1
|
Zheng Y, Sun P, Liu S, Nie W, Bao H, Men L, Li Q, Su Z, Wan Y, Xia C, Xie H. Solar energy powered electrochemical reduction of CO 2 on In 2O 3 nanosheets with high energy conversion efficiency at a large current density. J Colloid Interface Sci 2025; 678:722-731. [PMID: 39217688 DOI: 10.1016/j.jcis.2024.08.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/22/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Electrochemical CO2 reduction (ECO2R) to value-added chemicals offers a promising approach to both mitigate CO2 emission and facilitate renewable energy conversion. We demonstrate a solar energy powered ECO2R system operating at a relatively large current density (57 mA cm-2) using In2O3 nanosheets (NSs) as the cathode and a commercial perovskite solar cell as the electricity generator, which achieves the high solar to formate energy conversion efficiency of 6.6 %. The significantly enhanced operative current density with a fair solar energy conversion efficiency on In2O3 NSs can be ascribed to their high activity and selectivity for formate production, as well as the fast kinetics for ECO2R. The Faradic efficiencies (FEs) of formate In2O3 NSs are all above 93 %, with the partial current density of formate ranging from 2.3 to 342 mA cm-2 in a gas diffusion flow cell, which is among the widest for formate production on In-based catalysts. In-situ Raman spectroscopy and density functional theory simulations reveal that the exceptional performances of formate production on In2O3 NSs originates from the presence of abundant low coordinated edge sites, which effectively promote the selective adsorption of *OCHO while inhibiting *H adsorption.
Collapse
Affiliation(s)
- Yan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Pengting Sun
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuxia Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wenzheng Nie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Huihui Bao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Linglan Men
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhongti Su
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yangyang Wan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Huan Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
2
|
He W, Liu Y, Liu L, Han H, Wang Z, Li Y, Ji D, Shen L, Feng Y, Zhao S, Yang J, Fang Z, Yang Z, Guo K. Photoirradiation-enhanced behavior via morphological manipulation of CoFe 2O 4/g-C 3N 4 heterojunction for supercapacitor and CO 2 reduction. J Colloid Interface Sci 2024; 679:834-845. [PMID: 39395222 DOI: 10.1016/j.jcis.2024.09.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024]
Abstract
Regulating the morphology of graphitic carbon nitride (g-C3N4, CN) and constructing CoFe2O4/g-C3N4 (CFO/CN) heterojunctions were adopted in the photocatalytic energy storage and photocatalytic CO2 reduction (PCR). CFO/CNS had outstanding light response ability, while CFO/CNT possessed excellent charge transfer ability. Consequently, CFO/CNT electrode exhibited the highest specific capacitance without light, CFO/CNS electrode showed the most obvious photo-enhanced capacitance behavior with an increase by 21.05 % under light. This was ascribed to the generation and separation of photo-generated carriers, promoting oxidation/reduction reactions. And in PCR, the electron consumption rates of four CFO/CN heterojunctions were CFO/CNT > CFO/BCN > CFO/MCN > CFO/CNS. CFO/CNT presented the highest photocatalytic activity, attributing to the strong redox ability and photo-enhanced electron transfer. This strategy of utilizing CFO/CN heterojunctions to construct photo-enhanced supercapacitor electrodes and photocatalytic CO2 reduction catalysts provided new ideas for energy conversion and storage.
Collapse
Affiliation(s)
- Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, PR China.
| | - Yingpei Liu
- College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Liang Liu
- College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Huimin Han
- College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Zhixiang Wang
- College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Yuguang Li
- Institute of Nanjing Advanced Biomaterials & Processing Equipment, Nanjing, Jiangsu 211299, PR China
| | - Dong Ji
- Institute of Nanjing Advanced Biomaterials & Processing Equipment, Nanjing, Jiangsu 211299, PR China
| | - Lei Shen
- Institute of Nanjing Advanced Biomaterials & Processing Equipment, Nanjing, Jiangsu 211299, PR China
| | - Yirong Feng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China
| | - Shuangfei Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China
| | - Jiming Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, PR China
| | - Zhao Yang
- College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, PR China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
3
|
Hua Z, Qi K, Mi Y, Zhao Y, Wu X, Guo W, Wan X, Fan Z, Yang D. Crystalline CdS/Amorphous Cd(OH) 2 Composite for Electrochemical CO 2 Reduction to CO in a Wide Potential Window. Chemistry 2024; 30:e202400983. [PMID: 38747632 DOI: 10.1002/chem.202400983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 05/31/2024]
Abstract
Electrochemical CO2 reduction is a promising method for converting atmospheric CO2 into valuable low-carbon chemicals. In this study, a crystalline cadmium sulfide/amorphous cadmium hydroxide composite was successfully deposited on the carbon paper substrate surface by in-situ chemical bath deposition (named as c-CdS/a-Cd(OH)2/CP electrodes) for the efficient electrochemical CO2 reduction to produce CO. The c-CdS/a-Cd(OH)2/CP electrode exhibited high CO Faradaic efficiencies (>90 %) under a wide potential window of 1.0 V, with the highest value reaching ~100 % at the applied potential ranging from -2.16 V to -2.46 V vs. ferrocene/ferrocenium (Fc/Fc+), superior to the crystalline counterpart c-CdS/CP and c-CdS/c-Cd(OH)2@CP electrodes. Meanwhile, the CO partial current density reached up to 154.7 mA cm-2 at -2.76 V vs. Fc/Fc+ on the c-CdS/a-Cd(OH)2/CP electrode. The excellent performance of this electrode was mainly ascribed to its special three-dimensional structure and the introduction of a-Cd(OH)2. These structures could provide more active sites, accelerate the charge transfer, and enhance adsorption of *COOH intermediates, thereby improving the CO selectivity. Moreover, the electrolytes consisting of 1-butyl-3-methylimidazolium tetrafluoroborate and acetonitrile also enhanced the reaction kinetics of electrochemical CO2 reduction to CO.
Collapse
Affiliation(s)
- Zhixin Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kongsheng Qi
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yulan Mi
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yuhua Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xinjie Wu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Weiwei Guo
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, China
| | - Xiaoqi Wan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zixi Fan
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan, 450053, China
| | - Dexin Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
4
|
Li Q, Wu J, Lv L, Zheng L, Zheng Q, Li S, Yang C, Long C, Chen S, Tang Z. Efficient CO 2 Electroreduction to Multicarbon Products at CuSiO 3/CuO Derived Interfaces in Ordered Pores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305508. [PMID: 37725694 DOI: 10.1002/adma.202305508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Electrochemical CO2 conversion to value-added multicarbon (C2+) chemicals holds promise for reducing CO2 emissions and advancing carbon neutrality. However, achieving both high conversion rate and selectivity remains challenging due to the limited active sites on catalysts for carbon-carbon (C─C) coupling. Herein, porous CuO is coated with amorphous CuSiO3 (p-CuSiO3/CuO) to maximize the active interface sites, enabling efficient CO2 reduction to C2+ products. Significantly, the p-CuSiO3/CuO catalyst exhibits impressive C2+ Faradaic efficiency (FE) of 77.8% in an H-cell at -1.2 V versus reversible hydrogen electrode in 0.1 M KHCO3 and remarkable C2H4 and C2+ FEs of 82% and 91.7% in a flow cell at a current density of 400 mA cm-2 in 1 M KOH. In situ characterizations and theoretical calculations reveal that the active interfaces facilitate CO2 activation and lower the formation energy of the key intermediate *OCCOH, thus promoting CO2 conversion to C2+. This work provides a rational design for steering the active sites toward C2+ products.
Collapse
Affiliation(s)
- Qun Li
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Lv
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Siyang Li
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chang Long
- Lab of Molecular Electrochemistry Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Sheng Chen
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Zhang N, Naden A, Zhang L, Yang X, Connor P, Irvine J. Enhanced CO 2 Electrolysis Through Mn Substitution Coupled with Ni Exsolution in Lanthanum Calcium Titanate Electrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308481. [PMID: 37902720 DOI: 10.1002/adma.202308481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/19/2023] [Indexed: 10/31/2023]
Abstract
In this study, perovskite oxides La0.3Ca0.6Ni0.05MnxTi0.95- xO3- γ (x = 0, 0.05, 0.10) are investigated as potential solid oxide electrolysis cell cathode materials. The catalytic activity of these cathodes toward CO2 reduction reaction is significantly enhanced through the exsolution of highly active Ni nanoparticles, driven by applying a current of 1.2 A in 97% CO2 - 3% H2O. The performance of La0.3Ca0.6Ni0.05Ti0.95O3-γ is notably improved by co-doping with Mn. Mn dopants enhance the reducibility of Ni, a crucial factor in promoting the in situ exsolution of metallic nanocatalysts in perovskite (ABO3) structures. This improvement is attributed to Mn dopants enabling more flexible coordination, resulting in higher oxygen vacancy concentration, and facilitating oxygen ion migration. Consequently, a higher density of Ni nanoparticles is formed. These oxygen vacancies also improve the adsorption, desorption, and dissociation of CO2 molecules. The dual doping strategy provides enhanced performance without degradation observed after 133 h of high-temperature operation, suggesting a reliable cathode material for CO2 electrolysis.
Collapse
Affiliation(s)
- Nuoxi Zhang
- School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Aaron Naden
- School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Lihong Zhang
- School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaoxia Yang
- School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Paul Connor
- School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| | - John Irvine
- School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK
| |
Collapse
|
6
|
Yu Y, Zhu Z, Huang H. Surface Engineered Single-atom Systems for Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311148. [PMID: 38197471 DOI: 10.1002/adma.202311148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Indexed: 01/11/2024]
Abstract
Single-atom catalysts (SACs) are demonstrated to show exceptional reactivity and selectivity in catalytic reactions by effectively utilizing metal species, making them a favorable choice among the different active materials for energy conversion. However, SACs are still in the early stages of energy conversion, and problems like agglomeration and low energy conversion efficiency are hampering their practical applications. Substantial research focus on support modifications, which are vital for SAC reactivity and stability due to the intimate relationship between metal atoms and support. In this review, a category of supports and a variety of surface engineering strategies employed in SA systems are summarized, including surface site engineering (heteroatom doping, vacancy introducing, surface groups grafting, and coordination tunning) and surface structure engineering (size/morphology control, cocatalyst deposition, facet engineering, and crystallinity control). Also, the merits of support surface engineering in single-atom systems are systematically introduced. Highlights are the comprehensive summary and discussions on the utilization of surface-engineered SACs in diversified energy conversion applications including photocatalysis, electrocatalysis, thermocatalysis, and energy conversion devices. At the end of this review, the potential and obstacles of using surface-engineered SACs in the field of energy conversion are discussed. This review aims to guide the rational design and manipulation of SACs for target-specific applications by capitalizing on the characteristic benefits of support surface engineering.
Collapse
Affiliation(s)
- Yutang Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zijian Zhu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hongwei Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
7
|
Chen Y, Shen Y, Dai L, Yao S, An C. Coordination Confined Thermolysis Synthesis of the Ni Single Atom Catalyst on the N-Doped Commercial Carbon for the Production of Syngas. Inorg Chem 2024; 63:2131-2137. [PMID: 38212991 DOI: 10.1021/acs.inorgchem.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The electrochemical conversion of CO2 into controllable syngas (CO/H2) over a wide potential range is challenging. The main electrocatalysts are based on the noble metals Au (Ag) or heavy metal Pb. The development of alternative nonprecious catalysts is of paramount importance for practice. In this work, a simple coordination confined thermal pyrolysis method has been developed for the synthesis of Ni single-atom catalyst loaded onto nitrogen-doped commercial carbon. The catalyst is in the form of NiN3-C, which exhibits a high-performance electrocatalytic reduction of CO2 toward producing syngas with Faraday efficiencies of 62.28% of CO and 36.7% of H2. The Gibbs free energies of COOH* and H* on the NiN3-C structure were estimated by using density functional theory (DFT). The formation of COOH* intermediate is the speed-limiting step in the process, with ΔG COOH* being 0.7 eV, while H* is the speed-limiting step in the hydrogen evolution, respectively. This work provides a feasible method for the achievement of nonprecious catalysts for the resourceful use of CO2.
Collapse
Affiliation(s)
- Yuping Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yongli Shen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Linxiu Dai
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Shuang Yao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Changhua An
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Institute for New Energy Materials & Low-Carbon Technologies, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
8
|
Zhu W, Liu S, Zhao K, Ye G, Huang K, He Z. Revealing a Double-Volcano-Like Structure-Activity Relationship for Substitution-Functionalized Metal-Phthalocyanine Catalysts toward Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306144. [PMID: 37715327 DOI: 10.1002/smll.202306144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Electron-donating/-withdrawing groups (EDGs/EWGs) substitution is widely used to regulate the catalytic performance of transition-metal phthalocyanine (MPc) toward electrochemical CO2 reduction, but the corresponding structure-activity relationships and regulation mechanisms are still ambiguous. Herein, by investigating a series of substitution-functionalized MPc (MPc-X), this work reveals a double-volcano-like relationship between the electron-donating/-withdrawing abilities of the substituents and the catalytic activities of MPc-X. The weak-EDG/-EWG substitution enhances whereas the strong-EDG/-EWG substitution mostly lowers the CO selectivity of MPc. Experimental and calculation results demonstrate that the electronic properties of the substituents influence the symmetry and energy of the highest occupied molecular orbitals of MPc-X, which in turn determine the CO2 adsorption/activation and lead to diverse CO2 reduction pathways on the EWG or EDG substituted MPc via different CO2 adsorption modes. This work provides mechanism insights that could be guidance for the design and regulation of molecular catalysts.
Collapse
Affiliation(s)
- Weiwei Zhu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Suqin Liu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Kuangmin Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Guanying Ye
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Kui Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhen He
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
9
|
Yu K, Sun K, Cheong WCM, Tan X, He C, Zhang J, Li J, Chen C. Oxalate-Assisted Synthesis of Hollow Carbon Nanocage With Fe Single Atoms for Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302611. [PMID: 37264721 DOI: 10.1002/smll.202302611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Metal single-atom catalysts are promising in electrochemical CO2 reduction reaction (CO2 RR). The pores and cavities of the supports can promote the exposure of active sites and mass transfer of reactants, hence improve their performance. Here, iron oxalate is added to ZIF-8 and subsequently form hollow carbon nanocages during calcination. The formation mechanism of the hollow structure is studied in depth by controlling variables during synthesis. Kirkendall effect is the main reason for the formation of hollow porous carbon nanocages. The hollow porous carbon nanocages with Fe single atoms exhibit better CO2 RR activity and CO selectivity. The diffusion of CO2 facilitated by the mesoporous structure of carbon nanocage results in their superior activity and selectivity. This work has raised an effective strategy for the synthesis of hollow carbon nanomaterials, and provides a feasible pathway for the rational design of electrocatalysts for small molecule activation.
Collapse
Affiliation(s)
- Ke Yu
- Engineering Research Center of Advanced Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kaian Sun
- Engineering Research Center of Advanced Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Weng-Chon Max Cheong
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering (FIE), Macau University of Science and Technology, Taipa, Macao SAR, 999078, P. R. China
- Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Zhuhai, Guangdong, 519099, P. R. China
| | - Xin Tan
- Engineering Research Center of Advanced Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chang He
- Engineering Research Center of Advanced Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiaqi Zhang
- Engineering Research Center of Advanced Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiazhan Li
- Engineering Research Center of Advanced Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Chen Chen
- Engineering Research Center of Advanced Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
10
|
Yan T, Pan H, Liu Z, Kang P. Phase-Inversion Induced 3D Electrode for Direct Acidic Electroreduction CO 2 to Formic acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207650. [PMID: 36890777 DOI: 10.1002/smll.202207650] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Indexed: 06/08/2023]
Abstract
Direct electrochemical CO2 reduction to formic acid (FA) instead of formate is a challenging task due to the high acidity of FA and competitive hydrogen evolution reaction. Herein, 3D porous electrode (TDPE) is prepared by a simple phase inversion method, which can electrochemically reduce CO2 to FA in acidic conditions. Owing to interconnected channels, high porosity, and appropriate wettability, TDPE not only improves mass transport, but also realizes pH gradient to build higher local pH micro-environment under acidic conditions for CO2 reduction compared with planar electrode and gas diffusion electrode. Kinetic isotopic effect experiments demonstrate that the proton transfer becomes the rate-determining step at the pH of 1.8; however, not significant in neutral solution, suggesting that the proton is aiding the overall kinetics. Maximum FA Faradaic efficiency of 89.2% has been reached at pH 2.7 in a flow cell, generating FA concentration of 0.1 m. Integrating catalyst and gas-liquid partition layer into a single electrode structure by phase inversion method paves a facile avenue for direct production of FA by electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Tao Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Hui Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhikun Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Peng Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
11
|
Zhai R, Zhang L, Gu M, Zhao X, Zhang B, Cheng Y, Zhang J. A Review of Phosphorus Structures as CO 2 Reduction Photocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207840. [PMID: 36775943 DOI: 10.1002/smll.202207840] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/29/2023] [Indexed: 05/11/2023]
Abstract
Effective photocatalytic carbon dioxide (CO2 ) reduction into high-value-added chemicals is promising to mitigate current energy crisis and global warming issues. Finding effective photocatalysts is crucial for photocatalytic CO2 reduction. Currently, metal-based semiconductors for photocatalytic CO2 reduction have been well reviewed, while review of nonmetal-based semiconductors is almost limited to carbon nitrides. Phosphorus is a promising nonmetal photocatalysts with various allotropes and tunable band gaps, which has been demonstrated to be promising non-metallic photocatalysts. However, no systematic review about phosphorus structures for photocatalytic CO2 reduction reactions has been reported. Herein, the progresses of phosphorus structures as photocatalysts for CO2 reduction are reviewed. The fundamentals of photocatalytic CO2 reduction, corresponding properties of phosphorus allotropes, photocatalysts with phosphorus doping or phosphorus-containing ligands, research progress of phosphorus allotropes as photocatalysts for CO2 reduction have been reviewed in this paper. The future research and perspective of phosphorus structures for photocatalytic CO2 reduction are also presented.
Collapse
Affiliation(s)
- Rui Zhai
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lihui Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mengyue Gu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuewen Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bo Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jinying Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
12
|
Liu LX, Cai Y, Du H, Lu X, Li X, Liu F, Fu J, Zhu JJ. Enriching the Local Concentration of CO Intermediates on Cu Cavities for the Electrocatalytic Reduction of CO 2 to C 2+ Products. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16673-16679. [PMID: 36961885 DOI: 10.1021/acsami.2c21902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electrochemical carbon-dioxide reduction reaction (CO2RR) to high-value multi-carbon (C2+) chemicals provides a hopeful approach to store renewable energy and close the carbon cycle. Although copper-based catalysts with a porous architecture are considered potential electrocatalysts for CO2 reduction to C2+ chemicals, challenges remain in achieving high selectivity and partial current density simultaneously for practical application. Here, the porous Cu catalysts with a cavity structure by in situ electrochemical-reducing Cu2O cavities are developed for high-performance conversion of CO2 to C2+ fuels. The as-described catalysts exhibit a high C2+ Faradaic efficiency and partial current density of 75.6 ± 1.8% and 605 ± 14 mA cm-2, respectively, at a low applied potential (-0.59 V vs RHE) in a microfluidic flow cell. Furthermore, in situ Raman tests and finite element simulation indicated that the cavity structure can enrich the local concentration of CO intermediates, thus promoting the C-C coupling process. More importantly, the C-C coupling should be major through the *CO-*CHO pathway as demonstrated by the electrochemical Raman spectra and density functional theory calculations. This work can provide ideas and insights into designing high-performance electrocatalysts for producing C2+ compounds and highlight the important effect of in situ characterization for uncovering the reaction mechanism.
Collapse
Affiliation(s)
- Li-Xia Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Yanming Cai
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Huitong Du
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xuanzhao Lu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xiang Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Fuqiang Liu
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China
| | - Jiaju Fu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Du R, Wu Q, Zhang S, Wang P, Li Z, Qiu Y, Yan K, Waterhouse GIN, Wang P, Li J, Zhao Y, Zhao WW, Wang X, Chen G. CuC(O) Interfaces Deliver Remarkable Selectivity and Stability for CO 2 Reduction to C 2+ Products at Industrial Current Density of 500 mA cm -2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301289. [PMID: 36974590 DOI: 10.1002/smll.202301289] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The electrocatalytic CO2 reduction reaction (CO2 RR) is an attractive technology for CO2 valorization and high-density electrical energy storage. Achieving a high selectivity to C2+ products, especially ethylene, during CO2 RR at high current densities (>500 mA cm-2 ) is a prized goal of current research, though remains technically very challenging. Herein, it is demonstrated that the surface and interfacial structures of Cu catalysts, and the solid-gas-liquid interfaces on gas-diffusion electrode (GDE) in CO2 reduction flow cells can be modulated to allow efficient CO2 RR to C2+ products. This approach uses the in situ electrochemical reduction of a CuO nanosheet/graphene oxide dots (CuOC(O)) hybrid. Owing to abundant CuOC interfaces in the CuOC(O) hybrid, the CuO nanosheets are topologically and selectively transformed into metallic Cu nanosheets exposing Cu(100) facets, Cu(110) facets, Cu[n(100) × (110)] step sites, and Cu+ /Cu0 interfaces during the electroreduction step, the faradaic efficiencie (FE) to C2+ hydrocarbons was reached as high as 77.4% (FEethylene ≈ 60%) at 500 mA cm-2 . In situ infrared spectroscopy and DFT simulations demonstrate that abundant Cu+ species and Cu0 /Cu+ interfaces in the reduced CuOC(O) catalyst improve the adsorption and surface coverage of *CO on the Cu catalyst, thus facilitating CC coupling reactions.
Collapse
Affiliation(s)
- Ruian Du
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Qiqi Wu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Shiyi Zhang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Peng Wang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhengjian Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, The University of Auckland, Auckland 1142, Auckland, 510640, New Zealand
| | - Pei Wang
- College of Science, Huazhong Agricultural University, Wuhan, 430074, P. R. China
| | - Jia Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Yun Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Wei-Wei Zhao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210023, P. R. China
| | - Xue Wang
- School of Energy and Environment, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| |
Collapse
|
14
|
Xu Z, Peng C, Zheng G. Coupling Value-Added Anodic Reactions with Electrocatalytic CO 2 Reduction. Chemistry 2023; 29:e202203147. [PMID: 36380419 DOI: 10.1002/chem.202203147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
Electrocatalytic CO2 reduction features a promising approach to realize carbon neutrality. However, its competitiveness is limited by the sluggish oxygen evolution reaction (OER) at anode, which consumes a large portion of energy. Coupling value-added anodic reactions with CO2 electroreduction has been emerging as a promising strategy in recent years to enhance the full-cell energy efficiency and produce valuable chemicals at both cathode and anode of the electrolyzer. This review briefly summarizes recent progresses on the electrocatalytic CO2 reduction, and the economic feasibility of different CO2 electrolysis systems is discussed. Then a comprehensive summary of recent advances in the coupled electrolysis of CO2 and potential value-added anodic reactions is provided, with special focus on the specific cell designs. Finally, current challenges and future opportunities for the coupled electrolysis systems are proposed, which are targeted to facilitate progress in this field and push the CO2 electrolyzers to a more practical level.
Collapse
Affiliation(s)
- Zikai Xu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
15
|
Gong YN, Cao CY, Shi WJ, Zhang JH, Deng JH, Lu TB, Zhong DC. Modulating the Electronic Structures of Dual-Atom Catalysts via Coordination Environment Engineering for Boosting CO 2 Electroreduction. Angew Chem Int Ed Engl 2022; 61:e202215187. [PMID: 36316808 DOI: 10.1002/anie.202215187] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Indexed: 11/24/2022]
Abstract
Dual-atom catalysts (DACs) have emerged as efficient electrocatalysts for CO2 reduction owing to the synergistic effect between the binary metal sites. However, rationally modulating the electronic structure of DACs to optimize the catalytic performance remains a great challenge. Herein, we report the electronic structure modulation of three Ni2 DACs (namely, Ni2 -N7 , Ni2 -N5 C2 and Ni2 -N3 C4 ) by the regulation of the coordination environments around the dual-atom Ni2 centres. As a result, Ni2 -N3 C4 exhibits significantly improved electrocatalytic activity for CO2 reduction, not only better than the corresponding single-atom Ni catalyst (Ni-N2 C2 ), but also higher than Ni2 -N7 and Ni2 -N5 C2 DACs. Density functional theory (DFT) calculations revealed that the high electrocatalytic activity of Ni2 -N3 C4 for CO2 reduction could be attributed to the electronic structure modulation to the Ni centre and the resulted proper binding energies to COOH* and CO* intermediates.
Collapse
Affiliation(s)
- Yun-Nan Gong
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Chang-Yu Cao
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Wen-Jie Shi
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Ji-Hong Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Ji-Hua Deng
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| | - Di-Chang Zhong
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, P. R. China
| |
Collapse
|
16
|
Wang G, Li X, Yang X, Liu L, Cai Y, Wu Y, Wang S, Li H, Zhou Y, Wang Y, Zhou Y. Metal‐Based Aerogels Catalysts for Electrocatalytic CO
2
Reduction. Chemistry 2022; 28:e202201834. [DOI: 10.1002/chem.202201834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Guangtao Wang
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an 710055 P.R. China
| | - Xiang Li
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P.R. China
| | - Xiaohan Yang
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an 710055 P.R. China
| | - Li‐Xia Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P.R. China
| | - Yanming Cai
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P.R. China
| | - Yajun Wu
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM) Nanjing University of Posts & Telecommunications (NJUPT) Nanjing 210046 P.R. China
| | - Shengyan Wang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM) Nanjing University of Posts & Telecommunications (NJUPT) Nanjing 210046 P.R. China
| | - Huan Li
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM) Nanjing University of Posts & Telecommunications (NJUPT) Nanjing 210046 P.R. China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an 710055 P.R. China
| | - Yuanyuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P.R. China
| | - Yang Zhou
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM) Nanjing University of Posts & Telecommunications (NJUPT) Nanjing 210046 P.R. China
| |
Collapse
|
17
|
Tong Y, Wang L, Hou F, Dou SX, Liang J. Electrocatalytic Oxygen Reduction to Produce Hydrogen Peroxide: Rational Design from Single-Atom Catalysts to Devices. ELECTROCHEM ENERGY R 2022; 5:7. [PMID: 37522152 PMCID: PMC9437407 DOI: 10.1007/s41918-022-00163-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/27/2021] [Accepted: 09/25/2021] [Indexed: 10/26/2022]
Abstract
Electrocatalytic production of hydrogen peroxide (H2O2) via the 2e- transfer route of the oxygen reduction reaction (ORR) offers a promising alternative to the energy-intensive anthraquinone process, which dominates current industrial-scale production of H2O2. The availability of cost-effective electrocatalysts exhibiting high activity, selectivity, and stability is imperative for the practical deployment of this process. Single-atom catalysts (SACs) featuring the characteristics of both homogeneous and heterogeneous catalysts are particularly well suited for H2O2 synthesis and thus, have been intensively investigated in the last few years. Herein, we present an in-depth review of the current trends for designing SACs for H2O2 production via the 2e- ORR route. We start from the electronic and geometric structures of SACs. Then, strategies for regulating these isolated metal sites and their coordination environments are presented in detail, since these fundamentally determine electrocatalytic performance. Subsequently, correlations between electronic structures and electrocatalytic performance of the materials are discussed. Furthermore, the factors that potentially impact the performance of SACs in H2O2 production are summarized. Finally, the challenges and opportunities for rational design of more targeted H2O2-producing SACs are highlighted. We hope this review will present the latest developments in this area and shed light on the design of advanced materials for electrochemical energy conversion. Graphical abstract
Collapse
Affiliation(s)
- Yueyu Tong
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, China
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500 Australia
| | - Liqun Wang
- Applied Physics Department, College of Physics and Materials Science, Tianjin Normal University, Tianjin, China
| | - Feng Hou
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500 Australia
| | - Ji Liang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
18
|
Fu HQ, Liu J, Bedford NM, Wang Y, Sun JW, Zou Y, Dong M, Wright J, Diao H, Liu P, Yang HG, Zhao H. Synergistic Cr 2 O 3 @Ag Heterostructure Enhanced Electrocatalytic CO 2 Reduction to CO. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202854. [PMID: 35686844 DOI: 10.1002/adma.202202854] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The electrocatalytic CO2 RR to produce value-added chemicals and fuels has been recognized as a promising means to reduce the reliance on fossil resources; it is, however, hindered due to the lack of high-performance electrocatalysts. The effectiveness of sculpturing metal/metal oxides (MMO) heterostructures to enhance electrocatalytic performance toward CO2 RR has been well documented, nonetheless, the precise synergistic mechanism of MMO remains elusive. Herein, an in operando electrochemically synthesized Cr2 O3 -Ag heterostructure electrocatalyst (Cr2 O3 @Ag) is reported for efficient electrocatalytic reduction of CO2 to CO. The obtained Cr2 O3 @Ag can readily achieve a superb FECO of 99.6% at -0.8 V (vs RHE) with a high JCO of 19.0 mA cm-2 . These studies also confirm that the operando synthesized Cr2 O3 @Ag possesses high operational stability. Notably, operando Raman spectroscopy studies reveal that the markedly enhanced performance is attributable to the synergistic Cr2 O3 -Ag heterostructure induced stabilization of CO2 •- /*COOH intermediates. DFT calculations unveil that the metallic-Ag-catalyzed CO2 reduction to CO requires a 1.45 eV energy input to proceed, which is 0.93 eV higher than that of the MMO-structured Cr2 O3 @Ag. The exemplified approaches in this work would be adoptable for design and development of high-performance electrocatalysts for other important reactions.
Collapse
Affiliation(s)
- Huai Qin Fu
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Junxian Liu
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Nicholas M Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yun Wang
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Ji Wei Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu Zou
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Mengyang Dong
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Joshua Wright
- Department of Physics, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Hui Diao
- The Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Porun Liu
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huijun Zhao
- Centre for Catalysis and Clean Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| |
Collapse
|
19
|
Chen J, Wang L. Effects of the Catalyst Dynamic Changes and Influence of the Reaction Environment on the Performance of Electrochemical CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103900. [PMID: 34595773 DOI: 10.1002/adma.202103900] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical reduction of carbon dioxide (CO2 ) is substantially researched due to its potential for storing intermittent renewable electricity and simultaneously helping mitigating the pressing CO2 emission concerns. The major challenge of electrochemical CO2 reduction lies on having good controls of this reaction due to its complicated reaction networks and its unusual sensitivity to the dynamic changes of the catalyst structure (chemical states, compositions, facets and morphology, etc.), and to the non-catalyst components at the electrode/electrolyte interface, in another word the reaction environments. To date, a comprehensive analysis on the interplays between the above catalyst-dynamic-changes/reaction environments and the CO2 reduction performance is rare, if not none. In this review, the catalyst dynamic changes observed during the catalysis are discussed based on the recent reports of electrochemical CO2 reduction. Then, the above dynamic changes are correlated to their effects on the catalytic performance. The influences of the reaction environments on the performance of CO2 reduction are also discussed. Finally, some perspectives on future investigations are offered with the aim of understanding the origins of the effects from the catalyst dynamic changes and the reaction environments, which will allow one to better control the CO2 reduction toward the desired products.
Collapse
Affiliation(s)
- Jiayi Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
20
|
Liu W, Bai P, Wei S, Yang C, Xu L. Gadolinium Changes the Local Electron Densities of Nickel 3d Orbitals for Efficient Electrocatalytic CO
2
Reduction. Angew Chem Int Ed Engl 2022; 61:e202201166. [DOI: 10.1002/anie.202201166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Weiqi Liu
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Peiyao Bai
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Shilin Wei
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Chuangchuang Yang
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Lang Xu
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| |
Collapse
|
21
|
Silver-Carbonaceous Microsphere Precursor-Derived Nano-Coral Ag Catalyst for Electrochemical Carbon Dioxide Reduction. Catalysts 2022. [DOI: 10.3390/catal12050479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The selective and effective conversion of CO2 into available chemicals by electrochemical methods was applied as a promising way to mitigate the environment and energy crisis. Metal silver is regarded as an efficient electrocatalyst that can selectively convert CO2 into CO at room temperature. In this paper, a series of coral-like porous Ag (CD-Ag) catalysts were fabricated by calcining silver-carbonaceous microsphere (Ag/CM) precursors with different Ag content and the formation mechanism of CD-Ag catalysts was proposed involving the Ag precursor reduction and CM oxidation. In the selective electrocatalytic reduction of CO2 to CO, the catalyst 15 CD-Ag showed a stable current density at −6.3 mA/cm2 with a Faraday efficiency (FE) of ca. 90% for CO production over 5 h in −0.95 V vs. RHE. The excellent performance of the 15 CD-Ag catalysts is ascribed to the special surface chemical state and the particular nano-coral porous structure with uniformly distributed Ag particles and pore structure, which can enhance the electrochemical active surface areas (ECSA) and provide more active sites and porosity compared with other CD-Ag catalysts and even Ag foil.
Collapse
|
22
|
Liu W, Bai P, Wei S, Yang C, Xu L. Gadolinium Changes the Local Electron Densities of Nickel 3d Orbitals for Efficient Electrocatalytic CO
2
Reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Weiqi Liu
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Peiyao Bai
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Shilin Wei
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Chuangchuang Yang
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Lang Xu
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| |
Collapse
|
23
|
Gao Y, Yu S, Zhou P, Ren X, Wang Z, Zheng Z, Wang P, Cheng H, Liu Y, Wei W, Dai Y, Huang B. Promoting Electrocatalytic Reduction of CO 2 to C 2 H 4 Production by Inhibiting C 2 H 5 OH Desorption from Cu 2 O/C Composite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105212. [PMID: 34918468 DOI: 10.1002/smll.202105212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/24/2021] [Indexed: 06/14/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2 RR) has great potential in realizing carbon recycling while storing sustainable electricity as hydrocarbon fuels. However, it is still a challenge to enhance the selectivity of the CO2 RR to single multi-carbon (C2+ ) product, such as C2 H4 . Here, an effective method is proposed to improve C2 H4 selectivity by inhibiting the production of the other competitive C2 products, namely C2 H5 OH, from Cu2 O/C composite. Density functional theory indicates that the heterogeneous structure between Cu2 O and carbon is expected to inhibit C2 H5 OH production and promote CC coupling, which facilitates C2 H4 production. To prove this, a composite electrode containing octahedral Cu2 O nanoparticles (NPs) (o-Cu2 O) with {111} facets and carbon NPs is constructed, which experimentally inhibits C2 H5 OH production while strongly enhancing C2 H4 selectivity compared with o-Cu2 O electrode. Furthermore, the surface hydroxylation of carbon can further improve the C2 H4 production of o-Cu2 O/C electrode, exhibiting a high C2 H4 Faradaic efficiency of 67% and a high C2 H4 current density of 45 mA cm-2 at -1.1 V in a near-neutral electrolyte. This work provides a new idea to improve C2+ selectivity by controlling products desorption.
Collapse
Affiliation(s)
- Yugang Gao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Shiqiang Yu
- School of Physics, Shandong University, Jinan, 250100, China
| | - Peng Zhou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xixi Ren
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Wei Wei
- School of Physics, Shandong University, Jinan, 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan, 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
24
|
Huang H, Weng B, Zhang H, Lai F, Long J, Hofkens J, Douthwaite RE, Steele JA, Roeffaers MBJ. Solar-to-Chemical Fuel Conversion via Metal Halide Perovskite Solar-Driven Electrocatalysis. J Phys Chem Lett 2022; 13:25-41. [PMID: 34957833 DOI: 10.1021/acs.jpclett.1c03668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sunlight is an abundant and clean energy source, the harvesting of which could make a significant contribution to society's increasing energy demands. Metal halide perovskites (MHP) have recently received attention for solar fuel generation through photocatalysis and solar-driven electrocatalysis. However, MHP photocatalysis is limited by low solar energy conversion efficiency, poor stability, and impractical reaction conditions. Compared to photocatalysis, MHP solar-driven electrocatalysis not only exhibits higher solar conversion efficiency but also is more stable when operating under practical reaction conditions. In this Perspective, we outline three leading types of MHP solar-driven electrocatalysis device technologies now in the research spotlight, namely, (1) photovoltaic-electrochemical (PV-EC), (2) photovoltaic-photoelectrochemical (PV-PEC), and (3) photoelectrochemical (PEC) approaches for solar-to-fuel reactions, including water-splitting and the CO2 reduction reaction. In addition, we compare each technology to show their relative technical advantages and limitations and highlight promising research directions for the rapidly emerging scientific field of MHP-based solar-driven electrocatalysis.
Collapse
Affiliation(s)
- Haowei Huang
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Hongwen Zhang
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Jinlin Long
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P.R. China
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | | | - Julian A Steele
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
25
|
Xie L, Yu X, Wang S, Wei S, Hu Q, Chai X, Ren X, Yang H, He C. A Multiscale Strategy to Construct Cobalt Nanoparticles Confined within Hierarchical Carbon Nanofibers for Efficient CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104958. [PMID: 34825485 DOI: 10.1002/smll.202104958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/10/2021] [Indexed: 06/13/2023]
Abstract
The efficiency of CO2 electroreduction has been largely limited by the activity of the catalysts as well as the three-phase interface. Herein, a multiscale strategy is proposed to synthesize hierarchical nanofibers covered by carbon nanotubes and embedded with cobalt nanoparticles (Co/CNT/HCNF). The confinement effect of carbon nanotubes can restrict the diameter of the cobalt particles down to several nanometers and prevent the easy corrosion of these nanoparticles. The three-dimensional carbon nanofibers, in size range of several hundred nanometers, improve the electrochemically active surface area, facilitate electron transfer, and accelerate CO2 transportation. These cross-linked carbon nanofibers eventually form a freestanding Co/CNT/HCNF membrane of dozens of square centimeters. Consequently, Co/CNT/HCNF produces CO with 97% faradaic efficiency at only -0.4 VRHE cathode potential in an H-type cell. From the regulation of catalyst nanostructure to the design of macrography devices, Co/CNT/HCNF membrane can be directly used as the gas-diffusion compartment in a flow cell device. Co/CNT/HCNF membrane generates CO with faradaic efficiencies higher than 90% and partial current densities greater than 300 mA cm-2 for at least 100-h stability. This strategy provides a successful example of efficient catalysts for CO2 electroreduction and also has the feasibility in other self-standing energy conversion devices.
Collapse
Affiliation(s)
- Laiyong Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinyao Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Siyu Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shaomin Wei
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaoyan Chai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
26
|
Kim JY, Kim G, Won H, Gereige I, Jung WB, Jung HT. Synergistic Effect of Cu 2 O Mesh Pattern on High-Facet Cu Surface for Selective CO 2 Electroreduction to Ethanol. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106028. [PMID: 34658080 DOI: 10.1002/adma.202106028] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Although the electroconversion of carbon dioxide (CO2 ) into ethanol is considered to be one of the most promising ways of using CO2 , the ethanol selectivity is less than 50% because of difficulties in designing an optimal catalyst that arise from the complicated pathways for the electroreduction of CO2 to ethanol. Several approaches including the fabrication of oxide-derived structures, atomic surface control, and the Cu+ /Cu interfaces have been primarily used to produce ethanol from CO2 . Here, a combined structure with Cu+ and high-facets as electrocatalysts is constructed by creating high-facets of wrinkled Cu surrounded by Cu2 O mesh patterns. Using chemical vapor deposition graphene growth procedures, the insufficiently grown graphene is used as an oxidation-masking material, and the high-facet wrinkled Cu is simultaneously generated during the graphene growth synthesis. The resulting electrocatalyst shows an ethanol selectivity of 43% at -0.8 V versus reversible hydrogen electrode, which is one of the highest ethanol selectivity values reported thus far. This is attributed to the role of Cu+ in enhancing CO binding strength, and the high-facets, which favor C-C coupling and the ethanol pathway. This method for generating the combined structure can be widely applicable not only for electrochemical catalysts but also in various fields.
Collapse
Affiliation(s)
- Ju Ye Kim
- Department of Chemical and Biomolecular Engineering (BK-21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Chemical and Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Gukbo Kim
- Department of Chemical and Biomolecular Engineering (BK-21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Hyeonsik Won
- Department of Chemical and Biomolecular Engineering (BK-21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Issam Gereige
- Saudi Aramco, Research and Development Center, Dhahran, 31311, Saudi Arabia
| | - Woo-Bin Jung
- Department of Chemical and Biomolecular Engineering (BK-21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering (BK-21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| |
Collapse
|
27
|
Wang S, Tountas AA, Pan W, Zhao J, He L, Sun W, Yang D, Ozin GA. CO 2 Footprint of Thermal Versus Photothermal CO 2 Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007025. [PMID: 33682331 DOI: 10.1002/smll.202007025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Transformation of CO2 into value-added products via photothermal catalysis has become an increasingly popular route to help ameliorate the energy and environmental crisis derived from the continuing use of fossil fuels, as it can integrate light into well-established thermocatalysis processes. The question however remains whether negative CO2 emission could be achieved through photothermal catalytic reactions performed in facilities driven by electricity mainly derived from fossil energy. Herein, we propose universal equations that describe net CO2 emissions generated from operating thermocatalysis and photothermal reverse water-gas shift (RWGS) and Sabatier processes for batch and flow reactors. With these reactions as archetype model systems, the factors that will determine the final amount of effluent CO2 can be determined. The results of this study could provide useful guidelines for the future development of photothermal catalytic systems for CO2 reduction.
Collapse
Affiliation(s)
- Shenghua Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Athanasios A Tountas
- Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Departments of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Wangbo Pan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Jianjiang Zhao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Le He
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wei Sun
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Deren Yang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| | - Geoffrey A Ozin
- Materials Chemistry and Nanochemistry Research Group, Solar Fuels Cluster, Departments of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
28
|
Elucidation of the Roles of Ionic Liquid in CO 2 Electrochemical Reduction to Value-Added Chemicals and Fuels. Molecules 2021; 26:molecules26226962. [PMID: 34834053 PMCID: PMC8624163 DOI: 10.3390/molecules26226962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
The electrochemical reduction of carbon dioxide (CO2ER) is amongst one the most promising technologies to reduce greenhouse gas emissions since carbon dioxide (CO2) can be converted to value-added products. Moreover, the possibility of using a renewable source of energy makes this process environmentally compelling. CO2ER in ionic liquids (ILs) has recently attracted attention due to its unique properties in reducing overpotential and raising faradaic efficiency. The current literature on CO2ER mainly reports on the effect of structures, physical and chemical interactions, acidity, and the electrode–electrolyte interface region on the reaction mechanism. However, in this work, new insights are presented for the CO2ER reaction mechanism that are based on the molecular interactions of the ILs and their physicochemical properties. This new insight will open possibilities for the utilization of new types of ionic liquids. Additionally, the roles of anions, cations, and the electrodes in the CO2ER reactions are also reviewed.
Collapse
|
29
|
Research progress of electrochemical CO2 reduction for copper-based catalysts to multicarbon products. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213983] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Electrochemical Generation of Hydrogen and Methanol using ITO Sheet Decorated with Modified-Titania as Electrode. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.2.10514.430-439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Current issues of global warming and environmental pollution due to extensive use of fossil fuels has been reached to an alarming position. Being CO2 as main byproduct of fossil fuel consumption and water as abundantly available on earth surface has great potential to replace fossil fuels as energy source. Herein, electrocatalytic CO2 reduction with water for methanol and hydrogen gas (H2) production over ITO sheet decorated with modified-Titanium nanorods (TiO2 NR), has been investigated. The performance comparison of electrocatalytic activity of hydrothermally modified-titania with commercial TiO2 microparticles (MP) were further investigated. Electrochemical reactor containing KHCO3 aqueous solution with CO2 as an electrolyte and modified TiO2 nanorods (NR) as working electrodes offer an eco-friendly system to produce clean and sustainable energy system. The typical rates of product, i.e. methanol and H2 generation from the ITO sheet decorated with modified TiO2 NR layer recorded higher than those for the ITO sheet with commercial TiO2 microparticle. At 2.0V applied potential vs Ag/AgCl as reference electrode, the modified TiO2 NR electrocatalyst yielded methanol at a rate of 3.32 µmol.cm−2.L−1 and H2 at a rate of 6 µmol.cm−2.L−1 which was higher than that of commercial TiO2 MP electrocatalyst (methanol = 1.5 µmol.cm−2.L−1 and H2 = 3.7 µmol.cm−2.L−1). The enhancement in product yields of methanol and H2 was mainly due to the notable improvements and modification in texture of TiO2 working electrode interface. Hence, it is concluded that the modified TiO2 NR can be considered as a competent candidate for sustainable energy conversion applications. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
31
|
Chen S, Cui M, Yin Z, Xiong J, Mi L, Li Y. Single-Atom and Dual-Atom Electrocatalysts Derived from Metal Organic Frameworks: Current Progress and Perspectives. CHEMSUSCHEM 2021; 14:73-93. [PMID: 33089643 DOI: 10.1002/cssc.202002098] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Single-atom catalysts (SACs) have attracted increasing research interests owing to their unique electronic structures, quantum size effects and maximum utilization rate of atoms. Metal organic frameworks (MOFs) are good candidates to prepare SACs owing to the atomically dispersed metal nodes in MOFs and abundant N and C species to stabilize the single atoms. In addition, the distance of adjacent metal atoms can be turned by adjusting the size of ligands and adding volatile metal centers to promote the formation of isolated metal atoms. Moreover, the diverse metal centers in MOFs can promote the preparation of dual-atom catalysts (DACs) to improve the metal loading and optimize the electronic structures of the catalysts. The applications of MOFs derived SACs and DACs for electrocatalysis, including oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, carbon dioxide reduction reaction and nitrogen reduction reaction are systematically summarized in this Review. The corresponding synthesis strategies, atomic structures and electrocatalytic performances of the catalysts are discussed to provide a deep understanding of MOFs-based atomic electrocatalysts. The catalytic mechanisms of the catalysts are presented, and the crucial challenges and perspectives are proposed to promote further design and applications of atomic electrocatalysts.
Collapse
Affiliation(s)
- Siru Chen
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Ming Cui
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, 124221, P. R. China
| | - Zehao Yin
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, 124221, P. R. China
| | - Jiabin Xiong
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Yanqiang Li
- State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, 124221, P. R. China
| |
Collapse
|
32
|
Developing micro-kinetic model for electrocatalytic reduction of carbon dioxide on copper electrode. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Zheng YL, Liu HC, Zhang YW. Engineering Heterostructured Nanocatalysts for CO 2 Transformation Reactions: Advances and Perspectives. CHEMSUSCHEM 2020; 13:6090-6123. [PMID: 32662587 DOI: 10.1002/cssc.202001290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Indexed: 06/11/2023]
Abstract
As a conceivable route to achieving anthropological carbon looping, carbon capture and utilization (CCU) technologies employ waste CO2 as an accessible C1 building block to generate upgraded chemicals or fuels, thereby simultaneously remedying environmental issues and energy crises. However, efficient CO2 conversion is disfavored by both its thermodynamics and its kinetics. Heterostructured materials with well-controlled interfaces have great potential for enhanced catalytic performance in various CO2 transformation reactions, owing to the synergistic effects among components, numerous interfacial and/or surface active sites, increased CO2 adsorption capacity, promoted charge transfer efficiency, and unique physicochemical properties. This Review highlights the state of the art in typical heterostructures, such as core-shell, yolk-shell, Janus, hierarchical (branched and hollow), and 2D/2D layered structures, applied for CO2 conversion with various energy inputs (radiation, electricity, heat). Fabrication methods of different heterostructures and structure-composition-performance relationships are also discussed concisely. Finally, a brief summary and prospective research directions are provided. The motivation of this Review is to offer instructive information on the applicability of inorganic heterostructures for CO2 transformation reactions, and it is hoped that further enlightening studies in this field could emerge in the future.
Collapse
Affiliation(s)
- Ya-Li Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Hai-Chao Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| |
Collapse
|
34
|
Chen Z, Zhang G, Du L, Zheng Y, Sun L, Sun S. Nanostructured Cobalt-Based Electrocatalysts for CO 2 Reduction: Recent Progress, Challenges, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004158. [PMID: 33258230 DOI: 10.1002/smll.202004158] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Indexed: 05/21/2023]
Abstract
CO2 reduction reaction (CO2 RR) provides a promising strategy for sustainable carbon fixation by converting CO2 into value-added fuels and chemicals. In recent years, considerable efforts are focused on the development of transition-metal (TM)-based catalysts for the selectively electrochemical CO2 reduction reaction (ECO2 RR). Co-based catalysts emerge as one of the most promising electrocatalysts with high Faradaic efficiency, current density, and low overpotential, exhibiting excellent catalytic performance toward ECO2 RR for CO and HCOOH productions that are economically viable. The intrinsic contribution of Co and the synergistic effects in Co-hybrid catalysts play essential roles for future commercial productions by ECO2 RR. This review summarizes the rational design of Co-based catalysts for ECO2 RR, including molecular, single-metal-site, and oxide-derived catalysts, along with the nanostructure engineering techniques to highlight the distribution of the ECO2 RR products by Co-based catalysts. The density functional theory (DFT) simulations and advanced in situ characterizations contribute to interpreting the synergies between Co and other materials for the enhanced product selectivity and catalytic activity. Challenges and outlook concerning the catalyst design and reaction mechanism, including the upgrading of reaction systems of Co-based catalysts for ECO2 RR, are also discussed.
Collapse
Affiliation(s)
- Zhangsen Chen
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Québec, J3 × 1S2, Canada
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Québec, J3 × 1S2, Canada
| | - Lei Du
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Québec, J3 × 1S2, Canada
| | - Yi Zheng
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Lixian Sun
- Guangxi Collaborative Innovation Center of Structure and Property for New Energy & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, P. R. China
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Québec, J3 × 1S2, Canada
| |
Collapse
|
35
|
Rational design of electroactive redox enzyme nanocapsules for high-performance biosensors and enzymatic biofuel cell. Biosens Bioelectron 2020; 174:112805. [PMID: 33257186 DOI: 10.1016/j.bios.2020.112805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/24/2022]
Abstract
The potential application of biodevices based on enzymatic bioelectrocatalysis are limited by poor stability and electrochemical performance. To solve the limitation, modifying enzyme with functional polymer to tailor enzyme function is highly desirable. Herein, glucose oxidase (GOx) was chosen as a model enzyme, and according to the chemical structure of GOx cofactor (flavin adenine dinucleotide, FAD), we customize a biomimetic cofactor containing vinyl group (SFAD) for GOx, and prepared an GOx nanocapsule via in-situ polymerization. The characterization of particle size distribution, TEM, fluorescence and electrochemical performance indicated the successful formation of electroactive GOx nanocapsule with SFAD-containing polymeric network (n (GOx-SFAD-PAM)). The network can act as an electronic "highway" to link the active site with electrode, with capability to accelerate electron transfer as well as enhanced GOx stability. Further investigation of bioelectrocatalysis shows that n (GOx-SFAD-PAM)-based biosensor has low detection potential (-0.4 vs. Ag/AgCl), high sensitivity (64.97 μAmM-1cm-2), good anti-interference performance, quick response (3⁓5s) and excellent stability, and that n (GOx-SFAD-PAM)-based enzymatic biofuel cell (EBFC) has the high maximum power density (1011.21 μWcm-2), which is a 385-fold increase over that of native GOx-based EBFC (2.62 μWcm-2). This study suggests that novel enzyme nanocapsule with electroactive polymeric shell might provide a prospective solution for the performance improvement of enzymatic bioelectrocatalysis-based biodevices.
Collapse
|
36
|
Ismail AM, Samu GF, Nguyën HC, Csapó E, López N, Janáky C. Au/Pb Interface Allows the Methane Formation Pathway in Carbon Dioxide Electroreduction. ACS Catal 2020; 10:5681-5690. [PMID: 32455054 PMCID: PMC7236132 DOI: 10.1021/acscatal.0c00749] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/11/2020] [Indexed: 12/16/2022]
Abstract
![]()
The
electrochemical conversion of carbon dioxide (CO2) to high-value
chemicals is an attractive approach to create an
artificial carbon cycle. Tuning the activity and product selectivity
while maintaining long-term stability, however, remains a significant
challenge. Here, we study a series of Au–Pb bimetallic electrocatalysts
with different Au/Pb interfaces, generating carbon monoxide (CO),
formic acid (HCOOH), and methane (CH4) as CO2 reduction products. The formation of CH4 is significant
because it has only been observed on very few Cu-free electrodes.
The maximum CH4 formation rate of 0.33 mA cm–2 was achieved when the most Au/Pb interfaces were present. In situ
Raman spectroelectrochemical studies confirmed the stability of the
Pb native substoichiometric oxide under the reduction conditions on
the Au–Pb catalyst, which seems to be a major contributor to
CH4 formation. Density functional theory simulations showed
that without Au, the reaction would get stuck on the COOH intermediate,
and without O, the reaction would not evolve further than the CHOH
intermediate. In addition, they confirmed that the Au/Pb bimetallic
interface (together with the subsurface oxygen in the model) possesses
a moderate binding strength for the key intermediates, which is indeed
necessary for the CH4 pathway. Overall, this study demonstrates how bimetallic nanoparticles
can be employed to overcome scaling relations in the CO2 reduction reaction.
Collapse
Affiliation(s)
- Ahmed Mohsen Ismail
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Square 1., Szeged H-6720, Hungary
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, 21321 Alexandria, Egypt
| | - Gergely F. Samu
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Square 1., Szeged H-6720, Hungary
| | - Huu Chuong Nguyën
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Edit Csapó
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Square 1., Szeged H-6720, Hungary
- Department of Medical Chemistry, MTA-SZTE Biomimetic Systems Research Group, Dóm Square 8, Szeged H-6720, Hungary
| | - Núria López
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Rerrich Square 1., Szeged H-6720, Hungary
| |
Collapse
|
37
|
Yang W, Chen S. Biomass-Derived Carbon for Electrode Fabrication in Microbial Fuel Cells: A Review. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00041] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wei Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
38
|
Zhao X, Du L, You B, Sun Y. Integrated design for electrocatalytic carbon dioxide reduction. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00453g] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have summarized three novel strategies for electrocatalytic carbon dioxide reduction, including concurrent CO2 electroreduction, tandem CO2 electroreduction and hybrid CO2 electroreduction.
Collapse
Affiliation(s)
- Xin Zhao
- School of Science
- Wuhan University of Technology
- Wuhan
- China
| | - Lijie Du
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
| | - Yujie Sun
- Department of Chemistry
- University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
39
|
Huang J, Zhao P, Jin X, Wang Y, Yuan H, Zhu X. Enzymatic biofuel cells based on protein engineering: recent advances and future prospects. Biomater Sci 2020; 8:5230-5240. [DOI: 10.1039/d0bm00925c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Enzymatic biofuel cells (EBFCs), as one of the most promising sustainable and green energy sources, have attracted significant interest.
Collapse
Affiliation(s)
- Jie Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Peng Zhao
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xin Jin
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yiwen Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Haotian Yuan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
40
|
Gao ST, Xiang SQ, Shi JL, Zhang W, Zhao LB. Theoretical understanding of the electrochemical reaction barrier: a kinetic study of CO2 reduction reaction on copper electrodes. Phys Chem Chem Phys 2020; 22:9607-9615. [DOI: 10.1039/c9cp06824d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The electrochemical reduction of CO2 is a promising route for converting intermittent renewable energy into storable fuels and useful chemical products.
Collapse
Affiliation(s)
- Shu-Ting Gao
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- China
| | - Shi-Qin Xiang
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- China
| | - Jun-Lin Shi
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology
- Chinese Academy of Sciences
- Chongqing
- China
| | - Liu-Bin Zhao
- Department of Chemistry
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- China
| |
Collapse
|