1
|
Fan Q, Xu K, Chen M, Tang Q, Chen K, Hu X, Lan F, Wang Y, Shao H, Qiao S, Yan Z, Wang C, Song L, Hu W, Naguib M, Simon P, Huang Q, Xiao Y, Liang K. Facilitating Ion Storage and Transport Pathways by In Situ Constructing 1D Carbon Nanotube Electric Bridges between 2D MXene Interlayers. ACS NANO 2024. [PMID: 39439383 DOI: 10.1021/acsnano.4c09475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Multiple van der Waals (vdW) gaps invoke abundant opportunities for contriving artificial architectures and tailoring desired properties via the intercalation route beyond the reach of conventional concepts. Intriguingly, the electrochemical intercalation strategy can precisely and reversibly tune the intercalation stage of charged functional species. This study presents a valid structural editing protocol facilitated by electrochemical intercalation to engineer MXene interlayers, ultimately incorporating in situ constructed carbon nanotube (CNT) electric bridges for enhanced ion storage and transport pathways. The method allows for the precise modulation of electrochemical forces to tailor materials for specific applications. Deep intercalation and in situ growth processes establish robust anchoring sites and connectivity hubs between MXenes and CNTs, ensuring structural homogeneity and stability in advanced electrode materials. The results demonstrate the effectiveness of electrochemistry-mediated interlayer nanoengineering in MXenes, offering a versatile approach to design vdW heterostructures with tailored functionalities for energy storage and conversion applications. This work highlights the potential of electrochemical modulation in advancing materials engineering strategies for next-generation energy storage technologies.
Collapse
Affiliation(s)
- Qi Fan
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Kui Xu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Minghua Chen
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Qing Tang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Ke Chen
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Qianwan Institute of CNITECH, Ningbo 315201, P. R. China
| | - Xiaofei Hu
- Center of Test and Analysis, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Fuli Lan
- Center of Test and Analysis, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yueqi Wang
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Hui Shao
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Sicong Qiao
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Ziwei Yan
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Changda Wang
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Li Song
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230029, P. R. China
| | - Wencheng Hu
- School of Materials and Energy, University of Electronic Science & Technology of China, Chengdu 610054, P. R. China
| | - Michael Naguib
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
| | | | - Qing Huang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Qianwan Institute of CNITECH, Ningbo 315201, P. R. China
| | - Yao Xiao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
- Qianwan Institute of CNITECH, Ningbo 315201, P. R. China
| |
Collapse
|
2
|
Wang J, Han J, Chen S, Li J, Wang Y, Wu C, Wang Q, Wang Z, Chen F, Wan W. Observation of a V-Shape Superconductivity Evolution on Tungsten-Intercalated 2H-Type Niobium Diselenide. ACS NANO 2024; 18:27665-27671. [PMID: 39342510 DOI: 10.1021/acsnano.4c09443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
van der Waals-layered niobium diselenide (NbSe2) intercalated by d-electron transition metals is an ideal test bed for the exploration of their diversiform evolution of ground states. These intercalations are mostly viewed as ordered structures aligned with periodicities of their host materials that enable control of the electronic phases via gradually changing of intercalation ratios. Here, we present the structure and superconductivity in tungsten (W)-intercalated 2H-NbSe2 crystals, which reveals an order to disorder distribution of W atoms with increasing confined intercalating amounts, leading to an approximate V-shape suppression of superconductivity. Aided by density functional theory calculations, we demonstrate that the local magnetic moment around W intercalants induced by the charge redistribution gives rise to the quick superconductivity suppression in 2H-NbSe2 below a certain dilute amount (W% = 0.06). Simultaneously, W intercalants also induce structural aberration due to aggregation effects and inhibit the generation of an ordered structure in 2H-NbSe2, resulting in a recovery of its superconductivity. The alteration of structure and electronic phases in 2H-NbSe2 via intercalation of nonmagnetic transition metals in the van der Waals gap enables the exploration of combined magnetic quantum criticality, superconductivity, and other related electronic correlations.
Collapse
Affiliation(s)
- Jin Wang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- College of Physics and Electronic Information Engineering, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Jia Han
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Shu Chen
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jie Li
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Yangzhou Wang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Chuanyi Wu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Qianshuo Wang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Zihan Wang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Fei Chen
- College of Physics and Electronic Information Engineering, Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Wen Wan
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Krasheninnikov AV, Lin YC, Suenaga K. Graphene Bilayer as a Template for Manufacturing Novel Encapsulated 2D Materials. NANO LETTERS 2024; 24. [PMID: 39364880 PMCID: PMC11487710 DOI: 10.1021/acs.nanolett.4c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Bilayer graphene (BLG) has recently been used as a tool to stabilize encapsulated single sheets of various layered materials and tune their properties. It was also discovered that the protecting action of graphene sheets makes it possible to synthesize completely new two-dimensional materials (2DMs) inside the BLG by intercalating various atoms and molecules. In comparison to the bulk graphite, BLG allows for easier intercalation and a much larger increase in the interlayer separation of the sheets. Moreover, it enables studying the atomic structure of the intercalated 2DM by using high-resolution transmission electron microscopy. In this review, we summarize the recent progress in this area, with a special focus on new materials created inside BLG. We compare the experimental findings with the theoretical predictions, pay special attention to the discrepancies, and outline the challenges in the field. Finally, we discuss unique opportunities offered by intercalation into 2DMs beyond graphene and their heterostructures.
Collapse
Affiliation(s)
- Arkady V. Krasheninnikov
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf 01328 Dresden, Germany
- The
Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan
| | - Yung-Chang Lin
- The
Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan
- Nanomaterials
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Kazu Suenaga
- The
Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan
- Nanomaterials
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| |
Collapse
|
4
|
Wu R, Hao J, Wang Y. Recent Advances in Engineering of 2D Layered Metal Chalcogenides for Resistive-Type Gas Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404821. [PMID: 39344560 DOI: 10.1002/smll.202404821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Indexed: 10/01/2024]
Abstract
2D nanomaterials have triggered widespread attention in sensing applications. Especially for 2D layered metal chalcogenides (LMCs), the unique semiconducting properties and high surface area endow them with great potential for gas sensors. The assembly of 2D LMCs with guest species is an effective functionalization method to produce the synergistic effects of hybridization for greatly enhancing the gas-sensing properties. This review starts with the synthetic techniques, sensing properties, and principles, and then comprehensively compiles the advanced achievements of the pristine 2D LMCs gas sensors. Key advances in the development of the functionalization of 2D LMCs for enhancing gas-sensing properties are categorized according to the spatial architectures. It is systematically discussed in three aspects: surface, lattice, and interlayer, to comprehend the benefits of the functionalized 2D LMCs from surface chemical effect, electronic properties, and structure features. The challenges and outlooks for developing high-performance 2D LMCs-based gas sensors are also proposed.
Collapse
Affiliation(s)
- Ruozhen Wu
- Fujian Provincial Collaborative Innovation Center of Bamboo Ecological Industry, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, P. R. China
- Department of Polymer Materials and Engineering, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, P. R. China
| | - Juanyuan Hao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - You Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
5
|
Rai J, Kumar K, Verma MK, Sharma M. Impact of passivation on GaS nanoflakes: A study on stability, electronic, spectroscopy, and photocatalytic properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125173. [PMID: 39342723 DOI: 10.1016/j.saa.2024.125173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
This study uses first-principle calculations to investigate the properties of pristine and passivated gallium sulfide nanoflakes. Passivation significantly enhances stability, with fluorinated nanoflakes being the most stable and pristine nanoflakes the least stable, having formation energies of -0.058 eV/atom and -0.009 eV/atom, respectively. The pristine and passivated nanoflakes show semiconducting band gap, which lies in a visible region. Hydrogenated nanoflakes exhibit the largest band gap of 3.62 eV, making them highly suitable for photocatalysis, while fluorine and chlorine passivation result in band gaps of 3.16 eV and 3.01 eV. Scanning tunneling microscopy reveals distinct topographical features for each passivated nanoflake, affecting their electronic properties, including negative differential conductance, making it suitable for advanced switching devices and sensors. The quantum capacitance value of 815 µF/cm2 for chlorinated nanoflakes suggests that passivated nanoflakes could be beneficial for supercapacitor applications. Spectroscopic studies show that passivation changes the infrared spectrum and moves absorption spectra from the ultraviolet to the visible range. The hydrogenated nanoflakes are found ideal for water splitting, and adjusting the pH can further optimize its photocatalytic performance. These findings highlight the potential of passivated nanoflakes in photovoltaics, biomedical imaging, photocatalysis, and advanced technological devices.
Collapse
Affiliation(s)
- Jyoti Rai
- Department of Chemistry, School of Basic and Applied Sciences, Maharaja Agrasen University, Himachal Pradesh 174103, India
| | - Kuldeep Kumar
- Department of Physics, School of Basic and Applied Sciences, Maharaja Agrasen University, Himachal Pradesh 174103, India
| | - Mukesh Kumar Verma
- Department of Chemistry, School of Basic and Applied Sciences, Maharaja Agrasen University, Himachal Pradesh 174103, India.
| | - Munish Sharma
- Department of Physics, School of Basic and Applied Sciences, Maharaja Agrasen University, Himachal Pradesh 174103, India.
| |
Collapse
|
6
|
Li M, Fan Q, Gao L, Liang K, Huang Q. Chemical Intercalation of Layered Materials: From Structure Tailoring to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312918. [PMID: 38821561 DOI: 10.1002/adma.202312918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/02/2024] [Indexed: 06/02/2024]
Abstract
The intercalation of layered materials offers a flexible approach for tailoring their structures and generating unexpected properties. This review provides perspectives on the chemical intercalation of layered materials, including graphite/graphene, transition metal dichalcogenides, MXenes, and some particular materials. The characteristics of the different intercalation methods and their chemical mechanisms are discussed. The influence of intercalation on the structural changes of the host materials and the structural change how to affect the intrinsic properties of the intercalation compounds are discussed. Furthermore, a perspective on the applications of intercalation compounds in fields such as energy conversion and storage, catalysis, smart devices, biomedical applications, and environmental remediation is provided. Finally, brief insights into the challenges and future opportunities for the chemical intercalation of layered materials are provided.
Collapse
Affiliation(s)
- Mian Li
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| | - Qi Fan
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Lin Gao
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| | - Qing Huang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Qianwan Institute of CNiTECH, Ningbo, Zhejiang, 315336, China
| |
Collapse
|
7
|
Gandla D, Li Q, Zhou Y, Yan Y, Liu Z, Chen J, Tan DQ. In-Plane Mesoporous 3D Flower-Like Mo 2Ti 2C 3Cl x MXene Anodes for Li-Ion Batteries: From Structure to Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404880. [PMID: 39040006 DOI: 10.1002/smll.202404880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/06/2024] [Indexed: 07/24/2024]
Abstract
MXenes are known for their exceptional electrical conductivity and surface functionality, gaining interest as promising anode materials for Li-ion batteries. However, conventional 2D multilayered MXenes often exhibit limited electrochemical applicability due to slow ion transport kinetics and low structural stability. Addressing these challenges, this study develops a 3D flower-type double transition metal MXene, Mo2Ti2C3Clx, with precisely engineered in-plane mesoporosity using HF-free Lewis acid-assisted molten salt method, coupled with intercalation and freeze-drying. The molar ratio of Lewis acid to eutectic salts is meticulously controlled to create the mesoporosity, which is preserved through freeze-drying. Molecular dynamics (MD) simulations assess the impact of in-plane pore size on the structure and transport dynamics of electrolyte components. Density functional theory (DFT) shows that chlorine surface functional groups significantly reduce Li-ion diffusion barriers, thereby enhancing ion transport and battery performance. Electrochemical evaluations reveal that small-sized (2-5 nm) mesoporous Mo2Ti2C3Clx achieves a specific capacity of 324 mAh g-1 at 0.2 A g-1 and maintains 97% capacity after 500 cycles at 0.5 A g-1, outperforming larger-pored (10 nm) and non-porous variants. This research highlights a scalable strategy for designing mesoporous materials that optimize ion transport and structural stability, essential for advancing next-generation high-performance energy storage solutions.
Collapse
Affiliation(s)
- Dayakar Gandla
- Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, P. R. China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, 241 Daxue Road, Shantou, 515063, P. R. China
| | - Qian Li
- Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, P. R. China
| | - Yun'an Zhou
- Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, P. R. China
| | - Yihao Yan
- Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, P. R. China
| | - Zhaoxi Liu
- Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, P. R. China
| | - Jia Chen
- Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, P. R. China
| | - Daniel Q Tan
- Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, P. R. China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, 241 Daxue Road, Shantou, 515063, P. R. China
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
8
|
Yang J, Zhang Y, Ge Y, Tang S, Li J, Zhang H, Shi X, Wang Z, Tian X. Interlayer Engineering of Layered Materials for Efficient Ion Separation and Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311141. [PMID: 38306408 DOI: 10.1002/adma.202311141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Layered materials are characterized by strong in-plane covalent chemical bonds within each atomic layer and weak out-of-plane van der Waals (vdW) interactions between adjacent layers. The non-bonding nature between neighboring layers naturally results in a vdW gap, which enables the insertion of guest species into the interlayer gap. Rational design and regulation of interlayer nanochannels are crucial for converting these layered materials and their 2D derivatives into ion separation membranes or battery electrodes. Herein, based on the latest progress in layered materials and their derivative nanosheets, various interlayer engineering methods are briefly introduced, along with the effects of intercalated species on the crystal structure and interlayer coupling of the host layered materials. Their applications in the ion separation and energy storage fields are then summarized, with a focus on interlayer engineering to improve selective ion transport and ion storage performance. Finally, future research opportunities and challenges in this emerging field are comprehensively discussed.
Collapse
Affiliation(s)
- Jinlin Yang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yu Zhang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yanzeng Ge
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Si Tang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jing Li
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Hui Zhang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xiaodong Shi
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Zhitong Wang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xinlong Tian
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| |
Collapse
|
9
|
Ahmed M, Akram MA, Bano A, Khan MZ, Rehman R, Jan R, Javed S. A key parametric study of ultrasonic exfoliation of 2D TiB 2 using DI water as a unique medium. Heliyon 2024; 10:e29417. [PMID: 38665571 PMCID: PMC11043946 DOI: 10.1016/j.heliyon.2024.e29417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Liquid Phase Exfoliation (LPE) is a very effective technique for the synthesis of few layered two dimensional (2D) nanosheets. There is a surge to find environment friendly solvents for efficient exfoliation of layered materials to produce 2D nanosheets. TiB2 is an important layered material with very little reported work on its 2D nanosheets. The present work is about successful LPE of TiB2 using deionized (DI) water as a clean, green and low cost dispersion medium to make TiB2 nanosheets. The impact of ultrasonication conditions i.e. input power and treatment duration for efficient synthesis of few layered 2D nanosheets in DI water is studied by Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). It is found that by increasing input power, the layer thickness is reduced from bulk to 34 nm with lateral dimensions as huge as up to 5 μm. The increased treatment duration has further reduced the layer thickness to 21 nm associated with a decrease in lateral dimensions to about 1 μm. The mechanism of variation in the aspect ratio of the 2D nanosheets with ultrasonication power and treatment duration is explained. The optimum conditions for the fabrication of high aspect ratio 2D nanosheets of TiB2 owe to a greater acoustic cavitation intensity, an optimum treatment duration and a homogenous distribution of the cavitation events while using an appropriate size of the sonotrode in the sonicated volume during ultrasonication.
Collapse
Affiliation(s)
- Marghoob Ahmed
- Department of Materials Engineering, School of Chemical & Materials Engineering, National University of Sciences & Technology, Islamabad, 44000, Pakistan
| | - Muhammad Aftab Akram
- Department of Materials Engineering, School of Chemical & Materials Engineering, National University of Sciences & Technology, Islamabad, 44000, Pakistan
- Department of Materials Science and Engineering, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Mang Haripur, 22620, Khyber Pakhtunkhwa, Pakistan
| | - Afsar Bano
- Department of Physics, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, LUMS, 54792, Lahore, Pakistan
| | - Muhammad Zafar Khan
- Department of Materials Engineering, School of Chemical & Materials Engineering, National University of Sciences & Technology, Islamabad, 44000, Pakistan
| | - Rafia Rehman
- Section of Phytochemistry and Natural Products, Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Punjab, Pakistan
| | - Rahim Jan
- Department of Materials Engineering, School of Chemical & Materials Engineering, National University of Sciences & Technology, Islamabad, 44000, Pakistan
| | - Sofia Javed
- Department of Materials Engineering, School of Chemical & Materials Engineering, National University of Sciences & Technology, Islamabad, 44000, Pakistan
| |
Collapse
|
10
|
Hu W, Shen J, Wang T, Li Z, Xu Z, Lou Z, Qi H, Yan J, Wang J, Le T, Zheng X, Lu Y, Lin X. Lithium Ion Intercalation-Induced Metal-Insulator Transition in Inclined-Standing Grown 2D Non-Layered Cr 2S 3 Nanosheets. SMALL METHODS 2024:e2400312. [PMID: 38654560 DOI: 10.1002/smtd.202400312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Gate-controlled ionic intercalation in the van der Waals gap of 2D layered materials can induce novel phases and unlock new properties. However, this strategy is often unsuitable for densely packed 2D non-layered materials. The non-layered rhombohedral Cr2S3 is an intrinsic heterodimensional superlattice with alternating layers of 2D CrS2 and 0D Cr1/3. Here an innovative chemical vapor deposition method is reported, utilizing strategically modified metal precursors to initiate entirely new seed layers, yields ultrathin inclined-standing grown 2D Cr2S3 nanosheets with edge instead of face contact with substrate surfaces, enabling rapid all-dry transfer to other substrates while ensuring high crystal quality. The unconventional ordered vacancy channels within the 0D Cr1/3 layers, as revealed by cross-sectional scanning transmission electron microscope, permitting the insertion of Li+ ions. An unprecedented metal-insulator transition, with a resistance modulation of up to six orders of magnitude at 300 K, is observed in Cr2S3-based ionic field-effect transistors. Theoretical calculations corroborate the metallization induced by Li-ion intercalation. This work sheds light on the understanding of growth mechanism, structure-property correlation and highlights the diverse potential applications of 2D non-layered Cr2S3 superlattice.
Collapse
Affiliation(s)
- Wanghua Hu
- Department of Physics, Fudan University, Shanghai, 200438, China
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Jinbo Shen
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Tao Wang
- Department of Physics, Fudan University, Shanghai, 200438, China
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Zishun Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Zhuokai Xu
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Zhefeng Lou
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Haoyu Qi
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Junjie Yan
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Jialu Wang
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Tian Le
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| | - Xiaorui Zheng
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Yunhao Lu
- Department of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Lin
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310030, China
| |
Collapse
|
11
|
Wang H, Zhang J, Shen C, Yang C, Küster K, Deuschle J, Starke U, Zhang H, Isobe M, Huang D, van Aken PA, Takagi H. Direct visualization of stacking-selective self-intercalation in epitaxial Nb 1+xSe 2 films. Nat Commun 2024; 15:2541. [PMID: 38514672 PMCID: PMC10957900 DOI: 10.1038/s41467-024-46934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Two-dimensional (2D) van der Waals (vdW) materials offer rich tuning opportunities generated by different stacking configurations or by introducing intercalants into the vdW gaps. Current knowledge of the interplay between stacking polytypes and intercalation often relies on macroscopically averaged probes, which fail to pinpoint the exact atomic position and chemical state of the intercalants in real space. Here, by using atomic-resolution electron energy-loss spectroscopy in a scanning transmission electron microscope, we visualize a stacking-selective self-intercalation phenomenon in thin films of the transition-metal dichalcogenide (TMDC) Nb1+xSe2. We observe robust contrasts between 180°-stacked layers with large amounts of Nb intercalants inside their vdW gaps and 0°-stacked layers with little detectable intercalants inside their vdW gaps, coexisting on the atomic scale. First-principles calculations suggest that the films lie at the boundary of a phase transition from 0° to 180° stacking when the intercalant concentration x exceeds ~0.25, which we could attain in our films due to specific kinetic pathways. Our results offer not only renewed mechanistic insights into stacking and intercalation, but also open up prospects for engineering the functionality of TMDCs via stacking-selective self-intercalation.
Collapse
Affiliation(s)
- Hongguang Wang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| | - Jiawei Zhang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Chen Shen
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany.
| | - Chao Yang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Kathrin Küster
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Julia Deuschle
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Ulrich Starke
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Hongbin Zhang
- Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany
| | - Masahiko Isobe
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Dennis Huang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| | - Peter A van Aken
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Hidenori Takagi
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569, Stuttgart, Germany
- Department of Physics, University of Tokyo, 113-0033, Tokyo, Japan
| |
Collapse
|
12
|
Niefind F, Mao Q, Nayir N, Kowalik M, Ahn JJ, Winchester AJ, Dong C, Maniyara RA, Robinson JA, van Duin ACT, Pookpanratana S. Watching (De)Intercalation of 2D Metals in Epitaxial Graphene: Insight into the Role of Defects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306554. [PMID: 37919862 DOI: 10.1002/smll.202306554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Intercalation forms heterostructures, and over 25 elements and compounds are intercalated into graphene, but the mechanism for this process is not well understood. Here, the de-intercalation of 2D Ag and Ga metals sandwiched between bilayer graphene and SiC are followed using photoemission electron microscopy (PEEM) and atomistic-scale reactive molecular dynamics simulations. By PEEM, de-intercalation "windows" (or defects) are observed in both systems, but the processes follow distinctly different dynamics. Reversible de- and re-intercalation of Ag is observed through a circular defect where the intercalation velocity front is 0.5 nm s-1 ± 0.2 nm s.-1 In contrast, the de-intercalation of Ga is irreversible with faster kinetics that are influenced by the non-circular shape of the defect. Molecular dynamics simulations support these pronounced differences and complexities between the two Ag and Ga systems. In the de-intercalating Ga model, Ga atoms first pile up between graphene layers until ultimately moving to the graphene surface. The simulations, supported by density functional theory, indicate that the Ga atoms exhibit larger binding strength to graphene, which agrees with the faster and irreversible diffusion kinetics observed. Thus, both the thermophysical properties of the metal intercalant and its interaction with defective graphene play a key role in intercalation.
Collapse
Affiliation(s)
- Falk Niefind
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Qian Mao
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Nadire Nayir
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Physics, Karamanoglu Mehmetbey University, Karaman, 70000, Turkey
| | - Malgorzata Kowalik
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jung-Joon Ahn
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
- Department of Physics, Georgetown University, Washington, DC, 20057, USA
| | - Andrew J Winchester
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
- Institute for Soft Matter, Georgetown University, Washington, DC, 20057, USA
| | - Chengye Dong
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Rinu A Maniyara
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Joshua A Robinson
- Department of Materials Science & Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Adri C T van Duin
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Sujitra Pookpanratana
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| |
Collapse
|
13
|
Lin YC, Matsumoto R, Liu Q, Solís-Fernández P, Siao MD, Chiu PW, Ago H, Suenaga K. Alkali metal bilayer intercalation in graphene. Nat Commun 2024; 15:425. [PMID: 38267420 PMCID: PMC11258350 DOI: 10.1038/s41467-023-44602-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Alkali metal (AM) intercalation between graphene layers holds promise for electronic manipulation and energy storage, yet the underlying mechanism remains challenging to fully comprehend despite extensive research. In this study, we employ low-voltage scanning transmission electron microscopy (LV-STEM) to visualize the atomic structure of intercalated AMs (potassium, rubidium, and cesium) in bilayer graphene (BLG). Our findings reveal that the intercalated AMs adopt bilayer structures with hcp stacking, and specifically a C6M2C6 composition. These structures closely resemble the bilayer form of fcc (111) structure observed in AMs under high-pressure conditions. A negative charge transferred from bilayer AMs to graphene layers of approximately 1~1.5×1014 e-/cm-2 was determined by electron energy loss spectroscopy (EELS), Raman, and electrical transport. The bilayer AM is stable in BLG and graphite superficial layers but absent in the graphite interior, primarily dominated by single-layer AM intercalation. This hints at enhancing AM intercalation capacity by thinning the graphite material.
Collapse
Affiliation(s)
- Yung-Chang Lin
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan.
- The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka, 567-0047, Japan.
| | - Rika Matsumoto
- Department of Engineering, Tokyo Polytechnic University, 5-45-1 Iiyamaminami, Atsugi, Kanagawa, 243-0297, Japan
| | - Qiunan Liu
- The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka, 567-0047, Japan
| | | | - Ming-Deng Siao
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Po-Wen Chiu
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Hiroki Ago
- Global Innovation Center (GIC), Kyushu University, Fukuoka, 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, 816-8580, Japan
| | - Kazu Suenaga
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan.
- The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka, 567-0047, Japan.
| |
Collapse
|
14
|
Li F, Ma H, Sheng H, Wang Z, Qi Y, Wan D, Shao M, Yuan J, Li W, Wang K, Xie E, Lan W. Interlayer and Phase Engineering Modifications of K-MoS 2 @C Nanoflowers for High-Performance Degradable Zn-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306276. [PMID: 38126597 DOI: 10.1002/smll.202306276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/06/2023] [Indexed: 12/23/2023]
Abstract
2D transition metal dichalcogenides (TMDs) have garnered significant interest as cathode materials for aqueous zinc-ion batteries (AZIBs) due to their open transport channels and abundant Zn2+ intercalation sites. However, unmodified TMDs exhibit low electrochemical activity and poor kinetics owing to the high binding energy and large hydration radius of divalent Zn2+ . To overcome these limitations, an interlayer engineering strategy is proposed where K+ is preintercalated into K-MoS2 nanosheets, which then undergo in situ growth on carbon nanospheres (denoted as K-MoS2 @C nanoflowers). This strategy stimulates in-plane redox-active sites, expands the interlayer spacing (from 6.16 to 9.42 Å), and induces the formation of abundant MoS2 1T-phase. The K-MoS2 @C cathode demonstrates excellent redox activity and fast kinetics, attributed to the potassium ions acting as a structural "stabilizer" and an electrostatic interaction "shield," accelerating charge transfer, promoting Zn2+ diffusion, and ensuring structural stability. Meanwhile, the carbon nanospheres serve as a 3D conductive network for Zn2+ and enhance the cathode's hydrophilicity. More significantly, the outstanding electrochemical performance of K-MoS2 @C, along with its superior biocompatibility and degradability of its related components, can enable an implantable energy supply, providing novel opportunities for the application of transient electronics.
Collapse
Affiliation(s)
- Fengfeng Li
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Hongyun Ma
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Hongwei Sheng
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Zhaopeng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Yifeng Qi
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Daicao Wan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Mingjiao Shao
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Jiao Yuan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai, 810008, P. R. China
| | - Wenquan Li
- School of Physics and Electronic Information Engineering, Qinghai Normal University, Xining, Qinghai, 810008, P. R. China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Erqing Xie
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| | - Wei Lan
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
15
|
Song Y, Fang Q, Liu B, Hu B, Su Z. Efficient Proton Conductor Based on Bismuth Oxide Clusters and Polyoxometalates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14511-14518. [PMID: 37782751 DOI: 10.1021/acs.langmuir.3c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Developing new solid-state electrolyte materials for improving the proton conductivity remains an important challenge. Herein, a novel two-dimensional layered solid-state proton conductor Bi2O2-SiW12 nanocomposite, based on silicotungstic acid (H4SiW12O40) and Bi(NO3)3·5H2O, was synthesized and characterized. The composite consists of a layered cation framework [Bi2O2]2+ and interlayer-embedded counteranionic [SiW12O40]4-, which forms continuous hydrogen bond (O-H···O) networks through the interaction of adjacent oxygen atoms on the surface of the [Bi2O2]2+ and oxygen atoms of the H4SiW12O40. Facile proton transfer along these pathways endows the Bi2O2-SiW12 (30:1) nanocomposite with an excellent proton conductivity of 3.61 mS cm-1 at 90 °C and 95% relative humidity, indicating that the nanocomposite has good prospects as a highly efficient proton conductor.
Collapse
Affiliation(s)
- Yingjie Song
- Jilin Provincial International Joint Research Center of Photo-functional Materials and Institution Chemistry, School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, China
| | - Qing Fang
- Jilin Provincial International Joint Research Center of Photo-functional Materials and Institution Chemistry, School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, China
| | - Bailing Liu
- Jilin Provincial International Joint Research Center of Photo-functional Materials and Institution Chemistry, School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, China
| | - Bo Hu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhongmin Su
- Jilin Provincial International Joint Research Center of Photo-functional Materials and Institution Chemistry, School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Centre of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun 130022, China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
16
|
Lee SY, Lim DC, Khan MS, Hwang JY, Kim HS, Lee KH, Kim SW. Magnetic quasi-atomic electrons driven reversible structural and magnetic transitions between electride and its hydrides. Nat Commun 2023; 14:5469. [PMID: 37673854 PMCID: PMC10482852 DOI: 10.1038/s41467-023-41085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
In electrides, interstitial anionic electrons (IAEs) in the quantized energy levels at cavities of positively charged lattice framework possess their own magnetic moment and interact with each or surrounding cations, behaving as quasi-atoms and inducing diverse magnetism. Here, we report the reversible structural and magnetic transitions by the substitution of the quasi-atomic IAEs in the ferromagnetic two-dimensional [Gd2C]2+·2e- electride with hydrogens and subsequent dehydrogenation of the canted antiferromagnetic Gd2CHy (y > 2.0). It is demonstrated that structural and magnetic transitions are strongly coupled by the presence or absence of the magnetic quasi-atomic IAEs and non-magnetic hydrogen anions in the interlayer space, which dominate exchange interactions between out-of-plane Gd-Gd atoms. Furthermore, the magnetic quasi-atomic IAEs are inherently conserved by the hydrogen desorption from the P[Formula: see text] 1m structured Gd2CHy, restoring the original ferromagnetic state of the R[Formula: see text]m structured [Gd2C]2+·2e- electride. This variable density of magnetic quasi-atomic IAEs enables the quantum manipulation of floating electron phases on the electride surface.
Collapse
Affiliation(s)
- Seung Yong Lee
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- KIURI Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dong Cheol Lim
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Electride Materials, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Md Salman Khan
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Electride Materials, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeong Yun Hwang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyung Sub Kim
- Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Kyu Hyung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Sung Wng Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Center for Electride Materials, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
17
|
Bak Y, Park G, Hong T, Lee C, Lee H, Bae TH, Park JG, Yoon DK. Utilization of Physical Anisotropy in Metal-Organic Frameworks via Postsynthetic Alignment Control with Liquid Crystal. NANO LETTERS 2023; 23:7615-7622. [PMID: 37527024 DOI: 10.1021/acs.nanolett.3c02209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Metal-organic frameworks (MOFs) represent crystalline materials constructed from combinations of metal and organic units to often yield anisotropic porous structures and physical properties. Postsynthetic methods to align the MOF crystals in bulk remain scarce yet tremendously important to fully utilize their structure-driven intrinsic properties. Herein, we present an unprecedented composite of liquid crystals (LCs) and MOFs and demonstrate the use of nematic LCs to dynamically control the orientation of MOF crystals with exceptional order parameters (as high as 0.965). Unique patterns formed through a facile multidirectional alignment of MOF crystals exhibit polarized fluorescence with the fluorescence intensity of a pattern dependent on the angle of a polarizer, offering potential use in various optical applications such as an optical security label. Further, the alignment mechanism indicates that the method is applicable to numerous combinations of MOFs and LCs, which include UV polymerizable LC monomers used to fabricate free-standing composite films.
Collapse
Affiliation(s)
- Yeongseo Bak
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Geonhyeong Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Taegyun Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Changjae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hongju Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae-Hyun Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jesse G Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
18
|
Han Y, Chen S, Hall J, Roberts S, Kolmer M, Evans JW, Tringides MC. Degeneracy in Intercalated Pb Phases under Buffer-Layer Graphene on SiC(0001) and Diffuse Moiré Spots in Surface Diffraction. J Phys Chem Lett 2023; 14:7053-7058. [PMID: 37526312 DOI: 10.1021/acs.jpclett.3c01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
First-principles density functional theory (DFT) is used to analyze the stability of Pb intercalated phases under buffer layer graphene on SiC(0001) as a function of the supercell size, Pb coverage, and degree of Pb ordering. By comparing the chemical potentials of such two-dimensional Pb structures, we find that there is a family of structurally distinct thermodynamically preferred Pb subsurface configurations with minute stability differences. These differences are comparable to the thermal energies at about 450 °C, where the Pb intercalated phases are grown. High-resolution surface-diffraction experiments using Spot Profile Analysis Low-Energy Electron Diffraction (SPA-LEED) confirm this high degree of degeneracy of the Pb intercalated phases from broad, low-intensity moiré spots observed exclusively from intercalated Pb. The low intensity of the moiré spots implies the coexistence of structurally different subsurface Pb phases.
Collapse
Affiliation(s)
- Yong Han
- Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Shen Chen
- Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Joseph Hall
- Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Samuel Roberts
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Marek Kolmer
- Ames National Laboratory, Ames, Iowa 50011, United States
| | - James W Evans
- Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Michael C Tringides
- Ames National Laboratory, Ames, Iowa 50011, United States
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
19
|
Zhang P, Xue M, Chen C, Guo W, Zhang Z. Mechanism Regulating Self-Intercalation in Layered Materials. NANO LETTERS 2023; 23:3623-3629. [PMID: 37043360 DOI: 10.1021/acs.nanolett.3c00827] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property modulation, thereby opening an avenue for exploring new physics and devising novel applications, but the mechanism governing intercalant assembly patterns and properties remains unclear. Based on extensive structural search and energetics analysis by ab initio calculations, we reveal a Sabatier-like principle that dictates spatial arrangement of self-intercalated atoms in transition metal dichalcogenides. We further construct a robust descriptor quantifying that strong intercalant-host interactions favor a monodispersing phase of intercalated atoms that may exhibit ferromagnetism, while weak interactions lead to a trimer phase with attenuated or quenched magnetism, which further evolves into tetramer and hexagonal phases at increasing intercalant density. These findings elucidate the mechanism underpinning experimental observations and paves the way for rational design and precise control of self-intercalation in layered materials.
Collapse
Affiliation(s)
- Peikun Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Minmin Xue
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhuhua Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
20
|
Ren Y, He Q, Xu T, Zhang W, Peng Z, Meng B. Recent Progress in MXene Hydrogel for Wearable Electronics. BIOSENSORS 2023; 13:bios13050495. [PMID: 37232856 DOI: 10.3390/bios13050495] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023]
Abstract
Recently, hydrogels have attracted great attention because of their unique properties, including stretchability, self-adhesion, transparency, and biocompatibility. They can transmit electrical signals for potential applications in flexible electronics, human-machine interfaces, sensors, actuators, et al. MXene, a newly emerged two-dimensional (2D) nanomaterial, is an ideal candidate for wearable sensors, benefitting from its surface's negatively charged hydrophilic nature, biocompatibility, high specific surface area, facile functionalization, and high metallic conductivity. However, stability has been a limiting factor for MXene-based applications, and fabricating MXene into hydrogels has been proven to significantly improve their stability. The unique and complex gel structure and gelation mechanism of MXene hydrogels require intensive research and engineering at nanoscale. Although the application of MXene-based composites in sensors has been widely studied, the preparation methods and applications of MXene-based hydrogels in wearable electronics is relatively rare. Thus, in order to facilitate the effective evolution of MXene hydrogel sensors, the design strategies, preparation methods, and applications of MXene hydrogels for flexible and wearable electronics are comprehensively discussed and summarized in this work.
Collapse
Affiliation(s)
- Yi Ren
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qi He
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tongyi Xu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Weiguan Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Zhengchun Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bo Meng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
21
|
Yuan R, Liu P, Wang X, Zhou J. Interlayer Sodium Plating/Stripping in Van der Waals-Layered Quantum Dot Superstructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300919. [PMID: 36967559 DOI: 10.1002/smll.202300919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Assembling quantum dots (QDs) into van der Waals (vdW)-layered superstructure holds great promise for the development of high-energy-density metal anode. However, designing such a superstructure remains to be challenging. Here, a chemical-vapor Oriented Attachment (OA) growth strategy is proposed to achieve the synthesis of vdW-layered carbon/QDs hybrid superlattice nanosheets (Fe7 S8 @CNS) with a large vdW gap of 3 nm. The Fe7 S8 @CNS superstructure is assembled by carbon-coated Fe7 S8 (Fe7 S8 @C) QDs as building blocks. Interestingly, the Fe7 S8 @CNS exhibits two kinds of edge dislocations similar to traditional atom-layered materials, suggesting that Fe7 S8 @C QDs exhibit quasi-atomic growth behavior during the OA process. More interestingly, when used as host materials for sodium metal anodes, the Fe7 S8 @CNS shows the interlayer sodium plating/stripping behavior, which well suppresses Na dendrite growth. As a result, the cell with Fe7 S8 @CNS anode can keep stable cycling for 1000 h with a high Coulombic efficiency (CE) of ≈99.5% at 3.0 mA cm-2 and 3.0 mAh cm-2 . Noticeably, the Na@Fe7 S8 @CNS||Na3 V2 (PO4 )3 full cells can attain a capacity of 88.8 mAh g-1 with a retention of 97% after 1000 cycles at 1.0 A g-1 (≈8 C), showing excellent cycle stability for practical applications. This work enriches the vdW-layered QDs superstructure family and their application toward energy storage.
Collapse
Affiliation(s)
- Ruole Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaomei Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jisheng Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
22
|
Impedance spectroscopy data for 2D biintercalate clathrate InSe<<NaNO2>+<FeCl3>>. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
23
|
Xiao Y, Xiong C, Chen MM, Wang S, Fu L, Zhang X. Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chem Soc Rev 2023; 52:1215-1272. [PMID: 36601686 DOI: 10.1039/d1cs01016f] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Together with the development of two-dimensional (2D) materials, transition metal dichalcogenides (TMDs) have become one of the most popular series of model materials for fundamental sciences and practical applications. Due to the ever-growing requirements of customization and multi-function, dozens of modulated structures have been introduced in TMDs. In this review, we present a systematic and comprehensive overview of the structure modulation of TMDs, including point, linear and out-of-plane structures, following and updating the conventional classification for silicon and related bulk semiconductors. In particular, we focus on the structural characteristics of modulated TMD structures and analyse the corresponding root causes. We also summarize the recent progress in modulating methods, mechanisms, properties and applications based on modulated TMD structures. Finally, we demonstrate challenges and prospects in the structure modulation of TMDs and forecast potential directions about what and how breakthroughs can be achieved.
Collapse
Affiliation(s)
- Yao Xiao
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Chengyi Xiong
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Miao-Miao Chen
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Shengfu Wang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lei Fu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. .,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Xiuhua Zhang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| |
Collapse
|
24
|
Electrocatalytic hydrogen and oxygen evolution reactions: Role of two-dimensional layered materials and their composites. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
25
|
Wu F, Wang Z, He J, Li Z, Meng L, Zhang X. Effect of 3 d Transition Metal Atom Intercalation Concentration on the Electronic and Magnetic Properties of Graphene/MoS 2 Heterostructure: A First-Principles Study. Molecules 2023; 28:509. [PMID: 36677569 PMCID: PMC9864100 DOI: 10.3390/molecules28020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
The electronic and magnetic properties of graphene/MoS2 heterostructures intercalated with 3d transition metal (TM) atoms at different concentrations have been systematically investigated by first principles calculations. The results showed that all the studied systems are thermodynamically stable with large binding energies of about 3.72 eV-6.86 eV. Interestingly, all the TM-intercalated graphene/MoS2 heterostructures are ferromagnetic and their total magnetic moments increase with TM concentration. Furthermore, TM concentration-dependent spin polarization is obtained for the graphene layer and MoS2 layer due to the charge transfer between TM atoms and the layers. A significant band gap is opened for graphene in these TM-intercalated graphene/MoS2 heterostructures (around 0.094 eV-0.37 eV). With the TM concentration increasing, the band gap of graphene is reduced due to the enhanced spin polarization of graphene. Our study suggests a research direction for the manipulation of the properties of 2D materials through control of the intercalation concentration of TM atoms.
Collapse
Affiliation(s)
- Feng Wu
- Department of Physics, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zijin Wang
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, China
| | - Jiaqi He
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, China
| | - Zhenzhe Li
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, China
| | - Lijuan Meng
- Department of Physics, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xiuyun Zhang
- College of Physics Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
26
|
Jayalakshmi D, Nivetha B. FIRST-PRINCIPLES CALCULATIONS FOR COMPARATIVE BAND STRUCTURE STUDY OF SrTiO3 PEROVSKITE ON BULK AND LAYERED PHASES FOR EFFICIENT OPTOELECTRONIC CONVERSION. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Shang C, Zhao Y, Su Y, Zhou S, Zhao J. One-dimensional metal thiophosphate nanowires by cluster assembly. NANOSCALE 2022; 14:16427-16435. [PMID: 36317736 DOI: 10.1039/d2nr03770j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
One-dimensional (1D) atomic wires with precise structures are not only excellent platforms for exploring novel 1D physics, but also promising building blocks to assemble functional materials and devices. However, stable atomic wires remain limited and are hard to search using global optimization algorithms. Inspired by the emerging layered ternary chalcogenides, here we offer a design strategy for rational assembly of metal thiophosphate (MPS4) nanowires based on the concept of a superatom. ortho-Thiophosphate [PS4] clusters are linked by proper main-group and transition metal atoms to form closed electronic shells, endowing the assembled nanowires with high dynamic and thermal stabilities. Diverse and exotic electronic band structures are hosted by these ternary MPS4 nanowires, such as the coexistence of a spin-orbit Dirac point protected by nonsymmorphic symmetry and a flat band near the Fermi level, with nanowires being bipolar magnetic semiconductors for electrical control of spin orientation. These 1D Lego blocks can be further built into higher-order architectures via vdW interaction or covalent bonding. This assembly approach generally produces stable atomic wires with designated compositions and structure symmetries to induce peculiar quantum states for future applications.
Collapse
Affiliation(s)
- Chanjuan Shang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| | - Yanyan Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| |
Collapse
|
28
|
Stroyuk O, Raievska O, Brabec CJ, Dzhagan V, Havryliuk Y, Zahn DRT. Self-assembly of colloidal single-layer carbon nitride. NANOSCALE 2022; 14:12347-12357. [PMID: 35971970 DOI: 10.1039/d2nr03477h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We introduce a new concept of a "bottom-to-top" design of intercalate carbon nitride compounds based on the effects of self-assembly of colloidal single-layer carbon nitride (SLCN) sheets stabilized by tetraethylammonium hydroxide NEt4OH upon ambient drying of the water solvent. These effects include (i) formation of stage-1 intercalates of NEt4OH during the ambient drying of SLCN colloids on glass substrates and (ii) the spontaneous formation of layered hexagonally-shaped networks of SLCN sheets on freshly-cleaved mica surfaces. The dynamics of the intercalate formation was followed by in situ X-ray diffraction allowing different stages to be identified, including the deposition of a primary "wet" intercalate of hydrated NEt4OH and the gradual elimination of excessive water during its ambient drying. The intercalated NEt4+ cations show a specific "flattened" conformation allowing the dynamics of formation and structure of the intercalate to be probed by vibrational spectroscopies. The two-dimensional self-assembly on mica is assumed to be driven both by the internal hexagonal symmetry of heptazine units and by a templating effect of the mica surface.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany.
| | - Oleksandra Raievska
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany.
| | - Christoph J Brabec
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), 91058 Erlangen, Germany.
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Materials for Electronics and Energy Technology (i-MEET), Martensstrasse 7, 91058 Erlangen, Germany
| | - Volodymyr Dzhagan
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, 41 Nauky Av., 03028 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 64 Volodymyrs'ka St., 01601 Kyiv, Ukraine
| | - Yevhenii Havryliuk
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany
| |
Collapse
|
29
|
Tian H, Bazant MZ. Interfacial Resistive Switching by Multiphase Polarization in Ion-Intercalation Nanofilms. NANO LETTERS 2022; 22:5866-5873. [PMID: 35815943 DOI: 10.1021/acs.nanolett.2c01765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nonvolatile resistive-switching (RS) memories promise to revolutionize hardware architectures with in-memory computing. Recently, ion-interclation materials have attracted increasing attention as potential RS materials for their ion-modulated electronic conductivity. In this Letter, we propose RS by multiphase polarization (MP) of ion-intercalated thin films between ion-blocking electrodes, in which interfacial phase separation triggered by an applied voltage switches the electron-transfer resistance. We develop an electrochemical phase-field model for simulations of coupled ion-electron transport and ion-modulated electron-transfer rates and use it to analyze the MP switching current and time, resistance ratio, and current-voltage response. The model is able to reproduce the complex cyclic voltammograms of lithium titanate (LTO) memristors, which cannot be explained by existing models based on bulk dielectric breakdown. The theory predicts the achievable switching speeds for multiphase ion-intercalation materials and could be used to guide the design of high-performance MP-based RS memories.
Collapse
Affiliation(s)
- Huanhuan Tian
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
31
|
Ravat P, Uchida H, Sekine R, Kamei K, Yamamoto A, Konovalov O, Tanaka M, Yamada T, Harano K, Nakamura E. De Novo Synthesis of Free-Standing Flexible 2D Intercalated Nanofilm Uniform over Tens of cm 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106465. [PMID: 34651356 DOI: 10.1002/adma.202106465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Of a variety of intercalated materials, 2D intercalated systems have attracted much attention both as materials per se, and as a platform to study atoms and molecules confined among nanometric layers. High-precision fabrication of such structures has, however, been a difficult task using the conventional top-down and bottom-up approaches. The de novo synthesis of a 3-nm-thick nanofilm intercalating a hydrogen-bonded network between two layers of fullerene molecules is reported here. The two-layered film can be further laminated into a multiply film either in situ or by sequential lamination. The 3 nm film forms uniformly over an area of several tens of cm2 at an air/water interface and can be transferred to either flat or perforated substrates. A free-standing film in air prepared by transfer to a gold comb electrode shows proton conductivity up to 1.4 × 10-4 S cm-1 . Electron-dose-dependent reversible bending of a free-standing 6-nm-thick nanofilm hung in a vacuum is observed under electron beam irradiation.
Collapse
Affiliation(s)
- Prince Ravat
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hikaru Uchida
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ryosuke Sekine
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ko Kamei
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akihisa Yamamoto
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
| | - Oleg Konovalov
- European Synchrotron Radiation Facility, Grenoble, 38043, France
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Heidelberg, 69120, Germany
| | - Teppei Yamada
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
32
|
Unlocking bimetallic active sites via a desalination strategy for photocatalytic reduction of atmospheric carbon dioxide. Nat Commun 2022; 13:2146. [PMID: 35443754 PMCID: PMC9021305 DOI: 10.1038/s41467-022-29671-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/25/2022] [Indexed: 11/08/2022] Open
Abstract
Ultrathin two-dimensional (2D) metal oxyhalides exhibit outstanding photocatalytic properties with unique electronic and interfacial structures. Compared with monometallic oxyhalides, bimetallic oxyhalides are less explored. In this work, we have developed a novel top-down wet-chemistry desalination approach to remove the alkali-halide salt layer within the complicated precursor bulk structural matrix Pb0.6Bi1.4Cs0.6O2Cl2, and successfully fabricate a new 2D ultrathin bimetallic oxyhalide Pb0.6Bi1.4O2Cl1.4. The unlocked larger surface area, rich bimetallic active sites, and faster carrier dynamics within Pb0.6Bi1.4O2Cl1.4 layers significantly enhance the photocatalytic efficiency for atmospheric CO2 reduction. It outperforms the corresponding parental matrix phase and other state-of-the-art bismuth-based monometallic oxyhalides photocatalysts. This work reports a top-down desalination strategy to engineering ultrathin bimetallic 2D material for photocatalytic atmospheric CO2 reduction, which sheds light on further constructing other ultrathin 2D catalysts for environmental and energy applications from similar complicate structure matrixes.
Collapse
|
33
|
Zhou Z, Wang Y, Peng F, Meng F, Zha J, Ma L, Du Y, Peng N, Ma L, Zhang Q, Gu L, Yin W, Gu Z, Tan C. Intercalation-Activated Layered MoO 3 Nanobelts as Biodegradable Nanozymes for Tumor-Specific Photo-Enhanced Catalytic Therapy. Angew Chem Int Ed Engl 2022; 61:e202115939. [PMID: 35080098 DOI: 10.1002/anie.202115939] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 01/08/2023]
Abstract
The existence of natural van der Waals gaps in layered materials allows them to be easily intercalated with varying guest species, offering an appealing strategy to optimize their physicochemical properties and application performance. Herein, we report the activation of layered MoO3 nanobelts via aqueous intercalation as an efficient biodegradable nanozyme for tumor-specific photo-enhanced catalytic therapy. The long MoO3 nanobelts are grinded and then intercalated with Na+ and H2 O to obtain the short Na+ /H2 O co-intercalated MoO3-x (NH-MoO3-x ) nanobelts. In contrast to the inert MoO3 nanobelts, the NH-MoO3-x nanobelts exhibit excellent enzyme-mimicking catalytic activity for generation of reactive oxygen species, which can be further enhanced by the photothermal effect under a 1064 nm laser irradiation. Thus, after bovine serum albumin modification, the NH-MoO3-x nanobelts can efficiently kill cancer cells in vitro and eliminate tumors in vivo facilitating with 1064 nm laser irradiation.
Collapse
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China.,People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, 450003, P. R. China
| | - Yanlong Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, P. R. China
| | - Feng Peng
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiajia Zha
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory Upton, Upton, NY 11973, USA
| | - Yonghua Du
- National Synchrotron Light Source II, Brookhaven National Laboratory Upton, Upton, NY 11973, USA
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei, 430081, P. R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
34
|
Sciacca D, Berthe M, Ryan BJ, Peric N, Deresmes D, Biadala L, Boyaval C, Addad A, Lancry O, Makarem R, Legendre S, Hocrelle D, Panthani MG, Prévot G, Lhuillier E, Diener P, Grandidier B. Transport Properties of Methyl-Terminated Germanane Microcrystallites. NANOMATERIALS 2022; 12:nano12071128. [PMID: 35407246 PMCID: PMC9000464 DOI: 10.3390/nano12071128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023]
Abstract
Germanane is a two-dimensional material consisting of stacks of atomically thin germanium sheets. It’s easy and low-cost synthesis holds promise for the development of atomic-scale devices. However, to become an electronic-grade material, high-quality layered crystals with good chemical purity and stability are needed. To this end, we studied the electrical transport of annealed methyl-terminated germanane microcrystallites in both high vacuum and ultrahigh vacuum. Scanning electron microscopy of crystallites revealed two types of behavior which arise from the difference in the crystallite chemistry. While some crystallites are hydrated and oxidized, preventing the formation of good electrical contact, the four-point resistance of oxygen-free crystallites was measured with multiple tips scanning tunneling microscopy, yielding a bulk transport with resistivity smaller than 1 Ω·cm. When normalized by the crystallite thickness, the resistance compares well with the resistance of hydrogen-passivated germanane flakes found in the literature. Along with the high purity of the crystallites, a thermal stability of the resistance at 280 °C makes methyl-terminated germanane suitable for complementary metal oxide semiconductor back-end-of-line processes.
Collapse
Affiliation(s)
- Davide Sciacca
- UMR 8520-IEMN, Université de Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, Junia-ISEN, 59000 Lille, France; (D.S.); (M.B.); (N.P.); (D.D.); (L.B.); (C.B.); (P.D.)
| | - Maxime Berthe
- UMR 8520-IEMN, Université de Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, Junia-ISEN, 59000 Lille, France; (D.S.); (M.B.); (N.P.); (D.D.); (L.B.); (C.B.); (P.D.)
| | - Bradley J. Ryan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; (B.J.R.); (M.G.P.)
| | - Nemanja Peric
- UMR 8520-IEMN, Université de Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, Junia-ISEN, 59000 Lille, France; (D.S.); (M.B.); (N.P.); (D.D.); (L.B.); (C.B.); (P.D.)
| | - Dominique Deresmes
- UMR 8520-IEMN, Université de Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, Junia-ISEN, 59000 Lille, France; (D.S.); (M.B.); (N.P.); (D.D.); (L.B.); (C.B.); (P.D.)
| | - Louis Biadala
- UMR 8520-IEMN, Université de Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, Junia-ISEN, 59000 Lille, France; (D.S.); (M.B.); (N.P.); (D.D.); (L.B.); (C.B.); (P.D.)
| | - Christophe Boyaval
- UMR 8520-IEMN, Université de Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, Junia-ISEN, 59000 Lille, France; (D.S.); (M.B.); (N.P.); (D.D.); (L.B.); (C.B.); (P.D.)
| | - Ahmed Addad
- UMR 8207–UMET-Unité Matériaux et Transformations, Université de Lille, CNRS, INRAE, Centrale Lille, 59000 Lille, France;
| | - Ophélie Lancry
- HORIBA FRANCE SAS, 91120 Palaiseau, France; (O.L.); (R.M.); (S.L.); (D.H.)
| | - Raghda Makarem
- HORIBA FRANCE SAS, 91120 Palaiseau, France; (O.L.); (R.M.); (S.L.); (D.H.)
| | - Sébastien Legendre
- HORIBA FRANCE SAS, 91120 Palaiseau, France; (O.L.); (R.M.); (S.L.); (D.H.)
| | - Didier Hocrelle
- HORIBA FRANCE SAS, 91120 Palaiseau, France; (O.L.); (R.M.); (S.L.); (D.H.)
| | - Matthew G. Panthani
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; (B.J.R.); (M.G.P.)
| | - Geoffroy Prévot
- Institut des NanoSciences de Paris, CNRS, Université de Sorbonne, 75005 Paris, France; (G.P.); (E.L.)
| | - Emmanuel Lhuillier
- Institut des NanoSciences de Paris, CNRS, Université de Sorbonne, 75005 Paris, France; (G.P.); (E.L.)
| | - Pascale Diener
- UMR 8520-IEMN, Université de Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, Junia-ISEN, 59000 Lille, France; (D.S.); (M.B.); (N.P.); (D.D.); (L.B.); (C.B.); (P.D.)
| | - Bruno Grandidier
- UMR 8520-IEMN, Université de Lille, CNRS, Centrale Lille, Université Polytechnique Hauts-de-France, Junia-ISEN, 59000 Lille, France; (D.S.); (M.B.); (N.P.); (D.D.); (L.B.); (C.B.); (P.D.)
- Correspondence:
| |
Collapse
|
35
|
Sun Q, Cheng H, Nie W, Lu X, Zhao H. A Comprehensive Understanding of Interlayer Engineering in Layered Manganese and Vanadium Cathodes for Aqueous Zn-ion Batteries. Chem Asian J 2022; 17:e202200067. [PMID: 35188329 DOI: 10.1002/asia.202200067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/20/2022] [Indexed: 11/11/2022]
Abstract
Rechargeable aqueous zinc-ion batteries (AZIBs) hold a budding technology for large-scale stationary energy storage devices due to their inherent safety, cost-effectiveness, eco-friendly, and acceptable electrochemical performance. However, developing a cathode material with fast kinetics and durable structural stability for Zn 2+ intercalation is still an arduous challenge. Compared with other cathode materials, layered manganese/vanadium (Mn/V) oxides that feature merits of adjustable interlayer spacing and considerable specific capacity have attracted much interest in AZIBs. However, the intrinsic sluggish reaction kinetics, inferior electrical conductivity, and notorious dissolution of active materials still obstruct the realization of their full potentials. Interlayer engineering of pre-intercalation is regarded as an effective solution to overcome these problems. In this review, we start from the crystal structure and reaction mechanism of layered Mn/V oxide cathodes to critical issues and recent progress in interlayer engineering. Finally, some future perspectives are outlined for the development of high-performance AZIBs.
Collapse
Affiliation(s)
- Qiangchao Sun
- Shanghai University, State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, CHINA
| | - Hongwei Cheng
- Shanghai University, School of Materials Science and Engineering, Room A526, Building 13, No. 333 Nanchen Road, 200444, Shanghai, CHINA
| | - Wei Nie
- Shanghai University, State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, CHINA
| | - Xionggang Lu
- Shanghai University, State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, CHINA
| | - Hongbin Zhao
- Shanghai University, College of Sciences & Institute for Sustainable Energy, CHINA
| |
Collapse
|
36
|
Zhou Z, Wang Y, Peng F, Meng F, Zha J, Ma L, Du Y, Peng N, Ma L, Zhang Q, Gu L, Yin W, Gu Z, Tan C. Intercalation‐Activated Layered MoO
3
Nanobelts as Biodegradable Nanozymes for Tumor‐Specific Photo‐Enhanced Catalytic Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P. R. China
- People's Hospital of Zhengzhou University Henan Provincial People's Hospital Zhengzhou 450003 P. R. China
| | - Yanlong Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan Hubei 430081 P. R. China
| | - Feng Peng
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection Luoyang Normal University Luoyang 471934 P. R. China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jiajia Zha
- Department of Electrical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Lu Ma
- National Synchrotron Light Source II Brookhaven National Laboratory Upton Upton NY 11973 USA
| | - Yonghua Du
- National Synchrotron Light Source II Brookhaven National Laboratory Upton Upton NY 11973 USA
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan Hubei 430081 P. R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chaoliang Tan
- Department of Electrical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong P. R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P. R. China
| |
Collapse
|
37
|
Tezze D, Pereira JM, Asensio Y, Ipatov M, Calavalle F, Casanova F, Bittner AM, Ormaza M, Martín-García B, Hueso LE, Gobbi M. Tuning the magnetic properties of NiPS 3 through organic-ion intercalation. NANOSCALE 2022; 14:1165-1173. [PMID: 35018950 DOI: 10.1039/d1nr07281a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atomically thin van der Waals magnetic crystals are characterized by tunable magnetic properties related to their low dimensionality. While electrostatic gating has been used to tailor their magnetic response, chemical approaches like intercalation remain largely unexplored. Here, we demonstrate the manipulation of the magnetism in the van der Waals antiferromagnet NiPS3 through the intercalation of different organic cations, inserted using an engineered two-step process. First, the electrochemical intercalation of tetrabutylammonium cations (TBA+) results in a ferrimagnetic hybrid compound displaying a transition temperature of 78 K, and characterized by a hysteretic behavior with finite remanence and coercivity. Then, TBA+ cations are replaced by cobaltocenium via an ion-exchange process, yielding a ferrimagnetic phase with higher transition temperature (98 K) and higher remanent magnetization. Importantly, we demonstrate that the intercalation and cation exchange processes can be carried out in bulk crystals and few-layer flakes, opening the way to the integration of intercalated magnetic materials in devices.
Collapse
Affiliation(s)
| | | | | | - Mihail Ipatov
- SGIker Medidas Magnéticas Gipuzkoa, UPV/EHU, 20018 San Sebastian, Spain
| | | | - Felix Casanova
- CIC nanoGUNE BRTA, 20018 San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Alexander M Bittner
- CIC nanoGUNE BRTA, 20018 San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Maider Ormaza
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco, Paseo Manuel de Lardizabal 3, San Sebastián 20018, Spain.
| | | | - Luis E Hueso
- CIC nanoGUNE BRTA, 20018 San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Marco Gobbi
- CIC nanoGUNE BRTA, 20018 San Sebastian, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Materials Physics Center CSIC-UPV/EHU, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
38
|
Jeong JH, Kang S, Kim N, Joshi RK, Lee GH. Recent trends in covalent functionalization of 2D materials. Phys Chem Chem Phys 2022; 24:10684-10711. [DOI: 10.1039/d1cp04831g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent functionalization of the surface is more crucial in 2D materials than in conventional bulk materials because of their atomic thinness, large surface-to-volume ratio, and uniform surface chemical potential. Because...
Collapse
|
39
|
Xu J, Wang Q, Li B, Yao W, He M. Ti 3Si 0.75Al 0.25C 2 Nanosheets as Promising Anode Material for Li-Ion Batteries. NANOMATERIALS 2021; 11:nano11123449. [PMID: 34947798 PMCID: PMC8707528 DOI: 10.3390/nano11123449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
Herein we report that novel two-dimensional (2D) Ti3Si0.75Al0.25C2 (TSAC) nanosheets, obtained by sonically exfoliating their bulk counterpart in alcohol, performs promising electrochemical activities in a reversible lithiation and delithiation procedure. The as-exfoliated 2D TSAC nanosheets show significantly enhanced lithium-ion uptake capability in comparison with their bulk counterpart, with a high capacity of ≈350 mAh g-1 at 200 mA g-1, high cycling stability and excellent rate performance (150 mAh g-1 after 200 cycles at 8000 mA g-1). The enhanced electrochemical performance of TSAC nanosheets is mainly a result of their fast Li-ion transport, large surface area and small charge transfer resistance. The discovery in this work highlights the uniqueness of a family of 2D layered MAX materials, such as Ti3GeC2, Ti3SnC2 and Ti2SC, which will likely be the promising choices as anode materials for lithium-ion batteries (LIBs).
Collapse
Affiliation(s)
| | | | | | | | - Meng He
- Correspondence: or (J.X.); or (M.H.)
| |
Collapse
|
40
|
Guo Y, Hong X, Su Y, Luo W, Yu R, Wu J, Hensen EJM, Mai L, Cao Y. Sub-Nanometer Confined Ions and Solvent Molecules Intercalation Capacitance in Microslits of 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104649. [PMID: 34677910 DOI: 10.1002/smll.202104649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/28/2021] [Indexed: 06/13/2023]
Abstract
The ion intercalation behavior in 2D materials is widely applied in energy storage, electrocatalysis, and desalination. However, the detailed effect of ions on the performance, combining the influence of interlayer force and the change of solvent shell, is far less well understood. Here the solvated alkali metal ions with different sizes are intercalated into the lattice of 2D materials with different spacings (Ti3 C2 Tx , δ-MnO2 , and reduced graphene oxide) to construct the intercalation model related with sub-nanometer confined ions and solvent molecules to further understand the intercalation capacitance. Based on electrochemical methods and density functional theory calculation, the ions lose the electrostatic shielding solvent shell or shorten the distance between the layers, resulting in a significant increase in capacitance. It is found that the intercalation capacitance arises from the diffusion of solvated ions and is controlled by quantum and electrochemical capacitance for desolvated ions. This effect of solvation structure on performance can be applied in a variety of electrochemical interface studies and provides a new research view for energy storage mechanisms.
Collapse
Affiliation(s)
- Yaqing Guo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xufeng Hong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yaqiong Su
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, Eindhoven, MB, 5600, The Netherlands
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wen Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Emiel J M Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P. O. Box 513, Eindhoven, MB, 5600, The Netherlands
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yuancheng Cao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
41
|
Yu W, Dong Z, Abdelwahab I, Zhao X, Shi J, Shao Y, Li J, Hu X, Li R, Ma T, Wang Z, Xu QH, Tang DY, Song Y, Loh KP. High-Yield Exfoliation of Monolayer 1T'-MoTe 2 as Saturable Absorber for Ultrafast Photonics. ACS NANO 2021; 15:18448-18457. [PMID: 34714041 DOI: 10.1021/acsnano.1c08093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid-phase exfoliation can be developed for the large-scale production of two-dimensional materials for photonic applications. Although atomically thin 2D transition metal dichalcogenides (TMDs) show enhanced nonlinear optical properties or photoluminescence quantum yield relative to the bulk phase, these properties are weak in the absolute sense due to the ultrashort optical path, and they are also sensitive to layer-dependent symmetry properties. Another practical issue is that the chemical stability of some TMDs (e.g., Weyl semimetals) decreases dramatically as the thickness scales down to monolayer, precluding application as optical components in air. To address these issues, a way of exfoliating TMDs that ensures instantaneous passivation needs to be developed. Here, we employed a polymer-assisted electrochemical exfoliation strategy to synthesize PVP-passivated TMDs monolayers that could be spin coated and restacked into organic-inorganic superlattices with well-defined X-ray diffraction patterns. The segregation of restacked TMDs (e.g., MoS2) by PVP allows the inversion asymmetry of individual layers to be maintained in these superlattices, which allows second harmonic generation and photoluminescence to be linearly scaled with thickness. PVP-passivated monolayer 1T'-MoTe2 saturable absorber fabricated from these flakes exhibits fast response and recovery time (<150 fs) and pulse stability. Continuous-wave mode-locking based on 1T'-MoTe2 saturable absorber in a fiber ring laser cavity has been realized, attaining a fundamental repetition rate of 3.15 MHz and pulse duration as short as 867 fs at 1563 nm.
Collapse
Affiliation(s)
- Wei Yu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zikai Dong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Faculty of Science, Beijing University of Technology, 100124 Beijing, China
| | - Ibrahim Abdelwahab
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jia Shi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yan Shao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jing Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiao Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Runlai Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Teng Ma
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhe Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117551, Singapore
| | - Qing-Hua Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ding Yuan Tang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yanrong Song
- Faculty of Science, Beijing University of Technology, 100124 Beijing, China
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
42
|
Bae J, Kim M, Kang H, Kim T, Choi H, Kim B, Do HW, Shim W. Kinetic 2D Crystals via Topochemical Approach. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006043. [PMID: 34013602 DOI: 10.1002/adma.202006043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Indexed: 06/12/2023]
Abstract
The designing of novel materials is a fascinating and innovative pathway in materials science. Particularly, novel layered compounds have tremendous influence in various research fields. Advanced fundamental studies covering various aspects, including reactants and synthetic methods, are required to obtain novel layered materials with unique physical and chemical properties. Among the promising synthetic techniques, topochemical approaches have afforded the platform for widening the extent of novel 2D materials. Notably, the synthesis of binary layered materials is considered as a major scientific breakthrough after the synthesis of graphene as they exhibit a wide spectrum of material properties with varied potential applicability. In this review, a comprehensive overview of the progress in the development of metastable layered compounds is presented. The various metastable layered compounds synthesized from layered ternary bulk materials through topochemical approaches are listed, followed by the descriptions of their mechanisms, structural analyses, characterizations, and potential applications. Finally, an essential research direction concerning the synthesis of new materials is indicated, wherein the possible application of topochemical approaches in unprecedented areas is explored.
Collapse
Affiliation(s)
- Jihong Bae
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Minjung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Hyeonsoo Kang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Taeyoung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Hong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Bokyeong Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Hyung Wan Do
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
43
|
Yuan D, Dou Y, Wu Z, Tian Y, Ye KH, Lin Z, Dou SX, Zhang S. Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chem Rev 2021; 122:957-999. [PMID: 34709781 DOI: 10.1021/acs.chemrev.1c00636] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atomically thin materials (ATMs) with thicknesses in the atomic scale (typically <5 nm) offer inherent advantages of large specific surface areas, proper crystal lattice distortion, abundant surface dangling bonds, and strong in-plane chemical bonds, making them ideal 2D platforms to construct high-performance electrode materials for rechargeable metal-ion batteries, metal-sulfur batteries, and metal-air batteries. This work reviews the synthesis and electronic property tuning of state-of-the-art ATMs, including graphene and graphene derivatives (GE/GO/rGO), graphitic carbon nitride (g-C3N4), phosphorene, covalent organic frameworks (COFs), layered transition metal dichalcogenides (TMDs), transition metal carbides, carbonitrides, and nitrides (MXenes), transition metal oxides (TMOs), and metal-organic frameworks (MOFs) for constructing next-generation high-energy-density and high-power-density rechargeable batteries to meet the needs of the rapid developments in portable electronics, electric vehicles, and smart electricity grids. We also present our viewpoints on future challenges and opportunities of constructing efficient ATMs for next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Ding Yuan
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| | - Yuhai Dou
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.,Shandong Institute of Advanced Technology, Jinan 250100, China
| | - Zhenzhen Wu
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| | - Yuhui Tian
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.,Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, Henan 450002, China
| | - Kai-Hang Ye
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhan Lin
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong 2500, Australia
| | - Shanqing Zhang
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| |
Collapse
|
44
|
A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives. ENERGIES 2021. [DOI: 10.3390/en14185819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ion transport is a significant concept that underlies a variety of technologies including membrane technology, energy storages, optical, chemical, and biological sensors and ion-mobility exploration techniques. These applications are based on the concepts of capacitance and ion transport, so a prior understanding of capacitance and ion transport phenomena is crucial. In this review, the principles of capacitance and ion transport are described from a theoretical and practical point of view. The review covers the concepts of Helmholtz capacitance, diffuse layer capacitance and space charge capacitance, which is also referred to as quantum capacitance in low-dimensional materials. These concepts are attributed to applications in the electrochemical technologies such as energy storage and excitable ion sieving in membranes. This review also focuses on the characteristic role of channel heights (from micrometer to angstrom scales) in ion transport. Ion transport technologies can also be used in newer applications including biological sensors and multifunctional microsupercapacitors. This review improves our understanding of ion transport phenomena and demonstrates various applications that is applicable of the continued development in the technologies described.
Collapse
|
45
|
Li Z, Li D, Wang H, Chen P, Pi L, Zhou X, Zhai T. Intercalation Strategy in 2D Materials for Electronics and Optoelectronics. SMALL METHODS 2021; 5:e2100567. [PMID: 34928056 DOI: 10.1002/smtd.202100567] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/24/2021] [Indexed: 05/21/2023]
Abstract
Intercalation is an effective approach to tune the physical and chemical properties of 2D materials due to their abundant van der Waals gaps that can host high-density intercalated guest matters. This approach has been widely employed to modulate the optical, electrical, and photoelectrical properties of 2D materials for their applications in electronic and optoelectronic devices. Thus it is necessary to review the recent progress of the intercalation strategy in 2D materials and their applications in devices. Herein, various intercalation strategies and the novel properties of the intercalated 2D materials as well as their applications in electronics and optoelectronics are summarized. In the end, the development tendency of this promising approach for 2D materials is also outlined.
Collapse
Affiliation(s)
- Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Dongyan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Haoyun Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ping Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lejing Pi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
46
|
Zhou J, Lin Z, Ren H, Duan X, Shakir I, Huang Y, Duan X. Layered Intercalation Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004557. [PMID: 33984164 DOI: 10.1002/adma.202004557] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/29/2020] [Indexed: 06/12/2023]
Abstract
2D layered materials typically feature strong in-plane covalent chemical bonding within each atomic layer and weak out-of-plane van der Waals (vdW) interactions between adjacent layers. The non-bonding nature between neighboring layers naturally results in a vdW gap, in which various foreign species may be inserted without breaking the in-plane covalent bonds. By tailoring the composition, size, structure, and electronic properties of the intercalated guest species and the hosting layered materials, an expansive family of layered intercalation materials may be produced with highly variable compositional and structural features as well as widely tunable physical/chemical properties, invoking unprecedented opportunities in fundamental studies of property modulation and potential applications in diverse technologies, including electronics, optics, superconductors, thermoelectrics, catalysis, and energy storage. Here, the principles and protocols for various intercalation methods, including wet chemical intercalation, gas-phase intercalation, electrochemical intercalation, and ion-exchange intercalation, are comprehensively reviewed and how the intercalated species alter the crystal structure and the interlayer coupling of the host 2D layered materials, introducing unusual physical and chemical properties and enabling devices with superior performance or unique functions, is discussed. To conclude, a brief summary on future research opportunities and emerging challenges in the layered intercalation materials is given.
Collapse
Affiliation(s)
- Jingyuan Zhou
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhaoyang Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xidong Duan
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Imran Shakir
- Sustainable Energy Technologies Centre, College of Engineering, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
47
|
Stergiou A, Stangel C, Canton-Vitoria R, Kitaura R, Tagmatarchis N. An ion-selective crown ether covalently grafted onto chemically exfoliated MoS 2 as a biological fluid sensor. NANOSCALE 2021; 13:8948-8957. [PMID: 33960349 DOI: 10.1039/d1nr00404b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We describe the basal plane functionalization of chemically exfoliated molybdenum disulfide (ce-MoS2) nanosheets with a benzo-15-crown-5 ether (B15C5), promoted by the chemistry of diazonium salts en route to the fabrication and electrochemical assessment of an ion-responsive electrode. The success of the chemical modification of ce-MoS2 nanosheets was investigated by infrared and Raman spectroscopy, and the amount of the incorporated crown ether was estimated by thermogravimetric analysis. Raman spatial mapping at on-resonance excitation allowed us to disclose the structural characteristics of the functionalized B15C5-MoS2 nanosheets and the impact of basal plane functionalization to the stabilization of the 1T phase of ce-MoS2. Morphological investigation of the B15C5-MoS2 hybrid was implemented by atomic force microscopy and high-resolution transmission electron microscopy. Furthermore, fast-Fourier-transform analysis and in situ energy dispersive X-ray spectroscopy revealed the crystal lattice of the modified nanosheets and the presence of crown-ether addends, respectively. Finally, B15C5-MoS2 electrodes were constructed and evaluated as ion-selective electrodes for sodium ions in aqueous solution and an artificial sweat matrix.
Collapse
Affiliation(s)
- Anastasios Stergiou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | | | - Ryo Kitaura
- Department of Chemistry, Nagoya University, Nagoya 464-8602, Japan
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
48
|
Yu L, Lu L, Zhou X, Xu L, Alhalili Z, Wang F. Strategies for Fabricating High‐Performance Electrochemical Energy‐Storage Devices by MXenes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Lu Lu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - XiaoHong Zhou
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Lyu Xu
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| | - Zahrah Alhalili
- College of Sciences and Arts Shaqra University Sajir Riyadh Saudi Arabia
| | - FengJun Wang
- Institute of Automotive Technology Wuxi Vocational Institute of Commerce Wuxi Jiangsu 214153 People's Republic of China
| |
Collapse
|
49
|
Xiong F, Yalon E, McClellan CJ, Zhang J, Aslan B, Sood A, Sun J, Andolina CM, Saidi WA, Goodson KE, Heinz TF, Cui Y, Pop E. Tuning electrical and interfacial thermal properties of bilayer MoS 2via electrochemical intercalation. NANOTECHNOLOGY 2021; 32:265202. [PMID: 33601363 DOI: 10.1088/1361-6528/abe78a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Layered two-dimensional (2D) materials such as MoS2have attracted much attention for nano- and opto-electronics. Recently, intercalation (e.g. of ions, atoms, or molecules) has emerged as an effective technique to modulate material properties of such layered 2D films reversibly. We probe both the electrical and thermal properties of Li-intercalated bilayer MoS2nanosheets by combining electrical measurements and Raman spectroscopy. We demonstrate reversible modulation of carrier density over more than two orders of magnitude (from 0.8 × 1012to 1.5 × 1014cm-2), and we simultaneously obtain the thermal boundary conductance between the bilayer and its supporting SiO2substrate for an intercalated system for the first time. This thermal coupling can be reversibly modulated by nearly a factor of eight, from 14 ± 4.0 MW m-2K-1before intercalation to 1.8 ± 0.9 MW m-2K-1when the MoS2is fully lithiated. These results reveal electrochemical intercalation as a reversible tool to modulate and control both electrical and thermal properties of 2D layers.
Collapse
Affiliation(s)
- Feng Xiong
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Eilam Yalon
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Connor J McClellan
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Jinsong Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Burak Aslan
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
- Department of Applied Physics, Stanford University, Stanford, CA 94305, United States of America
| | - Aditya Sood
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Jie Sun
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Christopher M Andolina
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Wissam A Saidi
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Kenneth E Goodson
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Tony F Heinz
- Department of Applied Physics, Stanford University, Stanford, CA 94305, United States of America
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, United States of America
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, United States of America
| | - Eric Pop
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, United States of America
| |
Collapse
|
50
|
Cao Q, Grote F, Huβmann M, Eigler S. Emerging field of few-layered intercalated 2D materials. NANOSCALE ADVANCES 2021; 3:963-982. [PMID: 36133283 PMCID: PMC9417328 DOI: 10.1039/d0na00987c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/31/2020] [Indexed: 06/13/2023]
Abstract
The chemistry and physics of intercalated layered 2D materials (2DMs) are the focus of this review article. Special attention is given to intercalated bilayer and few-layer systems. Thereby, intercalated few-layers of graphene and transition metal dichalcogenides play the major role; however, also other intercalated 2DMs develop fascinating properties with thinning down. Here, we briefly introduce the historical background of intercalation and explain concepts, which become relevent with intercalating few-layers. Then, we describe various synthetic methods to yield intercalated 2DMs and focus next on current research directions, which are superconductivity, band gap tuning, magnetism, optical properties, energy storage and chemical reactions. We focus on major breakthroughs in all introduced sections and give an outlook to this emerging field of research.
Collapse
Affiliation(s)
- Qing Cao
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Takustraβe 3 14195 Berlin Germany
| | - Fabian Grote
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Takustraβe 3 14195 Berlin Germany
| | - Marleen Huβmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Takustraβe 3 14195 Berlin Germany
| | - Siegfried Eigler
- Institute of Chemistry and Biochemistry, Freie Universität Berlin Takustraβe 3 14195 Berlin Germany
| |
Collapse
|