1
|
Liu R, Li J, Liu K, Okulov A. "V"-Shaped Changing Electronic Performance of Iodinene-Based Nanoflakes as a Function of Width. Inorg Chem 2024; 63:21012-21024. [PMID: 39439023 DOI: 10.1021/acs.inorgchem.4c02894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Special structures and prominent performance make 2D iodinene more appealing and valuable at the molecular level. Here, new-type electronic devices have been constructed with iodinene-based nanoflakes in different sizes and are theoretically studied for electronic transport properties. Our findings reveal that iodinene-based nanoflakes possess great electron transport suppression, achieving the same function as SiO2 on single molecule scale. Such transport suppression shows surprisingly nonlinear "V"-shaped trend with the width of the iodinene-based nanoflake. The medium-width iodinene-based nanoflake exhibits the strongest electron transport suppression, while the narrowest and widest ones display the largest electron transmission coefficients due to delocalized transmission eigenstates. Essentially, the weakest electron transport originates from an extremely small DOS and wide HOMO-LUMO gap. Specifically, increasing the width would diminish the extension of electronic states for the dominant transport orbitals, resulting in more butterfly-like electronic states. In non-equilibrium, negative differential resistance effect can be observed in iodinene-based devices, caused by the weakening and staying away from the Fermi level of transmission peaks influenced by the bias. Our findings provide insights into the relationship between the width of iodinene-based nanoflake and electronic transport properties, and lay a foundation in the device design and applications in molecular insulators and controllable-functional devices.
Collapse
Affiliation(s)
- Rukai Liu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jie Li
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Kun Liu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Artem Okulov
- M.N. Mikheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620077, Russia
| |
Collapse
|
2
|
Zhou N, Dang Z, Li H, Sun Z, Deng S, Li J, Li X, Bai X, Xie Y, Li L, Zhai T. Low-Symmetry 2D t-InTe for Polarization-Sensitive UV-Vis-NIR Photodetection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400311. [PMID: 38804863 DOI: 10.1002/smll.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/23/2024] [Indexed: 05/29/2024]
Abstract
Polarization-sensitive photodetection grounded on low-symmetry 2D materials has immense potential in improving detection accuracy, realizing intelligent detection, and enabling multidimensional visual perception, which has promising application prospects in bio-identification, optical communications, near-infrared imaging, radar, military, and security. However, the majority of the reported polarized photodetection are limited by UV-vis response range and low anisotropic photoresponsivity factor, limiting the achievement of high-performance anisotropic photodetection. Herein, 2D t-InTe crystal is introduced into anisotropic systems and developed to realize broadband-response and high-anisotropy-ratio polarized photodetection. Stemming from its narrow band gap and intrinsic low-symmetry lattice characteristic, 2D t-InTe-based photodetector exhibits a UV-vis-NIR broadband photoresponse and significant photoresponsivity anisotropy behavior, with an exceptional in-plane anisotropic factor of 1.81@808 nm laser, surpassing the performance of most reported 2D counterparts. This work expounds the anisotropic structure-activity relationship of 2D t-InTe crystal, and identifies 2D t-InTe as a prospective candidate for high-performance polarization-sensitive optoelectronics, laying the foundation for future multifunctional device applications.
Collapse
Affiliation(s)
- Nan Zhou
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
- Guangzhou Institute of Technology, Xidian University, Guangzhou, 710068, P. R. China
| | - Ziwei Dang
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Haoran Li
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Zongdong Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shijie Deng
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Junhao Li
- Institute of Information Sensing, Xidian University, Xi'an, 710126, P. R. China
| | - Xiaobo Li
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
- Guangzhou Institute of Technology, Xidian University, Guangzhou, 710068, P. R. China
| | - Xiaoxia Bai
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Yong Xie
- Shaanxi Joint Key Laboratory of Graphene, School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, P. R. China
| | - Liang Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Optics Valley Laboratory, Hubei, 430074, P. R. China
| |
Collapse
|
3
|
Liu Y, He W, Wu B, Xuan F, Fang Y, Zhong Z, Fu J, Wang JP, Li Z, Wang J, Yao M, Huang F, Zhen L, Li Y, Xu CY. Stacking Faults Enabled Second Harmonic Generation in Centrosymmetric van der Waals RhI 3. ACS NANO 2024; 18:17053-17064. [PMID: 38870206 DOI: 10.1021/acsnano.4c03562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Second harmonic generation (SHG) in van der Waals (vdW) materials has garnered significant attention due to its potential for integrated nonlinear optical and optoelectronic applications. Stacking faults in vdW materials are a typical kind of planar defect that introduces a degree of freedom to modulate the crystal symmetry and resultant SHG response. However, the physical origin and tunability of stacking-fault-governed SHG in vdW materials remain unclear. Here, taking the intrinsically centrosymmetric vdW RhI3 as an example, we theoretically reveal the origin of stacking-fault-governed SHG response, where the SHG response comes from the energetically favorable AC̅ stacking fault of which the electrical transitions along the high-symmetry paths Γ-M and Γ-K in the Brillion zone play the dominant role at 810 nm. Such a stacking-fault-governed SHG response is further confirmed via structural characterizations and SHG measurements. Furthermore, by applying hydrostatic pressure on RhI3, the correlation between structural evolution and SHG response is revealed with SHG enhancement up to 6.9 times, where the decreased electronic transition energies and higher momentum matrix elements due to the stronger interlayer interactions upon compression magnify the SHG susceptibility. This study develops a promising foundation for nonlinear nano-optics applications through the strategic design of stacking faults.
Collapse
Affiliation(s)
- Yue Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wen He
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bingze Wu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | | | - Yuqiang Fang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zhengbo Zhong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jierui Fu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jia-Peng Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhipeng Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinzhong Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Mingguang Yao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Fuqiang Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Liang Zhen
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yang Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Cheng-Yan Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
4
|
Li J, Zhou Y, Liu K, Wang Y, Li H, Okulov A. Tunable Electronic Transport of New-Type 2D Iodine Materials Affected by the Doping of Metal Elements. Molecules 2023; 28:7159. [PMID: 37894638 PMCID: PMC10609309 DOI: 10.3390/molecules28207159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
2D iodine structures under high pressures are more attractive and valuable due to their special structures and excellent properties. Here, electronic transport properties of such 2D iodine structures are theoretically studied by considering the influence of the metal-element doping. In equilibrium, metal elements in Group 1 can enhance the conductance dramatically and show a better enhancement effect. Around the Fermi level, the transmission probability exceeds 1 and can be improved by the metal-element doping for all devices. In particular, the device density of states explains well the distinctions between transmission coefficients originating from different doping methods. Contrary to the "big" site doping, the "small" site doping changes transmission eigenstates greatly, with pronounced electronic states around doped atoms. In non-equilibrium, the conductance of all devices is almost weaker than the equilibrium conductance, decreasing at low voltages and fluctuating at high voltages with various amplitudes. Under biases, K-big doping shows the optimal enhancement effect, and Mg-small doping exhibits the most effective attenuation effect on conductance. Contrastingly, the currents of all devices increase with bias linearly. The metal-element doping can boost current at low biases and weaken current at high voltages. These findings contribute much to understanding the effects of defects on electronic properties and provide solid support for the application of new-type 2D iodine materials in controllable electronics and sensors.
Collapse
Affiliation(s)
- Jie Li
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Z.); (K.L.); (Y.W.)
| | - Yuchen Zhou
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Z.); (K.L.); (Y.W.)
| | - Kun Liu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Z.); (K.L.); (Y.W.)
| | - Yifan Wang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Z.); (K.L.); (Y.W.)
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Artem Okulov
- M.N. Mikheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620077, Russia;
| |
Collapse
|
5
|
Tang J, Ge F, Chen J, Zhou D, Zhan G, Liu J, Yuan J, Shi X, Zhao P, Fan X, Su Y, Liu Z, He J, Tang J, Zha C, Zhang L, Song X, Wang L. A Droplet Method for Synthesis of Multiclass Ultrathin Metal Halides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301573. [PMID: 37365697 DOI: 10.1002/smll.202301573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/28/2023] [Indexed: 06/28/2023]
Abstract
2D metal halides have attracted increasing research attention in recent years; however, it is still challenging to synthesize them via liquid-phase methods. Here it is demonstrated that a droplet method is simple and efficient for the synthesis of multiclass 2D metal halides, including trivalent (BiI3 , SbI3 ), divalent (SnI2 , GeI2 ), and monovalent (CuI) ones. In particular, 2D SbI3 is first experimentally achieved, of which the thinnest thickness is ≈6 nm. The nucleation and growth of these metal halide nanosheets are mainly determined by the supersaturation of precursor solutions that are dynamically varying during the solution evaporation. After solution drying, the nanosheets can fall on the surface of many different substrates, which further enables the feasible fabrication of related heterostructures and devices. With SbI3 /WSe2 being a good demonstration, the photoluminescence intensity and photo responsivity of WSe2 is obviously enhanced after interfacing with SbI3 . The work opens a new pathway for 2D metal halides toward widespread investigation and applications.
Collapse
Affiliation(s)
- Jin Tang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Feixiang Ge
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jinlian Chen
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jing Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaxiao Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xinyu Shi
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xinlin Fan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Yu Su
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Zicong Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiahao He
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaqi Tang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chenyang Zha
- Institute of Applied Physics and Materials Engineering (IAPME), Zhuhai UM Science & Technology Research Institute (ZUMRI), University of Macau, Taipa, Macau SAR, 999078, China
| | - Linghai Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xuefen Song
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| |
Collapse
|
6
|
Wang Z, Wei L, Wang S, Wu T, Sun L, Ma C, Tao X, Wang S. 2D SiP 2/h-BN for a Gate-Controlled Phototransistor with Ultrahigh Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15810-15818. [PMID: 36939047 DOI: 10.1021/acsami.2c19803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) materials are extremely attractive for the construction of highly sensitive photodetectors due to their unique electronic and optical properties. However, developing 2D photodetectors with ultrahigh sensitivity for extremely low-light-level detection is still a challenge owing to the limitation of high dark current and low detectivity. Herein, a gate-controlled phototransistor based on 2D SiP2/hexagonal boron nitride (h-BN) was rationally designed and demonstrated ultrahigh sensitivity for the first time. With a back-gate device geometry, the SiP2/h-BN phototransistor exhibits an ultrahigh detectivity of 3.4 × 1013 Jones, which is one of the highest values among 2D material-based photodetectors. In addition, the phototransistor also shows a gate tunable responsivity of ≤43.5 A/W at a gate voltage of 30 V due to the photogating effect. The ultrahigh sensitivity of the SiP2-based phototransistor is attributed to the extremely low dark current suppressed by the phototransistor configuration and the improved photocurrent by using h-BN as a substrate to reduce charge scattering. This work provides a facile strategy for improving the detectivity of photodetectors and validates the great potential of 2D SiP2 phototransistors for ultrasensitive optoelectronic applications.
Collapse
Affiliation(s)
- Ziming Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Limei Wei
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Shilei Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Tiange Wu
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Lanjing Sun
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Chao Ma
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Xutang Tao
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Shanpeng Wang
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
7
|
Han X, You JY, Wu S, Li R, Feng YP, Loh KP, Zhao X. Atomically Unveiling an Atlas of Polytypes in Transition-Metal Trihalides. J Am Chem Soc 2023; 145:3624-3635. [PMID: 36735914 DOI: 10.1021/jacs.2c12801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transition-metal trihalides MX3 (M = Cr, Ru; X = Cl, Br, and I) belong to a family of novel two-dimensional (2D) magnets that can exhibit topological magnons and electromagnetic properties, thus affording great promises in next-generation spintronic devices. Rich magnetic ground states observed in the MX3 family are believed to be strongly correlated to the signature Kagome lattice and interlayer van der Waals coupling raised from distinct stacking orders. However, the intrinsic air instability of MX3 makes their direct atomic-scale analysis challenging. Therefore, information on the stacking-registry-dependent magnetism for MX3 remains elusive, which greatly hinders the engineering of desired phases. Here, we report a nondestructive transfer method and successfully realize an intact transfer of bilayer MX3, as evidenced by scanning transmission electron microscopy (STEM). After surveying hundreds of MX3 thin flakes, we provide a full spectrum of stacking orders in MX3 with atomic precision and calculated their associated magnetic ground states, unveiled by combined STEM and density functional theory (DFT). In addition to well-documented phases, we discover a new monoclinic C2/c phase in the antiferromagnetic (AFM) structure widely existing in MX3. Rich stacking polytypes, including C2/c, C2/m, R3̅, P3112, etc., provide rich and distinct magnetic ground states in MX3. Besides, a high density of strain soliton boundaries is consistently found in all MX3, combined with likely inverted structures, allowing AFM to ferromagnetic (FM) transitions in most MX3. Therefore, our study sheds light on the structural basis of diverse magnetic orders in MX3, paving the way for modulating magnetic couplings via stacking engineering.
Collapse
Affiliation(s)
- Xiaocang Han
- School of Materials Science and Engineering, Peking University, Beijing100871, China
| | - Jing-Yang You
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551Singapore
| | - Shengqiang Wu
- School of Materials Science and Engineering, Peking University, Beijing100871, China
| | - Runlai Li
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu610065, China
| | - Yuan Ping Feng
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551Singapore
| | - Kian Ping Loh
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing100871, China
| |
Collapse
|
8
|
Jiang S, Wang G, Deng H, Liu K, Yang Q, Zhao E, Zhu L, Guo W, Yang J, Zhang C, Wang H, Zhang X, Dai JF, Luo G, Zhao Y, Lin J. General Synthesis of 2D Magnetic Transition Metal Dihalides via Trihalide Reduction. ACS NANO 2023; 17:363-371. [PMID: 36576433 DOI: 10.1021/acsnano.2c08693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) transition metal dihalides (TMDHs) have been receiving extensive attention due to their diversified magnetic properties and promising applications in spintronics. However, controlled growth of 2D TMDHs remains challenging owing to their extreme sensitivity to atmospheric moisture. Herein, using a home-built nitrogen-filled interconnected glovebox system, a universal chemical vapor deposition synthesis route of high-quality 2D TMDH flakes (1T-FeCl2, FeBr2, VCl2, and VBr2) by reduction of their trihalide counterparts is developed. Representatively, ultrathin (∼8.6 nm) FeCl2 flakes are synthesized on SiO2/Si, while on graphene/Cu foil the thickness can be down to monolayer (1L). Reflective magnetic circular dichroism spectroscopy shows an interlayer antiferromagnetic ordering of FeCl2 with a Neel temperature at ∼17 K. Scanning tunneling microscopy and spectroscopy further identify the atomic-scale structures and band features of 1L and bilayer FeCl2 on graphene/Cu foil.
Collapse
Affiliation(s)
- Shaolong Jiang
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen518055, China
| | - Gang Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen518055, China
| | - Hanbing Deng
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
| | - Kai Liu
- Department of Materials Science and Engineering and Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen518055, China
| | - Qishuo Yang
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen518055, China
| | - Erding Zhao
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen518055, China
| | - Liang Zhu
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen518055, China
| | - Weiteng Guo
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen518055, China
| | - Jing Yang
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen518055, China
| | - Cheng Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Heshen Wang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Xi Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Jun-Feng Dai
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Guangfu Luo
- Department of Materials Science and Engineering and Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen518055, China
| | - Yue Zhao
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
| | - Junhao Lin
- Department of Physics, Southern University of Science and Technology, Shenzhen518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen518055, China
| |
Collapse
|
9
|
Zhou N, Zhang Z, Wang F, Li J, Xu X, Li H, Ding S, Liu J, Li X, Xie Y, Yang R, Ma Y, Zhai T. Spin Ordering Induced Broadband Photodetection Based on Two-Dimensional Magnetic Semiconductor α-MnSe. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202177. [PMID: 35666075 PMCID: PMC9353471 DOI: 10.1002/advs.202202177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) magnetic semiconductors are considered to have great application prospects in spintronic logic devices, memory devices, and photodetectors, due to their unique structures and outstanding physical properties in 2D confinement. Understanding the influence of magnetism on optical/optoelectronic properties of 2D magnetic semiconductors is a significant issue for constructing multifunctional electronic devices and implementing sophisticated functions. Herein, the influence of spin ordering and magnons on the optical/optoelectronic properties of 2D magnetic semiconductor α-MnSe synthesized by space-confined chemical vapor deposition (CVD) is explored systematically. The spin-ordering-induced magnetic phase transition triggers temperature-dependent photoluminescence spectra to produce a huge transition at Néel temperature (TN ≈ 160 K). The magnons- and defects-induced emissions are the primary luminescence path below TN and direct internal 4 a T1g →6 A1g transition-induced emissions are the main luminescence path above TN . Additionally, the magnons and defect structures endow 2D α-MnSe with a broadband luminescence from 550 to 880 nm, and an ultraviolet-near-infrared photoresponse from 365 to 808 nm. Moreover, the device also demonstrates improved photodetection performance at 80 K, possibly influenced by spin ordering and trap states associated with defects. These above findings indicate that 2D magnetic semiconductor α-MnSe provides an excellent platform for magneto-optical and magneto-optoelectronic research.
Collapse
Affiliation(s)
- Nan Zhou
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
- Guangzhou Institute of TechnologyXidian UniversityGuangzhou710068P. R. China
| | - Zhimiao Zhang
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Fakun Wang
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Junhao Li
- Institute of Information SensingXidian UniversityXi'an710126P. R. China
| | - Xiang Xu
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Haoran Li
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Su Ding
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Jinmei Liu
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Xiaobo Li
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
- Guangzhou Institute of TechnologyXidian UniversityGuangzhou710068P. R. China
| | - Yong Xie
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Rusen Yang
- School of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Ying Ma
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die and Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| |
Collapse
|
10
|
Dai C, Liu Y, Wei D. Two-Dimensional Field-Effect Transistor Sensors: The Road toward Commercialization. Chem Rev 2022; 122:10319-10392. [PMID: 35412802 DOI: 10.1021/acs.chemrev.1c00924] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The evolutionary success in information technology has been sustained by the rapid growth of sensor technology. Recently, advances in sensor technology have promoted the ambitious requirement to build intelligent systems that can be controlled by external stimuli along with independent operation, adaptivity, and low energy expenditure. Among various sensing techniques, field-effect transistors (FETs) with channels made of two-dimensional (2D) materials attract increasing attention for advantages such as label-free detection, fast response, easy operation, and capability of integration. With atomic thickness, 2D materials restrict the carrier flow within the material surface and expose it directly to the external environment, leading to efficient signal acquisition and conversion. This review summarizes the latest advances of 2D-materials-based FET (2D FET) sensors in a comprehensive manner that contains the material, operating principles, fabrication technologies, proof-of-concept applications, and prototypes. First, a brief description of the background and fundamentals is provided. The subsequent contents summarize physical, chemical, and biological 2D FET sensors and their applications. Then, we highlight the challenges of their commercialization and discuss corresponding solution techniques. The following section presents a systematic survey of recent progress in developing commercial prototypes. Lastly, we summarize the long-standing efforts and prospective future development of 2D FET-based sensing systems toward commercialization.
Collapse
Affiliation(s)
- Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
Yao J, Yang G. 2D Layered Material Alloys: Synthesis and Application in Electronic and Optoelectronic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103036. [PMID: 34719873 PMCID: PMC8728821 DOI: 10.1002/advs.202103036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Indexed: 05/12/2023]
Abstract
2D layered materials (2DLMs) have come under the limelight of scientific and engineering research and broke new ground across a broad range of disciplines in the past decade. Nevertheless, the members of stoichiometric 2DLMs are relatively limited. This renders them incompetent to fulfill the multitudinous scenarios across the breadth of electronic and optoelectronic applications since the characteristics exhibited by a specific material are relatively monotonous and limited. Inspiringly, alloying of 2DLMs can markedly broaden the 2D family through composition modulation and it has ushered a whole new research domain: 2DLM alloy nano-electronics and nano-optoelectronics. This review begins with a comprehensive survey on synthetic technologies for the production of 2DLM alloys, which include chemical vapor transport, chemical vapor deposition, pulsed-laser deposition, and molecular beam epitaxy, spanning their development, as well as, advantages and disadvantages. Then, the up-to-date advances of 2DLM alloys in electronic devices are summarized. Subsequently, the up-to-date advances of 2DLM alloys in optoelectronic devices are summarized. In the end, the ongoing challenges of this emerging field are highlighted and the future opportunities are envisioned, which aim to navigate the coming exploration and fully exert the pivotal role of 2DLMs toward the next generation of electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| |
Collapse
|
12
|
Feng X, Peng X, Peng B, Li Z, Huang W, Yang S, Pei K, Sun Z, Huang F, Li H, Shuai Z, Zhai T. Effect of Strong Intermolecular Interaction in 2D Inorganic Molecular Crystals. J Am Chem Soc 2021; 143:20192-20201. [PMID: 34780690 DOI: 10.1021/jacs.1c08030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Strong intermolecular interactions in 2D organic molecular crystals arising from π-π stacking have been widely explored to achieve high thermal stability, high carrier mobility, and novel physical properties, which have already produced phenomenal progress. However, strong intermolecular interactions in 2D inorganic molecular crystals (2DIMCs) have rarely been investigated, severely limiting both the fundamental research in molecular physics and the potential applications of 2DIMCs for optoelectronics. Here, the effect of strong intermolecular interactions induced by unique short intermolecular Se-Se and P-Se contacts in 2D α-P4Se3 nanoflakes is reported. On the basis of theoretical calculations of the charge density distribution and an analysis of the thermal expansion and plastic-crystal transition, the physical picture of strong intermolecular interactions can be elucidated as a higher charge density between adjacent P4Se3 molecules, arising from an orderly and close packing of P4Se3 molecules. More importantly, encouraged by the strong intermolecular coupling, the in-plane mobility of α-P4Se3 nanoflakes is first calculated with a quantum nuclear tunneling model, and a competitive hole mobility of 0.4 cm2 V-1 s-1 is obtained. Our work sheds new light on the intermolecular interactions in 2D inorganic molecular crystals and is highly significant for promoting the development of molecular physics and optoelectronics.
Collapse
Affiliation(s)
- Xin Feng
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xingliang Peng
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Baixin Peng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Wentao Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Sijie Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Ke Pei
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Zongdong Sun
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China.,State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
13
|
Abstract
2D layered materials with diverse exciting properties have recently attracted tremendous interest in the scientific community. Layered topological insulator Bi2Se3 comes into the spotlight as an exotic state of quantum matter with insulating bulk states and metallic Dirac-like surface states. Its unique crystal and electronic structure offer attractive features such as broadband optical absorption, thickness-dependent surface bandgap and polarization-sensitive photoresponse, which enable 2D Bi2Se3 to be a promising candidate for optoelectronic applications. Herein, we present a comprehensive summary on the recent advances of 2D Bi2Se3 materials. The structure and inherent properties of Bi2Se3 are firstly described and its preparation approaches (i.e., solution synthesis and van der Waals epitaxy growth) are then introduced. Moreover, the optoelectronic applications of 2D Bi2Se3 materials in visible-infrared detection, terahertz detection, and opto-spintronic device are discussed in detail. Finally, the challenges and prospects in this field are expounded on the basis of current development.
Collapse
Affiliation(s)
- Fakun K. Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Sijie J. Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tianyou Y. Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
14
|
Fang Y, Wang F, Wang R, Zhai T, Huang F. 2D NbOI 2 : A Chiral Semiconductor with Highly In-Plane Anisotropic Electrical and Optical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101505. [PMID: 34096119 DOI: 10.1002/adma.202101505] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Exploring in-plane anisotropic 2D materials is of great significance to the fundamental studies and further development of polarizationsensitive optoelectronics. Herein, chiral niobium oxide diiodide (NbOI2 ) is introduced into the intriguing anisotropic 2D family with the experimental demonstration of anisotropic optical and electrical properties. 2D NbOI2 crystals exhibit highly anisotropic dispersed band structures around the Fermi surface and strong in-plane anisotropy of phonon vibrations owing to the different bonding modes of Nb atoms along the b- and c-axes. Consequently, the anisotropic factors of optical absorbance and photoresponsivity in 2D NbOI2 crystals reach up to 1.75 and 1.7, respectively. These anisotropic properties make 2D NbOI2 an interesting platform for novel polarization-sensitive optoelectronic applications.
Collapse
Affiliation(s)
- Yuqiang Fang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Fakun Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ruiqi Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fuqiang Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
15
|
Bergeron H, Lebedev D, Hersam MC. Polymorphism in Post-Dichalcogenide Two-Dimensional Materials. Chem Rev 2021; 121:2713-2775. [PMID: 33555868 DOI: 10.1021/acs.chemrev.0c00933] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two-dimensional (2D) materials exhibit a wide range of atomic structures, compositions, and associated versatility of properties. Furthermore, for a given composition, a variety of different crystal structures (i.e., polymorphs) can be observed. Polymorphism in 2D materials presents a fertile landscape for designing novel architectures and imparting new functionalities. The objective of this Review is to identify the polymorphs of emerging 2D materials, describe their polymorph-dependent properties, and outline methods used for polymorph control. Since traditional 2D materials (e.g., graphene, hexagonal boron nitride, and transition metal dichalcogenides) have already been studied extensively, the focus here is on polymorphism in post-dichalcogenide 2D materials including group III, IV, and V elemental 2D materials, layered group III, IV, and V metal chalcogenides, and 2D transition metal halides. In addition to providing a comprehensive survey of recent experimental and theoretical literature, this Review identifies the most promising opportunities for future research including how 2D polymorph engineering can provide a pathway to materials by design.
Collapse
Affiliation(s)
- Hadallia Bergeron
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Dmitry Lebedev
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|