1
|
Jun I, Choi H, Kim H, Chan Choi B, Chang HJ, Kim Y, Cho SW, Edwards JR, Hwang SW, Kim YC, Han HS, Jeon H. Exploring the potential of laser-textured metal alloys: Fine-tuning vascular cells responses through in vitro and ex vivo analysis. Bioact Mater 2025; 43:181-194. [PMID: 39386224 PMCID: PMC11462155 DOI: 10.1016/j.bioactmat.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/04/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024] Open
Abstract
Medical stents are vital for treating vascular complications and restoring blood flow in millions of patients. Despite its widespread effectiveness, restenosis, driven by the complex interplay of cellular responses, remains a concern. This study investigated the reactions of vascular cells to nano/microscale wrinkle (nano-W and micro-W) patterns created on laser-textured nitinol (NiTi) surfaces by adjusting laser processing parameters, such as spot overlap ratio and line overlap ratio. Evaluation of topographical effects on endothelial and smooth muscle cells (SMCs) revealed diverse morphologies, proliferation rates, and gene expressions. Notably, microscale wrinkle patterns exhibited reduced monocyte adhesion and inflammation-related gene expression, demonstrating their potential applications in mitigating vascular complications after stent insertion. Additionally, an ex vivo metatarsal assay was utilized to bridge the gap between in vitro and in vivo studies, demonstrating enhanced angiogenesis on laser-textured NiTi surfaces. Laser-textured NiTi exhibits a guided formation process, emphasizing their potential to promote swift endothelialization. These findings underscore the efficacy of laser texturing for tailored cellular interactions on metallic surfaces and offer valuable insights into optimizing biocompatibility and controlling cellular responses, which may pave the way for innovative advances in vascular care and contribute to the ongoing improvement of stent insertion.
Collapse
Affiliation(s)
- Indong Jun
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), Saarbrücken, 66123, Germany
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Haneul Choi
- Center for Hydrogen Energy Materials, Korea Institute of Science & Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyeok Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Byoung Chan Choi
- Laser Surface Texturing Group, AYECLUS, Gyeonggi-do, 14255, Republic of Korea
| | - Hye Jung Chang
- Center for Hydrogen Energy Materials, Korea Institute of Science & Technology (KIST), Seoul, 02792, Republic of Korea
| | - Youngjun Kim
- Environmental Safety Group, Korea Institute of Science & Technology Europe (KIST-EUROPE), Saarbrücken, 66123, Germany
| | - Sung Woo Cho
- Division of Cardiology, Department of Internal Medicine, Inje University Ilsan Paik Hospital, College of Medicine, Inje University, Gyeonggi-do, 10380, Republic of Korea
| | - James R. Edwards
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, OX3 7LD, United Kingdom
| | - Suk-Won Hwang
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yu-Chan Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyung-Seop Han
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hojeong Jeon
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Zheng H, Liu J, Qiu Y. The Design and Analysis of the Fabrication of Micro- and Nanoscale Surface Structures and Their Performance Applications from a Bionic Perspective. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4014. [PMID: 39203192 PMCID: PMC11356519 DOI: 10.3390/ma17164014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024]
Abstract
This paper comprehensively discusses the fabrication of bionic-based ultrafast laser micro-nano-multiscale surface structures and their performance analysis. It explores the functionality of biological surface structures and the high adaptability achieved through optimized self-organized biomaterials with multilayered structures. This study details the applications of ultrafast laser technology in biomimetic designs, particularly in preparing high-precision, wear-resistant, hydrophobic, and antireflective micro- and nanostructures on metal surfaces. Advances in the fabrications of laser surface structures are analyzed, comparing top-down and bottom-up processing methods and femtosecond laser direct writing. This research investigates selective absorption properties of surface structures at different scales for various light wavelengths, achieving coloring or stealth effects. Applications in dirt-resistant, self-cleaning, biomimetic optical, friction-resistant, and biocompatible surfaces are presented, demonstrating potential in biomedical care, water-vapor harvesting, and droplet manipulation. This paper concludes by highlighting research frontiers, theoretical and technological challenges, and the high-precision capabilities of femtosecond laser technology in related fields.
Collapse
Affiliation(s)
| | | | - Yake Qiu
- Architecture and Design College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
3
|
Zhu D, Jiang S, Liao C, Xu L, Wang Y, Liu D, Bao W, Wang F, Huang H, Weng X, Liu L, Qu J, Wang Y. Ultrafast Laser 3D Nanolithography of Fiber-Integrated Silica Microdevices. NANO LETTERS 2024; 24:9734-9742. [PMID: 39047072 DOI: 10.1021/acs.nanolett.4c02680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Fiber-integrated micro/nanostructures play a crucial role in modern industry, mainly owing to their compact size, high sensitivity, and resistance to electromagnetic interference. However, the three-dimensional manufacturing of fiber-tip functional structures beyond organic polymers remains challenging. It is essential to construct fiber-integrated inorganic silica with designed functional nanostructures for microsystem applications. Here, we develop a strategy for the 3D nanolithography of fiber-integrated silica from hybrid organic-inorganic materials by ultrafast laser-induced multiphoton absorption. Without silica nanoparticles and polymer additives, the acrylate-functionalized precursors can be locally cross-linked through a nonlinear effect. Followed by annealing at low temperature, the as-printed micro/nanostructures are transformed to high-quality silica with sub-100 nm resolution. Silica microcantilever probes and microtoroid resonators are directly integrated onto the optical fiber, showing strong thermal stability and quality factors. This work provides a promising strategy for fabricating desired fiber-tip silica micro/nanostructures, which is helpful for the development of integrated functional device applications.
Collapse
Affiliation(s)
- Dezhi Zhu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Shangben Jiang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Changrui Liao
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Ying Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Dejun Liu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Weijia Bao
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Famei Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Haoqiang Huang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Weng
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Shenzhen Key Laboratory of Ultrafast Laser Micro/Nano Manufacturing, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Zhang L, Zhang AN, He SM, Zheng GQ, Zeng FR, Wang YZ, Liu BW, Zhao HB. Biomimetic Nanoporous Transparent Universal Fire-Resistant Coatings. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19519-19528. [PMID: 38580622 DOI: 10.1021/acsami.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The inherent flammability of most polymeric materials poses a significant fire hazard, leading to substantial property damage and loss of life. A universal flame-retardant protective coating is considered as a promising strategy to mitigate such risks; however, simultaneously achieving high transparency of the coatings remains a great challenge. Here, inspired by the moth eye effect, we designed a nanoporous structure into a protective coating that leverages a hydrophilic-hydrophobic interactive assembly facilitated by phosphoric acid protonated amino siloxane. The coating demonstrates robust adhesion to a diverse range of substrates, including but not limited to fabrics, foams, paper, and wood. As expected, its moth-eye-inspired nanoporous structure conferred a high visible light transparency of >97% and water vapor transmittance of 96%. The synergistic effect among phosphorus (P), nitrogen (N), and silicon (Si) largely enhanced the char-forming ability and restricted the decomposition of the coated substrates, which successfully endowed the coating with high fire-fighting performance. More importantly, for both flexible and rigid substrates, the coated samples all possessed great mechanical properties. This work provides a new insight for the design of protective coatings, particularly focusing on achieving high transparency.
Collapse
Affiliation(s)
- Lin Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ai-Ning Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shuang-Mei He
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guan-Qi Zheng
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fu-Rong Zeng
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo-Wen Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hai-Bo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
5
|
Leng RZ, Yun B, Chen ZH, Chai C, Xu WW, Yu YH, Wang L. High-Transmission Biomimetics Structural Surfaces Produced via Ultrafast Laser Manufacturing. Biomimetics (Basel) 2023; 8:586. [PMID: 38132525 PMCID: PMC10742336 DOI: 10.3390/biomimetics8080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/10/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Inspired by periodically aligned micro/nanostructures on biological surfaces, researchers have been fabricating biomimetic structures with superior performance. As a promising and versatile tool, an ultrafast laser combined with other forms of processing technology has been utilized to manufacture functional structures, e.g., the biomimetic subwavelength structures to restrain the surface Fresnel reflectance. In this review paper, we interpret the biomimetic mechanism of antireflective subwavelength structures (ARSSs) for high-transmission windows. Recent advances in the fabrication of ARSSs with an ultrafast laser are summarized and introduced. The limitations and challenges of laser processing technology are discussed, and the future prospects for advancement are outlined, too.
Collapse
Affiliation(s)
- Rui-Zhe Leng
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (R.-Z.L.); (B.Y.); (Z.-H.C.); (Y.-H.Y.)
| | - Bi Yun
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (R.-Z.L.); (B.Y.); (Z.-H.C.); (Y.-H.Y.)
| | - Zhi-Hao Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (R.-Z.L.); (B.Y.); (Z.-H.C.); (Y.-H.Y.)
| | - Chen Chai
- GRINM Guojing Advanced Materials Co., Ltd., Langfang 065001, China;
| | - Wei-Wei Xu
- School of Electrical and Information Engineering, Jilin Engineering Normal University, Changchun 130052, China;
| | - Yan-Hao Yu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (R.-Z.L.); (B.Y.); (Z.-H.C.); (Y.-H.Y.)
| | - Lei Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China; (R.-Z.L.); (B.Y.); (Z.-H.C.); (Y.-H.Y.)
| |
Collapse
|
6
|
Schmelz D, Jia G, Käsebier T, Plentz J, Zeitner UD. Antireflection Structures for VIS and NIR on Arbitrarily Shaped Fused Silica Substrates with Colloidal Polystyrene Nanosphere Lithography. MICROMACHINES 2023; 14:1204. [PMID: 37374789 DOI: 10.3390/mi14061204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023]
Abstract
Antireflective (AR) nanostructures offer an effective, broadband alternative to conventional AR coatings that could be used even under extreme conditions. In this publication, a possible fabrication process based on colloidal polystyrene (PS) nanosphere lithography for the fabrication of such AR structures on arbitrarily shaped fused silica substrates is presented and evaluated. Special emphasis is placed on the involved manufacturing steps in order to be able to produce tailored and effective structures. An improved Langmuir-Blodgett self-assembly lithography technique enabled the deposition of 200 nm PS spheres on curved surfaces, independent of shape or material-specific characteristics such as hydrophobicity. The AR structures were fabricated on planar fused silica wafers and aspherical planoconvex lenses. Broadband AR structures with losses (reflection + transmissive scattering) of <1% per surface in the spectral range of 750-2000 nm were produced. At the best performance level, losses were less than 0.5%, which corresponds to an improvement factor of 6.7 compared to unstructured reference substrates.
Collapse
Affiliation(s)
- David Schmelz
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Guobin Jia
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
| | - Thomas Käsebier
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jonathan Plentz
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
| | - Uwe Detlef Zeitner
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, 07745 Jena, Germany
- Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, 80335 Munich, Germany
| |
Collapse
|
7
|
Chen Q, Duan J, Xiong W, Deng L. High-performance anti-reflection micro-forests on aluminium alloy fabricated by laser induced competitive vapor deposition. OPTICS EXPRESS 2023; 31:12802-12818. [PMID: 37157433 DOI: 10.1364/oe.484426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Surfaces with strong anti-reflection properties have attracted the wide attention of scientists and engineers due to their great application potential in many fields. Traditional laser blackening techniques are limited by the material and surface profile, which are not able to be applied to film and large-scale surfaces. Inspired by the rainforest, a new design for anti-reflection surface structures was proposed by constructing micro-forests. To evaluate this design, we fabricated micro-forests on an Al alloy slab by laser induced competitive vapor deposition. By controlling the deposition of the laser energy, the surface can be fully covered by forest-like micro-nano structures. The porous and hierarchical micro-forests performed a minimum and average reflectance of 1.47% and 2.41%, respectively, in the range of 400-1200 nm. Different from the traditional laser blackening technique, the micro-scaled structures were formed due to the aggregation of the deposited nanoparticles instead of the laser ablation groove. Therefore, this method would lead to little surface damage and can also be applied to the aluminum film with a thickness of 50 µm. The black aluminum film can be used to produce the large-scale anti-reflection shell. Predictably, this design and the LICVD method are simple and efficient, which can broaden the application of the anti-reflection surface in many fields such as visible-light stealth, precision optical sensors, optoelectronic devices, and aerospace radiation heat transfer device.
Collapse
|
8
|
Borodaenko Y, Khairullina E, Levshakova A, Shmalko A, Tumkin I, Gurbatov S, Mironenko A, Mitsai E, Modin E, Gurevich EL, Kuchmizhak AA. Noble-Metal Nanoparticle-Embedded Silicon Nanogratings via Single-Step Laser-Induced Periodic Surface Structuring. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1300. [PMID: 37110886 PMCID: PMC10146168 DOI: 10.3390/nano13081300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Here, we show that direct femtosecond laser nanostructuring of monocrystalline Si wafers in aqueous solutions containing noble-metal precursors (such as palladium dichloride, potassium hexachloroplatinate, and silver nitrate) allows for the creation of nanogratings decorated with mono- (Pd, Pt, and Ag) and bimetallic (Pd-Pt) nanoparticles (NPs). Multi-pulse femtosecond-laser exposure was found to drive periodically modulated ablation of the Si surface, while simultaneous thermal-induced reduction of the metal-containing acids and salts causes local surface morphology decoration with functional noble metal NPs. The orientation of the formed Si nanogratings with their nano-trenches decorated with noble-metal NPs can be controlled by the polarization direction of the incident laser beam, which was justified, for both linearly polarized Gaussian and radially (azimuthally) polarized vector beams. The produced hybrid NP-decorated Si nanogratings with a radially varying nano-trench orientation demonstrated anisotropic antireflection performance, as well as photocatalytic activity, probed by SERS tracing of the paraaminothiophenol-to-dimercaptoazobenzene transformation. The developed single-step maskless procedure of liquid-phase Si surface nanostructuring that proceeds simultaneously with the localized reduction of noble-metal precursors allows for the formation of hybrid Si nanogratings with controllable amounts of mono- and bimetallic NPs, paving the way toward applications in heterogeneous catalysis, optical detection, light harvesting, and sensing.
Collapse
Affiliation(s)
- Yulia Borodaenko
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Evgeniia Khairullina
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Aleksandra Levshakova
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Alexander Shmalko
- Interdisciplinary Resource Center for Nanotechnology of Research Park of SPbSU, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Ilya Tumkin
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 St. Petersburg, Russia
| | - Stanislav Gurbatov
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | | - Eugeny Mitsai
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Evgeny Modin
- CIC nanoGUNE BRTA, E-20018 Donostia-San Sebastian, Spain
| | - Evgeny L. Gurevich
- Laser Center (LFM), University of Applied Sciences Munster, Stegerwaldstraße 39, 48565 Steinfurt, Germany
| | - Aleksandr A. Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
- Far Eastern Federal University, 690090 Vladivostok, Russia
| |
Collapse
|
9
|
Xie J, Qiao M, Zhu D, Yan J, Deng S, He G, Luo M, Zhao Y. Laser Induced Coffee-Ring Structure through Solid-Liquid Transition for Color Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205696. [PMID: 36403241 DOI: 10.1002/smll.202205696] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Metallic micro/nano structures with special physicochemical properties have undergone rapid development owing to their broad applications in micromachines and microdevices. Ultrafast laser processing is generally accepted as an effective technology for functional structures manufacture, however, the controllable fabrication of specific metallic micro/nano structures remains a challenge. Here, this work proposes a novel strategy of laser induced transient solid-liquid transition to fabricate unique structures. Through modulating the transient state of metal from solid to liquid phase using the initial pulse excitation, the subsequent ultrafast pulse-induced recoil pressure can suppress the plasma emission and removal of liquid phase metals, resulting in the controllable fabrication of coffee-ring structures. The solid-liquid transition dynamics, which related with the transient reflectivity and plasma intensity, are revealed by established two temperature model coupled with molecular dynamics model. The coffee-ring structure exhibits tunable structure color owing to various optical response, which can be used for color printing with large scale and high resolution. This work provides a promising strategy for fabricating functional micro/nano structures, which can greatly broaden the potential applications.
Collapse
Affiliation(s)
- Jiawang Xie
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ming Qiao
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Dezhi Zhu
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jianfeng Yan
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Shengfa Deng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Guangzhi He
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ma Luo
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuzhi Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Himel MH, Sikder B, Ahmed T, Choudhury SM. Biomimicry in nanotechnology: a comprehensive review. NANOSCALE ADVANCES 2023; 5:596-614. [PMID: 36756510 PMCID: PMC9890514 DOI: 10.1039/d2na00571a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Biomimicry has been utilized in many branches of science and engineering to develop devices for enhanced and better performance. The application of nanotechnology has made life easier in modern times. It has offered a way to manipulate matter and systems at the atomic level. As a result, the miniaturization of numerous devices has been possible. Of late, the integration of biomimicry with nanotechnology has shown promising results in the fields of medicine, robotics, sensors, photonics, etc. Biomimicry in nanotechnology has provided eco-friendly and green solutions to the energy problem and in textiles. This is a new research area that needs to be explored more thoroughly. This review illustrates the progress and innovations made in the field of nanotechnology with the integration of biomimicry.
Collapse
Affiliation(s)
- Mehedi Hasan Himel
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
- Department of Computer Science and Engineering, Brac University 66 Mohakhali Dhaka 1212 Bangladesh
| | - Bejoy Sikder
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
| | - Tanvir Ahmed
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
- Department of Computer Science and Engineering, Brac University 66 Mohakhali Dhaka 1212 Bangladesh
| | - Sajid Muhaimin Choudhury
- Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology Dhaka 1205 Bangladesh
| |
Collapse
|
11
|
Florian C, Fuentes-Edfuf Y, Skoulas E, Stratakis E, Sanchez-Cortes S, Solis J, Siegel J. Influence of Heat Accumulation on Morphology Debris Deposition and Wetting of LIPSS on Steel upon High Repetition Rate Femtosecond Pulses Irradiation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7468. [PMID: 36363059 PMCID: PMC9656394 DOI: 10.3390/ma15217468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The fabrication of laser-induced periodic surface structures (LIPSS) over extended areas at high processing speeds requires the use of high repetition rate femtosecond lasers. It is known that industrially relevant materials such as steel experience heat accumulation when irradiated at repetition rates above some hundreds of kHz, and significant debris redeposition can take place. However, there are few studies on how the laser repetition rate influences both the debris deposition and the final LIPSS morphology. In this work, we present a study of fs laser-induced fabrication of low spatial frequency LIPSS (LSFL), with pulse repetition rates ranging from 10 kHz to 2 MHz on commercially available steel. The morphology of the laser-structured areas as well as the redeposited debris was characterized by scanning electron microscopy (SEM) and µ-Raman spectroscopy. To identify repetition rate ranges where heat accumulation is present during the irradiations, we developed a simple heat accumulation model that solves the heat equation in 1 dimension implementing a Forward differencing in Time and Central differencing in Space (FTCS) scheme. Contact angle measurements with water demonstrated the influence of heat accumulation and debris on the functional wetting behavior. The findings are directly relevant for the processing of metals using high repetition rate femtosecond lasers, enabling the identification of optimum conditions in terms of desired morphology, functionality, and throughput.
Collapse
Affiliation(s)
- Camilo Florian
- Instituto de Óptica (IO-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 121, 28006 Madrid, Spain
| | - Yasser Fuentes-Edfuf
- Instituto de Óptica (IO-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 121, 28006 Madrid, Spain
| | - Evangelos Skoulas
- Instituto de Estructura de la Materia (CSIC), Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid, Spain
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Greece
| | - Santiago Sanchez-Cortes
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Greece
| | - Javier Solis
- Instituto de Óptica (IO-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 121, 28006 Madrid, Spain
| | - Jan Siegel
- Instituto de Óptica (IO-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Serrano 121, 28006 Madrid, Spain
| |
Collapse
|
12
|
Xu K, Hu J, Wang M, Cheng GJ, Xu S. Armored Nanocones Engraved by Selective Laser Doping Enhanced Plasma Etching for Robust Supertransmissivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47237-47245. [PMID: 36200938 DOI: 10.1021/acsami.2c13033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Optical antireflection surfaces equipped with subwavelength nanocone arrays are commonly used to reach broadband supertransmissivity but are limited by the lack of wear resistance. We design and manufacture a structured surface with robust antireflection structures (R-ARS) composed of substrate-engraved nanocone arrays with micro-grid-shaped walls as protective armor. An ultrafast laser beam is used to selectively ablate and dope the metal from the deposited film into the subsurface of optical substrates to strengthen self-assembled nanoparticles formed during plasma etching as masks for nanocones. The untreated microscale metal grids serve as etching masks for the remaining protective armor. The geometrical features of nanocones and spatial distribution of protective armor with a proper duty cycle are theoretically optimized for improvement in both transmissivity and mechanical robustness. We demonstrate armored dense engraved nanocone arrays (with tip diameters of ∼50 nm and heights of ∼0.8 μm) on visible fused silica and infrared semi-insulating SiC with protective micro-square-grid armor. The average transmittances are improved from 93% to over 97% (on 0.4-1.2 μm) for double-face-structured fused silica, and from 60 to 65% (on 3-5 μm) for single-face-structured SiC, with few reductions of fused silica after 150 cycles of severe abrasion (under a pressure of 5.34 MPa) proving the excellent mechanical robust performance of R-ARS.
Collapse
Affiliation(s)
- Kang Xu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jin Hu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Wang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gary J Cheng
- School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shaolin Xu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
13
|
Yin J, Yan H, Dunzhu G, Wang R, Cao S, Zhou R, Li Y. General Strategy toward Laser Single-Step Generation of Multiscale Anti-Reflection Structures by Marangoni Effect. MICROMACHINES 2022; 13:1491. [PMID: 36144114 PMCID: PMC9503492 DOI: 10.3390/mi13091491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The anti-reflection of transparent material surfaces has attracted great attention due to its potential applications. In this paper, a single-step controllable method based on an infrared femtosecond laser is proposed for self-generation multiscale anti-reflection structures on glass. The multiscale composite structure with ridge structures and laser-induced nano-textures is generated by the Marangoni effect. By optimizing the laser parameters, multiscale structure with broadband anti-reflection enhancement is achieved. Meanwhile, the sample exhibits good anti-glare performance under strong light. The results show that the average reflectance of the laser-textured glass in the 300-800 nm band is reduced by 45.5% compared with the unprocessed glass. This work provides a simple and general strategy for fabricating anti-reflection structures and expands the potential applications of laser-textured glass in various optical components, display devices, and anti-glare glasses.
Collapse
Affiliation(s)
- Jingbo Yin
- School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
| | - Huangping Yan
- School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Gesang Dunzhu
- Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
| | - Rui Wang
- Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
| | - Shengzhu Cao
- Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
| | - Rui Zhou
- School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
| | - Yuanzhe Li
- School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
Andreeva Y, Suvorov A, Grigoryev E, Khmelenin D, Zhukov M, Makin V, Sinev D. Laser Fabrication of Highly Ordered Nanocomposite Subwavelength Gratings. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2811. [PMID: 36014676 PMCID: PMC9416309 DOI: 10.3390/nano12162811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Optical nanogratings are widely used for different optical, photovoltaic, and sensing devices. However, fabrication methods of highly ordered gratings with the period around optical wavelength range are usually rather expensive and time consuming. In this article, we present high speed single-step approach for fabrication of highly ordered nanocomposite gratings with a period of less than 355 nm. For the purpose, we used commercially available nanosecond-pulsed fiber laser system operating at the wavelength of 355 nm. One-dimensional and two-dimensional nanostructures can be formed by direct laser treatment with different scan speed and intensity. These structures exhibit not only dispersing, but also anisotropic properties. The obtained results open perspectives for easier mass production of polarization splitters and filters, planar optics, and also for security labeling.
Collapse
Affiliation(s)
- Yaroslava Andreeva
- Institute of Laser Technologies, ITMO University, 197101 Saint Petersburg, Russia
| | - Alexander Suvorov
- Institute of Laser Technologies, ITMO University, 197101 Saint Petersburg, Russia
| | - Evgeniy Grigoryev
- Interdisciplinary Resource Center for Nanotechnology of Research Park of SPbSU, Saint-Petersburg State University, 199034 Saint Petersburg, Russia
| | - Dmitry Khmelenin
- Federal Scientific Research Center “Crystallography and Photonics” RAS, 119333 Moscow, Russia
| | - Mikhail Zhukov
- Laboratory of Scanning Probe Microscopy and Spectroscopy, Institute for Analytical Instrumentation RAS, 198095 Saint Petersburg, Russia
| | - Vladimir Makin
- Institute for Nuclear Energy (Branch), Peter the Great St.Petersburg Polytechnic University, Sosnovy Bor City, 188541 Leningrad Oblast, Russia
| | - Dmitry Sinev
- Institute of Laser Technologies, ITMO University, 197101 Saint Petersburg, Russia
| |
Collapse
|
15
|
Vlahou M, Fraggelakis F, Manganas P, Tsibidis GD, Ranella A, Stratakis E. Fabrication of Biomimetic 2D Nanostructures through Irradiation of Stainless Steel Surfaces with Double Femtosecond Pulses. NANOMATERIALS 2022; 12:nano12040623. [PMID: 35214951 PMCID: PMC8876691 DOI: 10.3390/nano12040623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
Abstract
Femtosecond laser induced changes on the topography of stainless steel with double pulses is investigated to reveal the role of parameters such as the fluence, the energy dose and the interpulse delay on the features of the produced patterns. Our results indicate that short pulse separation (Δτ = 5 ps) favors the formation of 2D Low Spatially Frequency Laser Induced Periodic Surface Structures (LSFL) while longer interpulse delays (Δτ = 20 ps) lead to 2D High Spatially Frequency LIPSS (HSFL). The detailed investigation is complemented with an analysis of the produced surface patterns and characterization of their wetting and cell-adhesion properties. A correlation between the surface roughness and the contact angle is presented which confirms that topographies of variable roughness and complexity exhibit different wetting properties. Furthermore, our analysis indicates that patterns with different spatial characteristics demonstrate variable cell adhesion response which suggests that the methodology can be used as a strategy towards the fabrication of tailored surfaces for the development of functional implants.
Collapse
Affiliation(s)
- Matina Vlahou
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece; (M.V.); (P.M.); (G.D.T.); (A.R.)
| | - Fotis Fraggelakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece; (M.V.); (P.M.); (G.D.T.); (A.R.)
- Correspondence: (F.F.); (E.S.)
| | - Phanee Manganas
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece; (M.V.); (P.M.); (G.D.T.); (A.R.)
| | - George D. Tsibidis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece; (M.V.); (P.M.); (G.D.T.); (A.R.)
| | - Anthi Ranella
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece; (M.V.); (P.M.); (G.D.T.); (A.R.)
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece; (M.V.); (P.M.); (G.D.T.); (A.R.)
- Department of Physics, University of Crete, 71003 Heraklion, Crete, Greece
- Correspondence: (F.F.); (E.S.)
| |
Collapse
|
16
|
Michalska M, Laney SK, Li T, Portnoi M, Mordan N, Allan E, Tiwari MK, Parkin IP, Papakonstantinou I. Bioinspired Multifunctional Glass Surfaces through Regenerative Secondary Mask Lithography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102175. [PMID: 34514638 PMCID: PMC11469219 DOI: 10.1002/adma.202102175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Nature-inspired nanopatterning offers exciting multifunctionality spanning antireflectance and the ability to repel water/fog, oils, and bacteria; strongly dependent upon nanofeature size and morphology. However, such patterning in glass is notoriously difficult, paradoxically, due to the same outstanding chemical and thermal stability that make glass so attractive. Here, regenerative secondary mask lithography is introduced and exploited to enable customized glass nanopillars through dynamic nanoscale tunability of the side-wall profile and aspect ratio (>7). The method is simple and versatile, comprising just two steps. First, sub-wavelength scalable soft etch masks (55-350 nm) are generated through an example of block copolymer micelles or nanoimprinted photoresist. Second, their inherent durability problem is addressed by an innovative cyclic etching, when the original mask becomes embedded within a protective secondary organic mask, which is tuned and regenerated, permitting dynamic nanofeature profiling with etching selectivity >1:32. It is envisioned that such structuring in glass will facilitate fundamental studies and be useful for numerous practical applications-from displays to architectural windows. To showcase the potential, glass features are tailored to achieve excellent broadband omnidirectional antireflectivity, self-cleaning, and unique antibacterial activity toward Staphylococcus aureus.
Collapse
Affiliation(s)
- Martyna Michalska
- Photonic Innovations LabDepartment of Electronic & Electrical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Sophia K. Laney
- Photonic Innovations LabDepartment of Electronic & Electrical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Tao Li
- Photonic Innovations LabDepartment of Electronic & Electrical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Mark Portnoi
- Photonic Innovations LabDepartment of Electronic & Electrical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Nicola Mordan
- Division of Biomaterials and Tissue EngineeringUCL Eastman Dental InstituteRoyal Free CampusUniversity College LondonPond StreetLondonNW3 2QGUK
| | - Elaine Allan
- Department of Microbial DiseasesUCL Eastman Dental InstituteRoyal Free CampusUniversity College LondonRowland Hill StreetLondonNW3 2PFUK
| | - Manish K. Tiwari
- Nanoengineered Systems LaboratoryDepartment of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS)University College LondonLondonW1W 7TSUK
| | - Ivan P. Parkin
- Department of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Ioannis Papakonstantinou
- Photonic Innovations LabDepartment of Electronic & Electrical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| |
Collapse
|
17
|
Perrakis G, Tasolamprou AC, Kenanakis G, Economou EN, Tzortzakis S, Kafesaki M. Combined nano and micro structuring for enhanced radiative cooling and efficiency of photovoltaic cells. Sci Rep 2021; 11:11552. [PMID: 34079009 PMCID: PMC8172866 DOI: 10.1038/s41598-021-91061-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022] Open
Abstract
Outdoor devices comprising materials with mid-IR emissions at the atmospheric window (8–13 μm) achieve passive heat dissipation to outer space (~ − 270 °C), besides the atmosphere, being suitable for cooling applications. Recent studies have shown that the micro-scale photonic patterning of such materials further enhances their spectral emissivity. This approach is crucial, especially for daytime operation, where solar radiation often increases the device heat load. However, micro-scale patterning is often sub-optimal for other wavelengths besides 8–13 μm, limiting the devices’ efficiency. Here, we show that the superposition of properly designed in-plane nano- and micro-scaled periodic patterns results in enhanced device performance in the case of solar cell applications. We apply this idea in scalable, few-micron-thick, and simple single-material (glass) radiative coolers on top of simple-planar Si substrates, where we show an ~ 25.4% solar absorption enhancement, combined with a ~ ≤ 5.8 °C temperature reduction. Utilizing a coupled opto-electro-thermal modeling we evaluate our nano-micro-scale cooler also in the case of selected, highly-efficient Si-based photovoltaic architectures, where we achieve an efficiency enhancement of ~ 3.1%, which is 2.3 times higher compared to common anti-reflection layers, while the operating temperature of the device also decreases. Besides the enhanced performance of our nano-micro-scale cooler, our approach of superimposing double- or multi-periodic gratings is generic and suitable in all cases where the performance of a device depends on its response on more than one frequency bands.
Collapse
Affiliation(s)
- George Perrakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece. .,Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece.
| | - Anna C Tasolamprou
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece
| | - George Kenanakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece
| | - Eleftherios N Economou
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.,Department of Physics, University of Crete, 71003, Heraklion, Crete, Greece
| | - Stelios Tzortzakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.,Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece.,Science Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Maria Kafesaki
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), 70013, Heraklion, Crete, Greece.,Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
18
|
Wang Z, Ding H, Liu D, Xu C, Li B, Niu S, Li J, Liu L, Zhao J, Zhang J, Mu Z, Han Z, Ren L. Large-Scale Bio-Inspired Flexible Antireflective Film with Scale-Insensitivity Arrays. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23103-23112. [PMID: 33973761 DOI: 10.1021/acsami.1c02046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural creatures can always provide perfect strategies for excellent antireflection (AR), which is valuable for photovoltaic industry, optical devices, and flexible displays. However, limited by precision, it is still difficult to guarantee the consistency between the artificial structures and the original biological structures. Here, a novel large-scale flexible AR film is inspired by the cicada wings and successfully fabricated with a recycled template. On the one hand, the adjustable structures on porous templates make it possible to optimize the design of AR structure parameters toward the practical demand. On the other hand, it breaks the limitation of the biological organism size, accomplishing the replication of AR nanostructure units in a large scale. Interestingly, even if the film is covered by enlarged dome cone arrays, it still maintains almost perfect AR property, achieving excellent scale-insensitivity AR performance. This work numerically and experimentally investigates its scale-insensitivity AR performance in detail. Compared with subwavelength nanocones, enlarged cones change the original optical behaviors, and the proportion of transmitted light is reduced while scattering and absorption increase. Based on this, these bio-inspired scale-insensitivity AR arrays could be used in flexible displays, photothermic conversion, solar cells, and so on.
Collapse
Affiliation(s)
- Ze Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Hanliang Ding
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Delei Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Conghao Xu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Bo Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jian Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Linpeng Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|
19
|
Li PC, Chen HY, Chiang KT, Yang H. Reversible embroidered ball-like antireflective structure arrays inspired by leafhopper wings. J Colloid Interface Sci 2021; 599:119-129. [PMID: 33933786 DOI: 10.1016/j.jcis.2021.04.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/01/2022]
Abstract
Highly transparent leafhopper (Thaia rubiginosa) wings are self-decorated with embroidered ball-shaped proteinaceous brochosmoes as distinct anti-predator defenses. The non-sticky brochosomal coating serves as antireflective structures for camouflage in vegetated environments. Inspired by the leafhopper wings, this study reports a new type of reversible antireflection coating enabled by integrating self-assembly methodologies using a shape memory polymer. The resulting embroidered ball-like structure array establishes a refractive index transition on surface, and thereby behaves omnidirectional antireflective characteristics in a broadband visible light region. Interestingly, the highly transparent appearance can be instantly erased and recovered by submerging in common liquids, such as water and ethanol, or by applying contact pressures at ambient conditions. Furthermore, the reversibility and structure-shape effect on the antireflective characteristics are systematically evaluated in this study.
Collapse
Affiliation(s)
- Pei-Chun Li
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Huei-Yin Chen
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Kuan-Ting Chiang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan.
| |
Collapse
|
20
|
Ding H, Liu D, Li B, Ze W, Niu S, Xu C, Han Z, Ren L. Broader-Band and Flexible Antireflective Films with the Window-like Structures Inspired by the Backside of Butterfly Wing Scales. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19450-19459. [PMID: 33871958 DOI: 10.1021/acsami.1c01352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Antireflective performance is critical for most optical devices, such as the efficient solar energy utilization in photovoltaic cells of an aerospace craft and optical displays of scientific precise equipment. Therein, outstanding broad-band antireflection is one of the most crucial properties for antireflection films (ARFs). Unfortunately, it is still a challenging work to realize perfect "broader-band" antireflection because both the low refractive indices materials and time-consuming nanotexturing technologies are required in the fabricating process. Even in this case, a broader-band and flexible ARF with hierarchical structures is successfully developed, which is inspired by butterfly wing scales. First, the butterfly wings surface is treated with acid and stuck on a clean glass. Now, all the scales on the wings will form a strong adhesion with the glass substrate. Then, the wings are removed and the scales are left on the glass slide. Now the backside of scales is facing outward, the backside structures of the scales are coincidentally used as the template. Finally, the structure is replicated and the ARF with a controllable thickness is successfully fabricated by rotating PDMS on the biological template. In this work, the bionic ARFs realize the transmission of nearly 90% and more than 90% in the visible light and infrared region. It enhanced transmission to 13% under standard illumination compared with flat PDMS films of the same thickness. Furthermore, the ARF is flexible enough that it could bend nearly 180° to meet the special antireflection requirements in some extreme conditions. It is expected that this bioinspired AR film could revolutionize the technologies of broader-band antireflective materials and impact numerous applications from glass displays to optoelectronic devices.
Collapse
Affiliation(s)
- Hanliang Ding
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Delei Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Bo Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Wang Ze
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Conghao Xu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|
21
|
Prudent M, Bourquard F, Borroto A, Pierson JF, Garrelie F, Colombier JP. Initial Morphology and Feedback Effects on Laser-Induced Periodic Nanostructuring of Thin-Film Metallic Glasses. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1076. [PMID: 33922059 PMCID: PMC8143573 DOI: 10.3390/nano11051076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/01/2022]
Abstract
Surface nanostructuring by femtosecond laser is an efficient way to manipulate surface topography, creating advanced functionalities of irradiated materials. Thin-film metallic glasses obtained by physical vapor deposition exhibit microstructures free from grain boundaries, crystallites and dislocations but also characterized by a nanometric surface roughness. These singular properties make them more resilient to other metals to form laser-induced nanopatterns. Here we investigate the morphological response of Zr65Cu35 alloys under ultrafast irradiation with multipulse feedback. We experimentally demonstrate that the initial columnar microstructure affects the surface topography evolution and conditions the required energy dose to reach desired structures in the nanoscale domain. Double pulses femtosecond laser irradiation is also shown to be an efficient strategy to force materials to form uniform nanostructures even when their thermomechanical properties have a poor predisposition to generate them.
Collapse
Affiliation(s)
- Mathilde Prudent
- Univ Lyon, UJM-Saint-Etienne, CNRS, Institute of Optics Graduate School, Laboratoire Hubert Curien UMR CNRS 5516, F-42023 St-Etienne, France; (M.P.); (F.B.); (F.G.)
| | - Florent Bourquard
- Univ Lyon, UJM-Saint-Etienne, CNRS, Institute of Optics Graduate School, Laboratoire Hubert Curien UMR CNRS 5516, F-42023 St-Etienne, France; (M.P.); (F.B.); (F.G.)
| | - Alejandro Borroto
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France; (A.B.); (J.-F.P.)
| | | | - Florence Garrelie
- Univ Lyon, UJM-Saint-Etienne, CNRS, Institute of Optics Graduate School, Laboratoire Hubert Curien UMR CNRS 5516, F-42023 St-Etienne, France; (M.P.); (F.B.); (F.G.)
| | - Jean-Philippe Colombier
- Univ Lyon, UJM-Saint-Etienne, CNRS, Institute of Optics Graduate School, Laboratoire Hubert Curien UMR CNRS 5516, F-42023 St-Etienne, France; (M.P.); (F.B.); (F.G.)
| |
Collapse
|
22
|
Zhang F, Xie X, Zhao X, Ma L, Lei L, Qiu J, Nie Z. Polarization-dependent microstructural evolution induced by a femtosecond laser in an aluminosilicate glass. OPTICS EXPRESS 2021; 29:10265-10274. [PMID: 33820166 DOI: 10.1364/oe.420595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Manipulation of femtosecond laser induced microstructures in glass by tuning the laser polarization has great potential in optics. Here we report two different polarization-dependent microstructures and their evolution with pulse repetition rate in an aluminosilicate glass induced by femtosecond laser irradiation. A V-shaped crack oriented parallel to the laser polarization plane is induced at the bottom of modified regions by pulses operated at 200 kHz, 1030 nm, and 300 fs. Further increasing the pulse repetition rate to 500 kHz leads to the formation of a dumbbell-shaped structure, which is elongated perpendicularly to the laser polarization, at the top of the modified region. The size of the coloration area and the dumbbell-shaped structure can be controlled by tuning the pulse duration. Further investigation indicates that higher numerical apertures are in favor of the presence of the polarization effects in femtosecond laser irradiation. The possible mechanism responsible for the formation of the two microstructures is discussed. These results could be helpful for understanding of ultrafast laser interaction with glass.
Collapse
|
23
|
Anti-Reflection Nanostructures on Tempered Glass by Dynamic Beam Shaping. MICROMACHINES 2021; 12:mi12030289. [PMID: 33803433 PMCID: PMC8000063 DOI: 10.3390/mi12030289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022]
Abstract
Reflectivity and surface topography of tempered glass were modified without any thermal damage to the surroundings by utilizing 1.7 ps ultrashort pulsed laser on its fundamental wavelength of 1030 nm. To speed up the fabrication, a dynamic beam shaping unit combined with a galvanometer scanning head was applied to divide the initial laser beam into a matrix of beamlets with adjustable beamlets number and separation distance. By tuning the laser and processing parameters, reflected intensity can be reduced up to 75% while maintaining 90% of transparency thus showing great potential for display functionalization of mobile phones or laptops.
Collapse
|
24
|
The Role of Crystalline Orientation in the Formation of Surface Patterns on Solids Irradiated with Femtosecond Laser Double Pulses. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10248811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A theoretical investigation of the underlying ultrafast processes upon irradiation of rutile TiO2 of (001) and (100) surface orientation with femtosecond (fs) double pulsed lasers was performed in ablation conditions, for which, apart from mass removal, phase transformation and surface modification of the heated solid were induced. A parametric study was followed to correlate the transient carrier density and the produced lattice temperature with the laser fluence, pulse separation and the induced damage. The simulations showed that both temporal separation and crystal orientation influence the surface pattern, while both the carrier density and temperature drop gradually to a minimum value at temporal separation equal to twice the pulse separation that remain constant at long delays. Carrier dynamics, interference of the laser beam with the excited surface waves, thermal response and fluid transport at various pulse delays explained the formation of either subwavelength or suprawavelength structures. The significant role of the crystalline anisotropy is illustrated through the presentation of representative experimental results correlated with the theoretical predictions.
Collapse
|
25
|
Chukova O, Nedilko SA, Nedilko SG, Voitenko T, Androulidaki M, Manousaki A, Papadopoulos A, Savva K, Stratakis E. Pulsed laser deposition of the LaVO4:Eu, Ca nanoparticles on glass and silicon substrates. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Lee S, Song YW. Graphene Self-Phase-Lockers Formed around a Cu Wire Hub for Ring Resonators Incorporated into 57.8 Gigahertz Fiber Pulsed Lasers. ACS NANO 2020; 14:15944-15952. [PMID: 33137255 DOI: 10.1021/acsnano.0c07355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrate graphene-functionalized self-phase-locking of laser pulses for a dramatically elevated repetition rate by employing an intrinsic resonating structure in a fiber ring laser cavity, the modes thereby satisfying the phase-matching condition passively, through both the resonator and the laser cavity. Graphene is directly synthesized around a 1-mm-diameter Cu wire catalyst, avoiding the deleterious transfer process. The wire provides a form factor to the fiber ring resonator as a versatile winding hub, guaranteeing damage-minimized and recyclable contact of the synthesized graphene with a diameter-controlled optical microfiber. In-depth analysis of the graphene confirms the optical nonlinearity critically required for pulse formation. The laser-graphene interaction, the intermode phase-locking function of graphene, and the pulse formation with the resonator are systematically elucidated to explain the experimentally generated laser pulses at a repetition rate of 57.8 gigahertz (GHz). Additionally, tunability of the repetition rate up to 1.5 GHz by the photothermal effect of graphene is demonstrated.
Collapse
Affiliation(s)
- Sungjae Lee
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nano and Information Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Yong-Won Song
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nano and Information Technology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| |
Collapse
|
27
|
Chen T, Wang W, Tao T, Pan A, Mei X. Broad-Band Ultra-Low-Reflectivity Multiscale Micro-Nano Structures by the Combination of Femtosecond Laser Ablation and In Situ Deposition. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49265-49274. [PMID: 33064460 DOI: 10.1021/acsami.0c16894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Functional surfaces with broad-band ultralow optical reflection have many potential applications in areas like national defense and energy conversion. For efficient, high-quality manufacturing of material surfaces with antireflection features, a novel machining method for multiscale micro-nano structures is proposed. This method can enable the collaborative manufacturing of both microstructures via laser ablation and micro-nano structures with high porosity via in situ deposition, and it can simplify the fabrication process of multiscale micro-nano structures. As a result, substantially improved antireflection properties of the treated material surface can be realized by optimizing light trapping of the microstructures and enhancing the effective medium effect for the micro-nano structures with high porosity. In ultraviolet-visible-near-infrared regions, average reflectances, as low as 2.21 and 3.33%, are achieved for Si and Cu surfaces, respectively. Furthermore, the antireflection effect of the treated surface can also be extended to the mid-infrared wavelength range, where the average reflectances for the Si and Cu surfaces decrease to 5.28 and 5.18%, respectively. This novel collaborative manufacturing method is both simple and adaptable for different materials, which opens new doors for the preparation of broad-band ultra-low-reflectivity materials.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Intelligent Robotics, Xi'an, Shaanxi 710054, China
| | - Wenjun Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Intelligent Robotics, Xi'an, Shaanxi 710054, China
| | - Tao Tao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Intelligent Robotics, Xi'an, Shaanxi 710054, China
| | - Aifei Pan
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
- Shaanxi Key Laboratory of Intelligent Robotics, Xi'an, Shaanxi 710054, China
| | - Xuesong Mei
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| |
Collapse
|
28
|
Žemaitis A, Mimidis A, Papadopoulos A, Gečys P, Račiukaitis G, Stratakis E, Gedvilas M. Controlling the wettability of stainless steel from highly-hydrophilic to super-hydrophobic by femtosecond laser-induced ripples and nanospikes. RSC Adv 2020; 10:37956-37961. [PMID: 35515197 PMCID: PMC9057189 DOI: 10.1039/d0ra05665k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/06/2020] [Indexed: 12/03/2022] Open
Abstract
Results on the manipulation of the wetting properties of stainless steel alloy surface by ultrashort pulse laser texturing are presented. The wide range of water droplet contact angles from highly-hydrophilic to super-hydrophobic was achieved by generation of laser-induced periodic surface structures (LIPSS) and nanospikes. In particular, the wetting state was controlled by accumulated laser fluence, which determines the carbon/oxygen content and nano-texture type of the surface after laser treatment. A super-hydrophobic water-repelling surface was generated. The simple, single-step laser processing technology was demonstrated as a promising tool for the large-scale industrial production of self-cleaning stainless steel. Results on the manipulation of the wetting properties of stainless steel alloy surface by ultrashort pulse laser texturing are presented.![]()
Collapse
Affiliation(s)
- Andrius Žemaitis
- Department of Laser Technologies (LTS), Center for Physical Sciences and Technology (FTMC) Savanoriu Ave. 231 02300 Vilnius Lithuania
| | - Alexandros Mimidis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH) N. Plastira 100, Vassilika Vouton 70013 Heraklion Crete Greece
| | - Antonis Papadopoulos
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH) N. Plastira 100, Vassilika Vouton 70013 Heraklion Crete Greece
| | - Paulius Gečys
- Department of Laser Technologies (LTS), Center for Physical Sciences and Technology (FTMC) Savanoriu Ave. 231 02300 Vilnius Lithuania
| | - Gediminas Račiukaitis
- Department of Laser Technologies (LTS), Center for Physical Sciences and Technology (FTMC) Savanoriu Ave. 231 02300 Vilnius Lithuania
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH) N. Plastira 100, Vassilika Vouton 70013 Heraklion Crete Greece
| | - Mindaugas Gedvilas
- Department of Laser Technologies (LTS), Center for Physical Sciences and Technology (FTMC) Savanoriu Ave. 231 02300 Vilnius Lithuania
| |
Collapse
|
29
|
Simultaneous Manipulation of the Optical and Wettability Properties of Metal Surfaces Using 150 kHz Femtosecond Fiber Laser. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We demonstrate the formation of permanent and iridescent colors on aluminum, copper, steel, and brass surfaces using femtosecond laser-induced periodic and non-periodic nanostructuring. We show that both the permanent and iridescent colors of the metal surfaces can be erased and re-colored using a second stage of laser processing. A correlation was found between the spectral reflective properties of the laser-processed surfaces and their wettability properties. Transition from superhydrophilic to superhydrophobic response is observed while tailoring the optical reflectance of the metal surfaces. We employ a high power femtosecond fiber laser at 150 kHz repetition rate, which notably reduces the processing time, making this technique attractive for practical applications.
Collapse
|
30
|
Kunz C, Engel S, Müller FA, Gräf S. Large-Area Fabrication of Laser-Induced Periodic Surface Structures on Fused Silica Using Thin Gold Layers. NANOMATERIALS 2020; 10:nano10061187. [PMID: 32570904 PMCID: PMC7353452 DOI: 10.3390/nano10061187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
Despite intensive research activities in the field of laser-induced periodic surface structures (LIPSS), the large-area nanostructuring of glasses is still a challenging problem, which is mainly caused by the strongly non-linear absorption of the laser radiation by the dielectric material. Therefore, most investigations are limited to single-spot experiments on different types of glasses. Here, we report the homogeneous generation of LIPSS on large-area surfaces of fused silica using thin gold layers and a fs-laser with a wavelength λ = 1025 nm, a pulse duration τ = 300 fs, and a repetition frequency frep = 100 kHz as radiation source. For this purpose, single-spot experiments are performed to study the LIPSS formation process as a function of laser parameters and gold layer thickness. Based on these results, the generation of large-area homogenous LIPSS pattern was investigated by unidirectional scanning of the fs-laser beam across the sample surface using different line spacing. The nanostructures are characterized by a spatial period of about 360 nm and a modulation depth of around 160 nm. Chemical surface analysis by Raman spectroscopy confirms a complete ablation of the gold film by the fs-laser irradiation. The characterization of the functional properties shows an increased transmission of the nanostructured samples accompanied by a noticeable change in the wetting properties, which can be additionally modified within a wide range by silanization. The presented approach enables the reproducible LIPSS-based laser direct-writing of sub-wavelength nanostructures on glasses and thus provides a versatile and flexible tool for novel applications in the fields of optics, microfluidics, and biomaterials.
Collapse
|
31
|
Tsibidis GD, Stratakis E. Ionisation processes and laser induced periodic surface structures in dielectrics with mid-infrared femtosecond laser pulses. Sci Rep 2020; 10:8675. [PMID: 32457397 PMCID: PMC7250856 DOI: 10.1038/s41598-020-65613-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/06/2020] [Indexed: 12/02/2022] Open
Abstract
Irradiation of solids with ultrashort pulses and laser processing in the mid-Infrared (mid-IR) spectral region is a yet predominantly unexplored field with a large potential for a wide range of applications. In this work, laser driven physical phenomena associated with processes following irradiation of fused silica (SiO2) with ultrashort laser pulses in the mid-IR region are investigated in detail. A multiscale modelling approach is performed that correlates conditions for formation of perpendicular or parallel to the laser polarisation low spatial frequency periodic surface structures for low and high intensity mid-IR pulses (not previously explored in dielectrics at those wavelengths), respectively. Results demonstrate a remarkable domination of tunneling effects in the photoionisation rate and a strong influence of impact ionisation for long laser wavelengths. The methodology presented in this work is aimed to shed light on the fundamental mechanisms in a previously unexplored spectral area and allow a systematic novel surface engineering with strong mid-IR fields for advanced industrial laser applications.
Collapse
Affiliation(s)
- George D Tsibidis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece.
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology (FORTH), N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece
- Department of Physics, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
32
|
Shih CY, Gnilitskyi I, Shugaev MV, Skoulas E, Stratakis E, Zhigilei LV. Effect of a liquid environment on single-pulse generation of laser induced periodic surface structures and nanoparticles. NANOSCALE 2020; 12:7674-7687. [PMID: 32207758 DOI: 10.1039/d0nr00269k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effect of a liquid environment on the fundamental mechanisms of surface nanostructuring and generation of nanoparticles by single pulse laser ablation is investigated in a closely integrated computational and experimental study. A large-scale molecular dynamics simulation of spatially modulated ablation of Cr in water reveals a complex picture of the dynamic interaction between the ablation plume and water. Ablation plume is found to be rapidly decelerated by the water environment, resulting the formation and prompt disintegration of a hot metal layer at the interface between the ablation and water. A major fraction of the ablation plume is laterally redistributed and redeposited back to the target, forming smooth frozen surface features. Good agreement between the shapes of the surface features predicted in the simulation and the ones generated in single pulse laser ablation experiments performed for Cr in water supports the mechanistic insights revealed in the simulation. The results of this study suggest that the presence of a liquid environment can eliminate the sharp features of the surface morphology, reduce the amount of the material removed from the target by more than an order of magnitude, and narrow down the nanoparticle size distribution as compared to laser ablation under vacuum. Moreover, the computational predictions of the effective incorporation of molecules constituting the liquid environment into the surface region of the irradiated target and the generation of high vacancy concentrations, exceeding the equilibrium levels by more than an order of magnitude, suggest a potential for hyperdoping of laser-generated surfaces by solutes present in the liquid environment.
Collapse
Affiliation(s)
- Cheng-Yu Shih
- Department of Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, Virginia 22904-4745, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Fan P, Pan R, Zhong M. Ultrafast Laser Enabling Hierarchical Structures for Versatile Superhydrophobicity with Enhanced Cassie-Baxter Stability and Durability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16693-16711. [PMID: 31782653 DOI: 10.1021/acs.langmuir.9b02986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The controllable and facile fabrication of surface micro/nanostructures with the required dimensions and morphologies is the key to achieving surface superhydrophobicity. With the advantages of being a noncontact, maskless, programmable, and one-step process, ultrafast laser irradiation is a very flexible and adaptive technique for fabricating various microscale, nanoscale, and micro/nanomultiscale surface structures on diverse solids, thus realizing superhydrophobicity on their surfaces. In this feature article, a comprehensive review of our recent research advances on versatile superhydrophobic surfaces enabled by ultrafast lasers is presented from the perspectives of materials, methodologies, and functionalization. The realization of superhydrophobicity and even superamphiphobicity on varied solid surfaces through ultrafast laser treatment and the underlying mechanisms for the wettability transition of ultrafast-laser-processed surfaces from superhydrophilicity to superhydrophobicity will be discussed. For the sake of practical applications, the ultrafast-laser-based strategies for the large-scale and cost-effective fabrication of superhydrophobic surface micro/nanostructures will be introduced. A special focus will be devoted to the enhancement of structural durability and the Cassie-Baxter stability of ultrafast-laser-enabled superhydrophobic surfaces. Beyond that, the achievement of integrated surface functions including remarkable wetting functions such as the directional collection of water droplets and superhydrophobic surfaces simultaneously with unique optical properties will also be presented.
Collapse
Affiliation(s)
- Peixun Fan
- Laser Materials Processing Research Centre, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Rui Pan
- Laser Materials Processing Research Centre, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Minlin Zhong
- Laser Materials Processing Research Centre, School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
34
|
Lou R, Zhang G, Li G, Li X, Liu Q, Cheng G. Design and Fabrication of Dual-Scale Broadband Antireflective Structures on Metal Surfaces by Using Nanosecond and Femtosecond Lasers. MICROMACHINES 2019; 11:E20. [PMID: 31878117 PMCID: PMC7019563 DOI: 10.3390/mi11010020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023]
Abstract
Antireflective surfaces, with their great potential applications, have attracted tremendous attention and have been the subject of extensive research in recent years. However, due to the significant optical impedance mismatch between a metal surface and free space, it is still a challenging issue to realize ultralow reflectance on a metal surface. To address this issue, we propose a two-step strategy for constructing antireflective structures on a Ti-6Al-4V (TC4) surface using nanosecond and femtosecond pulsed lasers in combination. By controlling the parameters of the nanosecond laser, microgrooves are first scratched on the TC4 surface to reduce the interface reflection. Then, the femtosecond laser is focused onto the sample surface with orthogonal scanning to induce deep air holes and nanoscale structures, which effectively enhances the broadband absorption. The antireflection mechanism of the dual-scale structures is discussed regarding morphological characterization and hemispherical reflectance measurements. Finally, the modified sample surface covered with micro-nano hybrid structures is characterized by an average reflectance of 3.1% over the wavelengths ranging from 250 nm to 2250 nm.
Collapse
Affiliation(s)
- Rui Lou
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of CAS, Xi’an 710119, China; (R.L.); (G.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Zhang
- Electronic Information College, Center of Optical Imagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China; (G.Z.); (X.L.)
| | - Guangying Li
- State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of CAS, Xi’an 710119, China; (R.L.); (G.L.)
| | - Xuelong Li
- Electronic Information College, Center of Optical Imagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China; (G.Z.); (X.L.)
| | - Qing Liu
- Zhejiang Wanli University, Ningbo 315100, China;
| | - Guanghua Cheng
- Electronic Information College, Center of Optical Imagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China; (G.Z.); (X.L.)
| |
Collapse
|
35
|
Femtosecond Laser Fabrication of Stable Hydrophilic and Anti-Corrosive Steel Surfaces. MATERIALS 2019; 12:ma12203428. [PMID: 31635175 PMCID: PMC6829529 DOI: 10.3390/ma12203428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 01/24/2023]
Abstract
We report on a novel single-step method to develop steel surfaces with permanent highly hydrophilic and anti-corrosive properties, without employing any chemical coating. It is based on the femtosecond (fs) laser processing in a saturated background gas atmosphere. It is particularly shown that the fs laser microstructuring of steel in the presence of ammonia gas gives rise to pseudoperiodic arrays of microcones exhibiting highly hydrophilic properties, which are stable over time. This is in contrast to the conventional fs laser processing of steel in air, which always provides surfaces with progressively increasing hydrophobicity following irradiation. More importantly, the surfaces subjected to fs laser treatment in ammonia exhibit remarkable anti-corrosion properties, contrary to those processed in air, as well as untreated ones. The combination of two functionalities, namely hydrophilicity and corrosion resistance, together with the facile processing performed directly onto the steel surface, without the need to deposit any coating, opens the way for the laser-based production of high-performance steel components for a variety of applications, including mechanical parts, fluidic components and consumer products.
Collapse
|