, it is the inherently poor anchoring/root structure of electrodeposited Na to the electrode substrate that leads to poor reversibility and cell failure. Poorly anchored Na deposits are prone to break away from the current collector, producing orphaning and poor anode utilization. Thin metallic coatings in a range of chemistries are proposed and evaluated as SMA substrates. Based on thermodynamic and ion transport considerations, such substrates undergo reversible alloying reactions with Na and are hypothesized to promote good root growth-regardless of the morphology. Among the various options, Au stands out for its ability to support long Na anode lifetime and high reversibility (Coulombic Efficiency > 98%), for coating thicknesses in the range of 10-1000 nm. As a first step toward evaluating practical utility of the anodes, their performance in Na||SPAN cells with N:P ratio close to 1:1 is evaluated.
Collapse
Affiliation(s)
- Yue Deng
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jingxu Zheng
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02129, USA
| | - Qing Zhao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jiefu Yin
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Prayag Biswal
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Yusuke Hibi
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Shuo Jin
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lynden A Archer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
21
|
Li X, Ye W, Xu P, Huang H, Fan J, Yuan R, Zheng MS, Wang MS, Dong Q. An Encapsulation-Based Sodium Storage via Zn-Single-Atom Implanted Carbon Nanotubes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202898. [PMID: 35729082 DOI: 10.1002/adma.202202898] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The properties of high theoretical capacity, low cost, and large potential of metallic sodium (Na) has strongly promoted the development of rechargeable sodium-based batteries. However, the issues of infinite volume variation, unstable solid electrolyte interphase (SEI), and dendritic sodium causes a rapid decline in performance and notorious safety hazards. Herein, a highly reversible encapsulation-based sodium storage by designing a functional hollow carbon nanotube with Zn single atom sites embedded in the carbon shell (ZnSA -HCNT) is achieved. The appropriate tube space can encapsulate bulk sodium inside; the inner enriched ZnSA sites provide abundant sodiophilic sites, which can evidently reduce the nucleation barrier of Na deposition. Moreover, the carbon shell derived from ZIF-8 provides geometric constraints and excellent ion/electron transport channels for the rapid transfer of Na+ due to its pore-rich shell, which can be revealed by in situ transmission electron microscopy (TEM). As expected, Na@ZnSA -HCNT anodes present steady long-term performance in symmetrical battery (>900 h at 10 mA cm-2 ). Moreover, superior electrochemical performance of Na@ZnSA -HCNT||PB full cells can be delivered. This work develops a new strategy based on carbon nanotube encapsulation of metallic sodium, which improves the safety and cycling performance of sodium metal anode.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Weibin Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Pan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Haihong Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jingmin Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ruming Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ming-Sen Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian, 361005, China
| | - Ming-Sheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Quanfeng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian, 361005, China
| |
Collapse
|
22
|
Xia X, Lv X, Yao Y, Chen D, Tang F, Liu L, Feng Y, Rui X, Yu Y. A sodiophilic VN interlayer stabilizing a Na metal anode. NANOSCALE HORIZONS 2022; 7:899-907. [PMID: 35678312 DOI: 10.1039/d2nh00152g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sodium (Na) metal is a very encouraging anode material for next-generation rechargeable batteries owing to its high specific capacity, earth-abundance and low-cost. However, the application of Na metal anodes (SMAs) is hampered by dendrite growth and "dead" Na formation caused by the uncontrollable Na deposition, leading to poor cycle life and even safety concerns. Herein, a high-performance Na anode is designed by introducing an artificial VN interlayer on the Na metal surface (Na/VN) by a simple mechanical rolling process to regulate Na nucleation/deposition behaviors. The density functional theory (DFT) and experiment results uncover that the VN possesses high "sodiophilicity", which can facilitate the initially homogeneous Na nucleation and cause Na to distribute evenly on the VN interlayer. Therefore, uniform Na deposition with dendrite-free morphology and prolonged cycling lifespan (over 1060 h at 0.5 mA cm-2/1 mA h cm-2) can be realized. Moreover, the full cell assembled by coupling a Na3V2(PO4)3 (NVP) cathode and Na/VN anode presents superior cycling performance (e.g., 96% capacity retention even after 800 cycles at 5C). This work provides a promising direction for regulating Na nucleation and deposition to achieve dendrite-free metal anodes.
Collapse
Affiliation(s)
- Xianming Xia
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiang Lv
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yu Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Dong Chen
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Fang Tang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Lin Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Xianhong Rui
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
23
|
Xu F, Qu C, Lu Q, Meng J, Zhang X, Xu X, Qiu Y, Ding B, Yang J, Cao F, Yang P, Jiang G, Kaskel S, Ma J, Li L, Zhang X, Wang H. Atomic Sn-enabled high-utilization, large-capacity, and long-life Na anode. SCIENCE ADVANCES 2022; 8:eabm7489. [PMID: 35544572 PMCID: PMC9094655 DOI: 10.1126/sciadv.abm7489] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Constructing robust nucleation sites with an ultrafine size in a confined environment is essential toward simultaneously achieving superior utilization, high capacity, and long-term durability in Na metal-based energy storage, yet remains largely unexplored. Here, we report a previously unexplored design of spatially confined atomic Sn in hollow carbon spheres for homogeneous nucleation and dendrite-free growth. The designed architecture maximizes Sn utilization, prevents agglomeration, mitigates volume variation, and allows complete alloying-dealloying with high-affinity Sn as persistent nucleation sites, contrary to conventional spatially exposed large-size ones without dealloying. Thus, conformal deposition is achieved, rendering an exceptional capacity of 16 mAh cm-2 in half-cells and long cycling over 7000 hours in symmetric cells. Moreover, the well-known paradox is surmounted, delivering record-high Na utilization (e.g., 85%) and large capacity (e.g., 8 mAh cm-2) while maintaining extraordinary durability over 5000 hours, representing an important breakthrough for stabilizing Na anode.
Collapse
Affiliation(s)
- Fei Xu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
- Corresponding author. (F.X.); (Xingcai Zhang); (L.L.) (H.W.)
| | - Changzhen Qu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
| | - Qiongqiong Lu
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden e.V. Helmholtzstr 20, Dresden 01069, Germany
| | - Jiashen Meng
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiuhai Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
| | - Xiaosa Xu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
| | - Yuqian Qiu
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
| | - Baichuan Ding
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
| | - Jiaying Yang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
| | - Fengren Cao
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou 215006, P. R. China
| | - Penghui Yang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
| | - Guangshen Jiang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
| | - Stefan Kaskel
- Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, Dresden 01062, Germany
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou 215006, P. R. China
- Corresponding author. (F.X.); (Xingcai Zhang); (L.L.) (H.W.)
| | - Xingcai Zhang
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Corresponding author. (F.X.); (Xingcai Zhang); (L.L.) (H.W.)
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi’an 710072, P. R. China
- Corresponding author. (F.X.); (Xingcai Zhang); (L.L.) (H.W.)
| |
Collapse
|
24
|
Li Z, Qin H, Zhu K, Liu P, Chen X, Wang X, Li H, Jiao L. Synergistic Effect of 3D Flexible Framework with Sodiophilic Mesoporous SnO 2 Nanosheet Arrays on Dendrite-Free Sodium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16394-16403. [PMID: 35363460 DOI: 10.1021/acsami.2c00530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although tremendous efforts have been dedicated to promote the electrochemical stability of sodium metal batteries (SMBs), the uncontrollable dendrites growth and inevitable side reactions at the sodium (Na) anode/electrolyte interface have not been effectively resolved. In this work, a flexible and functionalized 3D framework with mesoporous SnO2 nanosheet arrays (SnO2@CC-12) is fabricated to serve as a sodiophilic matrix toward dendrite-free Na metal anode. The mesoporous SnO2 nanosheet arrays provide abundant sodiophilic sites and sufficient internal voids, which can not only accelerate electron transport to reduce the local current density of Na anode surface but also manipulate the Na+ flux deposition to suppress the growth of Na dendrites. Therefore, the SnO2@CC-12-Na symmetric cell exhibits an ultralow overpotential of 9 mV and superior Na plating/stripping stability over 2200 h at 1.0 mA cm-2. Moreover, the full cells using Na3V2(PO4)3 cathode show favorable high-rate performance and impressive long cycling stability with 95.1% capacity retention over 1000 cycles at 500 mA g-1. This work may provide a new insight into the design of functionalized interface layer with high sodiophilicity toward dendrite-free SMBs.
Collapse
Affiliation(s)
- Zhaopeng Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hongye Qin
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kunjie Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pei Liu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuchun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaotian Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haixia Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Lee K, Lee YJ, Lee MJ, Han J, Lim J, Ryu K, Yoon H, Kim BH, Kim BJ, Lee SW. A 3D Hierarchical Host with Enhanced Sodiophilicity Enabling Anode-Free Sodium-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109767. [PMID: 35133699 DOI: 10.1002/adma.202109767] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Sodium-metal batteries (SMBs) are considered as a compliment to lithium-metal batteries for next-generation high-energy batteries because of their low cost and the abundance of sodium (Na). Herein, a 3D nanostructured porous carbon particle containing carbon-shell-coated Fe nanoparticles (PC-CFe) is employed as a highly reversible Na-metal host. PC-CFe has a unique 3D hierarchy based on sub-micrometer-sized carbon particles, ordered open channels, and evenly distributed carbon-coated Fe nanoparticles (CFe) on the surface. PC-CFe achieves high reversibility of Na plating/stripping processes over 500 cycles with a Coulombic efficiency of 99.6% at 10 mA cm-2 with 10 mAh cm-2 in Na//Cu asymmetric cells, as well as over 14 400 cycles at 60 mA cm-2 in Na//Na symmetric cells. Density functional theory calculations reveal that the superior cycling performance of PC-CFe stems from the stronger adsorption of Na on the surface of the CFe, providing initial nucleation sites more favorable to Na deposition. Moreover, the full cell with a PC-CFe host without Na metal and a high-loading Na3 V2 (PO4 )3 cathode (10 mg cm-2 ) maintains a high capacity of 103 mAh g-1 at 1 mA cm-2 even after 100 cycles, demonstrating the operation of anode-free SMBs.
Collapse
Affiliation(s)
- Kyungbin Lee
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Young Jun Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Michael J Lee
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Junghun Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeonghoon Lim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Ryu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hana Yoon
- Energy Storage Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Byung-Hyun Kim
- Computational Science & Engineering Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seung Woo Lee
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
26
|
Wang Y, Dong H, Katyal N, Hao H, Liu P, Celio H, Henkelman G, Watt J, Mitlin D. A Sodium-Antimony-Telluride Intermetallic Allows Sodium-Metal Cycling at 100% Depth of Discharge and as an Anode-Free Metal Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106005. [PMID: 34679207 DOI: 10.1002/adma.202106005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Repeated cold rolling and folding is employed to fabricate a metallurgical composite of sodium-antimony-telluride Na2 (Sb2/6 Te3/6 Vac1/6 ) dispersed in electrochemically active sodium metal, termed "NST-Na." This new intermetallic has a vacancy-rich thermodynamically stable face-centered-cubic structure and enables state-of-the-art electrochemical performance in widely employed carbonate and ether electrolytes. NST-Na achieves 100% depth-of-discharge (DOD) in 1 m NaPF6 in G2, with 15 mAh cm-2 at 1 mA cm-2 and Coulombic efficiency (CE) of 99.4%, for 1000 h of plating/stripping. Sodium-metal batteries (SMBs) with NST-Na and Na3 V2 (PO4 )3 (NVP) or sulfur cathodes give significantly improved energy, cycling, and CE (>99%). An anode-free battery with NST collector and NVP obtains 0.23% capacity decay per cycle. Imaging and tomography using conventional and cryogenic microscopy (Cryo-EM) indicate that the sodium metal fills the open space inside the self-supporting sodiophilic NST skeleton, resulting in dense (pore-free and solid electrolyte interphase (SEI)-free) metal deposits with flat surfaces. The baseline Na deposit consists of filament-like dendrites and "dead metal", intermixed with pores and SEI. Density functional theory calculations show that the uniqueness of NST lies in the thermodynamic stability of the Na atoms (rather than clusters) on its surface that leads to planar wetting, and in its own stability that prevents decomposition during cycling.
Collapse
Affiliation(s)
- Yixian Wang
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Hui Dong
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Naman Katyal
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hongchang Hao
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Pengcheng Liu
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Hugo Celio
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - John Watt
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - David Mitlin
- Materials Science and Engineering Program & Texas Materials Institute (TMI), The University of Texas at Austin, Austin, TX, 78712-1591, USA
| |
Collapse
|
27
|
Huang Z, Li Z, Zhu M, Wang G, Yu F, Wu M, Xu G, Dou SX, Liu HK, Wu C. Highly Stable Lithium/Sodium Metal Batteries with High Utilization Enabled by a Holey Two-Dimensional N-Doped TiNb 2O 7 Host. NANO LETTERS 2021; 21:10453-10461. [PMID: 34846156 DOI: 10.1021/acs.nanolett.1c03844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium/sodium metal batteries have attracted enormous attention as promising candidates for high-energy storage devices. However, their practical applications are impeded by the growth of dendrites upon Li/Na plating. Here, we report that holey 2D N-doped TiNb2O7 (N-TNO) nanosheets with high electroactive surface area and large amounts of lithiophilic/sodiophilic sites can effectively regulate Li/Na deposition as an interfacial layer, leading to an excellent cycling stability. The N-TNO interfacial layer enables the Li||Li symmetric cell to sustain stable electrodeposition over 1000 h as well as the Na||Na cell to stably cycle for 2400 h at 1 mA cm-2 and 3 mA h cm-2 with a depth of discharge as high as 50%. The full cells of the Li/Na anodes based on the N-TNO layer paired with the LiFePO4 and NaTi2(PO4)3 cathodes, respectively, show a very stable cycling over 1000 cycles at a negative-to-positive electrode capacity (N/P) ratio up to 3.
Collapse
Affiliation(s)
- Zhongyi Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Zhen Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Ming Zhu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2525, Australia
| | - Guanyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Fangfang Yu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2525, Australia
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, P. R. China
| | - Gang Xu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, P. R. China
| | - Shi-Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2525, Australia
| | - Hua-Kun Liu
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2525, Australia
| | - Chao Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2525, Australia
| |
Collapse
|
28
|
Yang H, Zhang L, Wang H, Huang S, Xu T, Kong D, Zhang Z, Zang J, Li X, Wang Y. Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode. J Colloid Interface Sci 2021; 611:317-326. [PMID: 34954607 DOI: 10.1016/j.jcis.2021.12.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
Na metal anode has attracted increasing attentions as the anode of sodium ion batteries (SIBs) due to its high theoretical capacity, low redox potential and high abundance. However, the formation of uncontrollable Na dendrite during repeated plating/stripping cycles hinders its further development and application. Herein, a sodiophilic Na metal anode host is developed by sputtering gold nanoparticles (Au NPs) into interconnected carbon nanotube modified carbon cloth (CNT/CC) to form a Au-CNT/CC architecture. Sodiophilic Au NPs effectively guide the Na metal uniform deposition and three-dimensional (3D) microporous structure offers a large surface area for nucleation and reducing the current densities. The regulated uniform Na metal deposition mechanism is investigated by the in-situ optical microscopy and simulation analysis. As a result, Au-CNT/CC electrode exhibits a low nucleation overpotential (2.2 mV) and stable cycle performance for 1600 h at 1 mA cm-2 with 2 mAh cm-2. Moreover, it even exhibits a long cycle stability for more than 800 h at 5 mA cm-2 with 2 mAh cm-2. To explore its application, a full cell coupled with a sodium vanadium phosphate coated with carbon layer (NVP@C) cathode is assembled and delivers an average discharge capacity of 80.6 mAh g-1 and coulombic efficiency of 99.6% for 400 cycles at 100 mAh g-1. Furthermore, a flexible pouch cell with Na@Au-CNT/CC as the anode is fabricated and demonstrated good flexibility and future application of wearable electronics.
Collapse
Affiliation(s)
- Haoyuan Yang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Limin Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Hui Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shaozhuan Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Tingting Xu
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Dezhi Kong
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Zhuangfei Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Jinhao Zang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Xinjian Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Ye Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
29
|
Li Y, Xu P, Mou J, Xue S, Huang S, Hu J, Dong Q, Yang C, Liu M. Single Cobalt Atoms Decorated N-doped Carbon Polyhedron Enabled Dendrite-Free Sodium Metal Anode. SMALL METHODS 2021; 5:e2100833. [PMID: 34927976 DOI: 10.1002/smtd.202100833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Indexed: 06/14/2023]
Abstract
Uncontrollable growth of sodium dendrites during the sodium deposition and stripping processes remains a huge challenge for achieving high-performance sodium metal batteries (SMBs), which results in ineffective utilization of metallic Na, low Coulombic efficiency, and inferior cycling life. Here, a single Co atom uniformly decorated porous nitrogen-doped carbon polyhedron (CoSA @NC) matrix has been fabricated and introduced to control the Na growth and achieve uniform Na nucleation/deposition. Cryo-electron microscopy and in situ optical microscopy techniques have been utilized to analyze the morphology change of metallic Na during plating/stripping processes. The single Co atoms evenly embedded in NC electrodes can provide stable Na-philic sites for Na ions adsorption, which is helpful to guide the uniform sodium deposition and prevent Na dendrites growth. This work thus provides an effective solution to inhibit Na dendrite growth and control Na nucleation behavior from the perspective of atomic level, towards the fabrication of high-safety and long-cycling SMBs.
Collapse
Affiliation(s)
- Yijuan Li
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Pan Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChem, Xiamen University, Xiamen, 361005, China
| | - Jirong Mou
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shoufeng Xue
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Junhua Hu
- School of Materials Science & Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanfeng Dong
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChem, Xiamen University, Xiamen, 361005, China
| | - Chenghao Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Meilin Liu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| |
Collapse
|
30
|
Lin K, Xu X, Qin X, Wu J, Liu Q, Tang Z, He S, Ye Y, Kang F, Li B. In Situ Constructed Ionic-Electronic Dual-Conducting Scaffold with Reinforced Interface for High-Performance Sodium Metal Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104021. [PMID: 34590428 DOI: 10.1002/smll.202104021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/15/2021] [Indexed: 05/15/2023]
Abstract
The formation of severe dendritic sodium (Na) microstructure reduces the reversibility of anode and further hinders its practical implementation. In this work, an ionic-electronic dual-conducting (IEDC) scaffold composed of Na3 P and carbon nanotubes is in situ developed by a scalable strategy with subsequent alloying reaction, for realizing dendrite-free Na deposition under high current density and large areal capacity. The in situ formed Na3 P with high sodiophilicity not only sets up a hierarchically efficient ionic conducting network, but also participates in the construction of reinforced solid electrolyte interphase, while carbon nanotubes can assemble an electronic conducting framework. As a result, the multifunctional IEDC scaffold contributes to smooth Na plating and exceptionally reversible Na stripping. High average Coulombic efficiency of 99.8% after prolonged 1200 cycles at 3 mA cm-2 and small overpotential of 20 mV over 250 h (equals to 530 cycles) at high rate of 5 mA cm-2 are obtained. The high availability of Na in IEDC scaffold enables the impressive performance of full cell with limited Na, using Na3 V2 (PO4 )3 (NVP) cathode at practical level. More importantly, the as-developed anode-free full cell with IEDC||NVP configuration delivers a high capacity retention with long lifetime, indicating its great potential for practical Na metal batteries.
Collapse
Affiliation(s)
- Kui Lin
- Shenzhen Key Laboratory on Power Battery Safety Research and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaofu Xu
- Contemporary Amperex Technology Co. Ltd., Ningde, 352100, China
| | - Xianying Qin
- Shenzhen Key Laboratory on Power Battery Safety Research and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
- Shenzhen Graphene Innovation Center Co. Ltd., Shenzhen, 518055, China
| | - Junxiong Wu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350000, China
| | - Qi Liu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Zhiyun Tang
- Shenzhen Key Laboratory on Power Battery Safety Research and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Shun He
- Shenzhen Key Laboratory on Power Battery Safety Research and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Yonghuang Ye
- Contemporary Amperex Technology Co. Ltd., Ningde, 352100, China
| | - Feiyu Kang
- Shenzhen Key Laboratory on Power Battery Safety Research and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Baohua Li
- Shenzhen Key Laboratory on Power Battery Safety Research and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| |
Collapse
|
31
|
Wang L, Shang J, Huang Q, Hu H, Zhang Y, Xie C, Luo Y, Gao Y, Wang H, Zheng Z. Smoothing the Sodium-Metal Anode with a Self-Regulating Alloy Interface for High-Energy and Sustainable Sodium-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102802. [PMID: 34432922 DOI: 10.1002/adma.202102802] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Because of the large abundance of sodium (Na) as a source material and the easy fabrication of Na-containing compounds, the sodium (Na) battery is a more environmentally friendly and sustainable technology than the lithium-ion battery (LIB). Na-metal batteries (SMBs) are considered promising to realize a high energy density to overtake the cost effectiveness of LIBs, which is critically important in large-scale applications such as grid energy storage. However, the cycling stability of the Na-metal anode faces significant challenges particularly under high cycling capacities, due to the complex failure models caused by the formation of Na dendrites. Here, a universal surface strategy, based on a self-regulating alloy interface of the current collector, to inhibit the formation of Na dendrites is reported. High-capacity (10 mAh cm-2 ) Na-metal anodes can achieve stable cycling for over 1000 h with a low overpotential of 35 mV. When paired with a high-capacity Na3 V2 (PO4 )2 F3 cathode (7 mAh cm-2 ), the SMB delivers an unprecedented energy density (calculated based on all the cell components) over 200 Wh kg-1 with flooded electrolyte, or over 230 Wh kg-1 with lean electrolyte. The dendrite-free SMB also shows high cycling stability with a capacity retention per cycle over 99.9% and an ultrahigh energy efficiency of 95.8%.
Collapse
Affiliation(s)
- Lei Wang
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Jian Shang
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Hong Hu
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Yuqi Zhang
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Chuan Xie
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Yufeng Luo
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Yuan Gao
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Huixin Wang
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| |
Collapse
|
32
|
Han J, He G. Capacity-Limited Na-M foil Anode: toward Practical Applications of Na Metal Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102126. [PMID: 34510710 DOI: 10.1002/smll.202102126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The practical applications of Na metal anodes are severely plagued by unstable Na plating/stripping. Here the fabrication of Na-rich Na-M (M = Au, Sn, and In) alloy anodes is reported as promising alternatives to address this issue. As compared to metallic Na foil anodes, the alloy foils exhibit improved electrolyte/electrode interface and provide abundant sodiophilic sites for efficient Na plating, while the self-evolved porous Na-M structures accommodate volume variation on cycling. Among three alloy foils, the Na-Au system shows the most promising performance. Under practical conditions such as capacity-limited anodes (5 mAh cm-2 ) and large stripping/plating capacity (1.0 mAh cm-2 ), the Na0.9 Au0.1 anodes demonstrate stable plating/stripping over 350 h. The proof-of-concept full cells assembled with hard carbon or Prussian blue materials and this thin Na0.9 Au0.1 anode also have much elongated cycling life than for pristine Na metal anodes. These findings confirm that the rational design of Na-M alloy anodes can be a promising strategy to promote the development of Na metal batteries.
Collapse
Affiliation(s)
- Jiatong Han
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Guang He
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|
33
|
Liu C, Chen H, Deng W, Chen J, Tian Y, Gao X, Deng X, Yi S, Li S, Chen L, Pan A, Ma J, Hou H, Zou G, Silvester DS, Ji X. Liquid Alloying Na-K for Sodium Metal Anodes. J Phys Chem Lett 2021; 12:9321-9327. [PMID: 34544240 DOI: 10.1021/acs.jpclett.1c02248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The prospects of sodium (Na) metal batteries have been fatally plagued by interfacial Na dendrites, mainly affected by preferred nucleation on the metal anode and the steep gradient of Na ions in the electrolyte, leading to limited Coulombic efficiency and short lifespans. Herein, an electrochemically inert potassium-based Na-K alloy demonstrates a liquid alloying diffusion mechanism that enables dendrite-free Na anodes. The extremely small Na fluctuation and flexible Na-K bonds in the liquid alloy phase bring isotropic nucleation of Na upon electroplating/stripping, which is directly observed by in situ optical imaging. Spontaneously, serving as (de)sodiation buffer with faster electron/mass transportation, the liquid inertia also provides attenuated concentration distribution of Na. Significantly, a record capacity retention of approximately 100% is rendered when coupled with Na3V2(PO4)3 cathodes (ca. 2 mg cm-2) over 500 cycles at 10C, advancing the possibility of using liquid alloy for stable metal anodes beyond Na storage systems.
Collapse
Affiliation(s)
- Cheng Liu
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hongyi Chen
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Wentao Deng
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jun Chen
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ye Tian
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xu Gao
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xinglan Deng
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shouyi Yi
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shuo Li
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Libao Chen
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Anqiang Pan
- School of Material Science and Engineering, Central South University, Changsha 410083, China
| | - Jianmin Ma
- School of Physics and Electronics, Hunan University, Changsha 410083, China
| | - Hongsuai Hou
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Guoqiang Zou
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Debbie S Silvester
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
34
|
You S, Ye M, Xiong J, Hu Z, Zhang Y, Yang Y, Li CC. Interfacial Protection Engineering of Sodium Nanoparticles toward Dendrite-Free and Long-Life Sodium Metal Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102400. [PMID: 34310031 DOI: 10.1002/smll.202102400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/19/2021] [Indexed: 06/13/2023]
Abstract
The instability of interfacial solid-electrolyte interphase (SEI) layer of metallic sodium (Na) anode during cycles results in the rapid capacity decay of sodium metal batteries (SMBs). Herein, the concept of interfacial protection engineering of Na nanoparticles (Na-NPs) is proposed first to achieve stable, dendrite-free, and long-life SMB. Employing an ion-exchange strategy, conformal Sn-Na alloy-SEI on the interface of Na-NPs is constructed, forming Sn@Na-NPs. The stable alloy-based SEI layer possesses the following three advantages: 1) significantly enhancing the transport dynamics of Na+ ions and electrons; 2) enabling the well-distributed deposition of Na+ ions to avoid the growth of dendrites; and 3) protecting the Sn@Na-NPs anode from the attack of electrolyte, thereby reducing the parasitic reaction and boosting the Coulombic efficiency of SMBs. Because of these virtues, the symmetric Sn@Na-NPs cell shows an ultralow voltage hysteresis of 0.54 V at 10 mA cm-2 after 600 h. Paired with the Na3 V2 (PO4 )2 O2 F (NaVPF) cathode, the NaVPF-Sn@Na-NPs full cell exhibits an initial discharge capacity of 89.2 mAh g-1 at 1 C and a high capacity retention of 81.6% after 600 cycles.
Collapse
Affiliation(s)
- Shunzhang You
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Minghui Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jiaming Xiong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zuyang Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yufei Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yang Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Cheng Chao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
35
|
Wang X, Fu L, Zhan R, Wang L, Li G, Wan M, Wu XL, Seh ZW, Wang L, Sun Y. Addressing the Low Solubility of a Solid Electrolyte Interphase Stabilizer in an Electrolyte by Composite Battery Anode Design. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13354-13361. [PMID: 33705100 DOI: 10.1021/acsami.1c01571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metallic sodium (Na) has been regarded as one of the most attractive anodes for Na-based rechargeable batteries due to its high specific capacity, low working potential, and high natural abundance. However, several important issues hinder the practical application of the metallic Na anode, including its high reactivity with electrolytes, uncontrolled dendrite growth, and poor processability. Metal nitrates are common electrolyte additives used to stabilize the solid electrolyte interphase (SEI) on Na anodes, though they typically suffer from poor solubility in electrolyte solvents. To address these issues, a Na/NaNO3 composite foil electrode was fabricated through a mechanical kneading approach, which featured uniform embedment of NaNO3 in a metallic Na matrix. During the battery cycling, NaNO3 was reduced by metallic Na sustainably, which addressed the issue of low solubility of an SEI stabilizer. Due to the supplemental effect of NaNO3, a stable SEI with NaNxOy and Na3N species was produced, which allowed fast ion transport. As a result, stable electrochemical performance for 600 h was achieved for Na/NaNO3||Na/NaNO3 symmetric cells at a current density of 0.5 mA cm-2 and an areal capacity of 0.5 mAh cm-2. A Na/NaNO3||Na3V2(PO4)2O2F cell with active metallic Na of ∼5 mAh cm-2 at the anode showed stable cycling for 180 cycles. In contrast, a Na||Na3V2(PO4)2O2F cell only displayed less than 80 cycles under the same conditions. Moreover, the processability of the Na/NaNO3 composite foil was also significantly improved due to the introduction of NaNO3, in contrast to the soft and sticky pure metallic Na. Mechanical kneading of soft alkali metals and their corresponding nitrates provides a new strategy for the utilization of anode stabilizers (besides direct addition into electrolytes) to improve their electrochemical performance.
Collapse
Affiliation(s)
- Xiancheng Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lin Fu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Renming Zhan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingyue Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guocheng Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mintao Wan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, and Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Yongming Sun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
36
|
|
37
|
Zhang L, Zhu X, Wang G, Xu G, Wu M, Liu HK, Dou SX, Wu C. Bi Nanoparticles Embedded in 2D Carbon Nanosheets as an Interfacial Layer for Advanced Sodium Metal Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007578. [PMID: 33656277 DOI: 10.1002/smll.202007578] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Sodium metal is regarded as one of the most prospective next-generation anodes material owing to its high theoretical capacity, low redox potential, low cost, and natural abundance. Its most notable problem is the dendrite growth during Na plating/striping, which causes not only the safety concern but also the generation of inactive Na. Here, it is demonstrated that 2D carbon nanosheets embedded by bismuth nanoparticles (NPs) (denoted as Bi⊂CNs) serve as a robust nucleation buffer layer to endow the sodium metal anodes (SMAs) with high Coulombic efficiencies (CEs) and dendrite-free deposition during long-term cycling. The embedded Bi nanoparticles significantly reduce the nucleation barrier through the "sodiophilic" Na-Bi alloy. Meanwhile, the carbon frameworks effectively circumvent the gradual failure of those Na-Bi nucleation sites. As a result, the metallic Na on the Bi⊂CNs nucleation layer is repeatedly plated/stripped for nearly 7700 h (1287 cycles) at 3 mA h cm-2 with an average CE of 99.92%. Moreover, the Na||Na symmetric cells with the Bi⊂CNs buffer layer are stably plated/stripped for 4000 h at 1 mA cm-2 and 1 mA h cm-2 . It is found that the cycling stability is closely related to the Na utilization of SMAs and current rate.
Collapse
Affiliation(s)
- Lin Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiaolong Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Guanyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Gang Xu
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai, 200444, China
| | - Minghong Wu
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai, 200444, China
| | - Hua-Kun Liu
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Shi-Xue Dou
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Chao Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
38
|
Cui X, Wang Y, Wu H, Lin X, Tang S, Xu P, Liao H, Zheng M, Dong Q. A Carbon Foam with Sodiophilic Surface for Highly Reversible, Ultra-Long Cycle Sodium Metal Anode. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003178. [PMID: 33511020 PMCID: PMC7816717 DOI: 10.1002/advs.202003178] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/25/2020] [Indexed: 05/19/2023]
Abstract
Sodium metal anodes combine low redox potential (-2.71 V versus SHE) and high theoretical capacity (1165 mAh g-1), becoming a promising anode material for sodium-ion batteries. Due to the infinite volume change, unstable SEI films, and Na dendrite growth, it is arduous to achieve a long lifespan. Herein, an oxygen-doped carbon foam (OCF) derived from starch is reported. Heteroatom doping can significantly reduce the nucleation resistance of sodium metal; combined with its rich pore structure and large specific surface area, OCF provides abundant nucleation sites to effectively guide the nucleation and subsequent growth of sodium metal, and the nature of this foam can accommodate the deposited sodium. Furthermore, a more uniform, robust, and stable SEI layer is observed on the surface of OCF electrode, so it can maintain ultra-high reversibility and excellent integrity for a long time without dendritic growth. As a result, when the current density is 10 mA cm-2, the electrode can maintain stable 2000 cycles and the coulombic efficiency can reach to 99.83%. Na@OCF||Na3V2(PO4)3 full cell also has extremely high capacity retention of about 97.53% over 150 cycles. These results provide a simple but effective method for achieving the safety and commercialization of sodium metal anode.
Collapse
Affiliation(s)
- Xue‐Yang Cui
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Ya‐Jing Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Hua‐Deng Wu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiao‐Dong Lin
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Shuai Tang
- College of ChemistryZhengzhou UniversityZhengzhou450001China
| | - Pan Xu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Hong‐Gang Liao
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Ming‐Sen Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Quan‐Feng Dong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)State Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| |
Collapse
|
39
|
Wu J, Zou P, Ihsan-Ul-Haq M, Mubarak N, Susca A, Li B, Ciucci F, Kim JK. Sodiophilically Graded Gold Coating on Carbon Skeletons for Highly Stable Sodium Metal Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003815. [PMID: 32875749 DOI: 10.1002/smll.202003815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Metallic sodium (Na) is an appealing anode material for high-energy Na batteries. However, Na metal suffers from low coulombic efficiencies and severe dendrite growth during plating/stripping cycles, causing short circuits. As an effective strategy to improve the deposition behavior of Na metal, a 3D carbon foam is developed that is sputter-coated with gold nanoparticles (Au/CF), forming a functional gradient through its thickness. The highly porous Au/CF host is proven to have gradually varying sodiophilicity, which in turn facilitates initially preferential Na deposition on the gold-rich, sodiophilic region in a "bottom-up growth" mode, leading to uniform plating over the entire Au/CF host. This finding contrasts with dendrite formation in the pristine CF host, as proven by in situ microscopy. The Na-predeposited Au/CF (Na@Au/CF) composite anode operates steadily for 1000 h at a low overpotential of ≈20 mV at 2 mA cm-2 in a symmetric cell. When the composite anode is coupled with a Na3 V2 (PO4 )2 F3 cathode, the full cell has a high capacity of 102.1 mAh g-1 after 500 cycles at 2 C. The sodiophilicity gradient design that is explored in this study offers new insight into developing porous Na metal hosts with highly stable plating/stripping performance for next-generation Na batteries.
Collapse
Affiliation(s)
- Junxiong Wu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Peichao Zou
- Department of Physics and Astronomy, University of California Irvine, Irvine, CA92697, USA
| | - Muhammad Ihsan-Ul-Haq
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Nauman Mubarak
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Alessandro Susca
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Baohua Li
- Shenzhen Key Laboratory on Power Battery Safety and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, 518055, China
| | - Francesco Ciucci
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jang-Kyo Kim
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
40
|
|
41
|
Wang G, Zhang Y, Guo B, Tang L, Xu G, Zhang Y, Wu M, Liu HK, Dou SX, Wu C. Core-Shell C@Sb Nanoparticles as a Nucleation Layer for High-Performance Sodium Metal Anodes. NANO LETTERS 2020; 20:4464-4471. [PMID: 32374170 DOI: 10.1021/acs.nanolett.0c01257] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sodium metal anode (SMA) is one of the most favored choices for the next-generation rechargeable battery technologies owing to its low cost and natural abundance. However, the poor reversibility resulted from dendrite growth and formation of unstable solid electrolyte interphase has significantly hindered the practical application of SMAs. Herein, we report that a nucleation buffer layer comprising elaborately designed core-shell C@Sb nanoparticles (NPs) enables the homogeneous electrochemical deposition of sodium metal for long-term cycling. These C@Sb NPs can increase active sites for initial sodium nucleation through Sb-Na alloy cores and keep these cores stable through carbon shells. The assembled cells with this nucleation layer can deliver continuously repeated sodium plating/stripping cycles for nearly 6000 h at a high areal capacity of 4 mA h cm-2 with an average Coulombic efficiency 99.7%. This ingenious structure design of alloy-based nucleation agent opens up a promising avenue to stabilize sodium metal with targeted properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hua-Kun Liu
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shi-Xue Dou
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chao Wu
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
42
|
Zhou L, Cao Z, Zhang J, Sun Q, Wu Y, Wahyudi W, Hwang JY, Wang L, Cavallo L, Sun YK, Alshareef HN, Ming J. Engineering Sodium-Ion Solvation Structure to Stabilize Sodium Anodes: Universal Strategy for Fast-Charging and Safer Sodium-Ion Batteries. NANO LETTERS 2020; 20:3247-3254. [PMID: 32319776 DOI: 10.1021/acs.nanolett.9b05355] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sodium-ion batteries are promising alternatives for lithium-ion batteries due to their lower cost caused by global sodium availability. However, the low Coulombic efficiency (CE) of the sodium metal plating/stripping process represents a serious issue for the Na anode, which hinders achieving a higher energy density. Herein, we report that the Na+ solvation structure, particularly the type and location of the anions, plays a critical role in determining the Na anode performance. We show that the low CE results from anion-mediated corrosion, which can be tackled readily through tuning the anion interaction at the electrolyte/anode interface. Our strategy thus enables fast-charging Na-ion and Na-S batteries with a remarkable cycle life. The presented insights differ from the prevailing interpretation that the failure mechanism mostly results from sodium dendrite growth and/or solid electrolyte interphase formation. Our anionic model introduces a new guideline for improving the electrolytes for metal-ion batteries with a greater energy density.
Collapse
Affiliation(s)
- Lin Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhen Cao
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jiao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qujiang Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
| | - Yingqiang Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
| | - Wandi Wahyudi
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jang-Yeon Hwang
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Limin Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Luigi Cavallo
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yang-Kook Sun
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Republic of Korea
| | - Husam N Alshareef
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jun Ming
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
43
|
Liu W, Liu P, Mitlin D. Tutorial review on structure – dendrite growth relations in metal battery anode supports. Chem Soc Rev 2020; 49:7284-7300. [DOI: 10.1039/d0cs00867b] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This tutorial review explains surface and bulk chemistry – electrochemical performance relations of lithium, sodium and potassium metal anodes.
Collapse
Affiliation(s)
- Wei Liu
- Institute of New-Energy and Low-Carbon Technology (INELT)
- Sichuan University
- Chengdu
- China
- Engineering Research Center of Alternative Energy Materials & Devices
| | - Pengcheng Liu
- Materials Science and Engineering Program & Texas Materials Institute
- The University of Texas at Austin
- Austin
- USA
| | - David Mitlin
- Materials Science and Engineering Program & Texas Materials Institute
- The University of Texas at Austin
- Austin
- USA
| |
Collapse
|
44
|
Wang H, Matios E, Luo J, Li W. Combining theories and experiments to understand the sodium nucleation behavior towards safe sodium metal batteries. Chem Soc Rev 2020; 49:3783-3805. [DOI: 10.1039/d0cs00033g] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review assesses both theoretical and experimental knowledge on sodium nucleation for the first time towards a safe sodium battery.
Collapse
Affiliation(s)
- Huan Wang
- Thayer School of Engineering
- Dartmouth College
- Hanover
- USA
| | - Edward Matios
- Thayer School of Engineering
- Dartmouth College
- Hanover
- USA
| | - Jianmin Luo
- Thayer School of Engineering
- Dartmouth College
- Hanover
- USA
| | - Weiyang Li
- Thayer School of Engineering
- Dartmouth College
- Hanover
- USA
| |
Collapse
|
45
|
Tanwar M, Bezabh HK, Basu S, Su WN, Hwang BJ. Investigation of Sodium Plating and Stripping on a Bare Current Collector with Different Electrolytes and Cycling Protocols. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39746-39756. [PMID: 31518104 DOI: 10.1021/acsami.9b10097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present study, stable sodium plating/stripping has been achieved on a bare aluminum current collector, without any surface modifications or artificial SEI deposition. The crucial role of predeposited sodium using cyclic voltammetry on bare aluminum as a matrix for plating/stripping has been highlighted using different protocols for cycling. The predeposition strategy ensures stable and efficient cycling of sodium in anode-free sodium batteries without dendritic formations. The study highlights the difference of sodium plating/stripping in carbonate and glyme solvent electrolytes on the bare aluminum current collector. Contrary to the carbonate solvent electrolyte, the cell with the tetraglyme solvent electrolyte and sodium loading of 1 mA h/cm2 has an overpotential under 20 mV during the sodium plating/stripping cycles at 0.5 mA/cm2 for a testing period of 650 h. Overpotentials under 40 and 100 mV have been achieved at current densities up to 1 and 2 mA/cm2 for loadings up to 5 and 10 mA h/cm2, respectively, for a testing time up to 1500 h. Density functional theory simulations have been performed to obtain the solvation energies, and the highest occupied molecular orbital-lowest unoccupied molecular orbital band gap of the solvent-sodium ion complexes for the glyme solvent electrolytes and their trends have been correlated with the experimental observations.
Collapse
Affiliation(s)
- Mayank Tanwar
- Department of Chemical Engineering , Indian Institute of Technology Delhi , Hauz Khas, New Delhi 110016 , India
| | | | - Suddhasatwa Basu
- Department of Chemical Engineering , Indian Institute of Technology Delhi , Hauz Khas, New Delhi 110016 , India
- CSIR-Institute of Minerals and Materials Technology , Bhubaneswar 750103 , India
| | | | - Bing-Joe Hwang
- National Synchrotron Radiation Research Center , Hsinchu 300 , Taiwan
| |
Collapse
|