1
|
Ji Z, Li Z, Dai X, Xiang L, Zhao Y, Wang D, Zhang X, Liu L, Han Z, Niu L, Di Y, Zou Y, Di CA, Zhu D. Photoexcitation-Assisted Molecular Doping for High-Performance Polymeric Thermoelectric Materials. JACS AU 2024; 4:3884-3895. [PMID: 39483218 PMCID: PMC11522908 DOI: 10.1021/jacsau.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 11/03/2024]
Abstract
Molecular doping plays a crucial role in modulating the performance of polymeric semiconductor (PSC) materials and devices. Despite the development of numerous molecular dopants and doping methods over the past few decades, achieving highly efficient doping of PSCs remains challenging, primarily because of the inadequate matching of frontier energy levels between the host polymers and the dopants, which is critical for facilitating charge transfer. In this work, we introduce a novel doping method termed photoexcitation-assisted molecular doping (PE-MD), capable of transcending limitations imposed by energy level disparities through the mediation of efficient photoinduced electron transfer between polymers and dopants. This approach significantly amplifies the electrical conductivity of the PDPP4T polymer, increasing it by more than 4 orders of magnitude to a maximum value of 349.67 S cm-1. Given that only the irradiated region experiences a substantial increase in doping level, the PE-MD process facilitates the photoresist-free and precise patterning of doped polymers at a resolution down to 1 μm. Furthermore, the enhanced electrical conductivity of the photoexcitation-assisted molecularly doped PDPP4T film promotes efficient thermoelectric conversion, yielding an impressive initial power factor of 226.1 μW m-1 K-2 and a figure-of-merit (ZT) of 0.18, accompanied by improved thermal and ambient stability. The PE-MD strategy not only remarkably elevates the doping level of PSCs toward efficient thermoelectric conversion but also preserves the easy processability of flexible and integrated devices.
Collapse
Affiliation(s)
- Zhen Ji
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Zhiyi Li
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaojuan Dai
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
| | - Lanyi Xiang
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Yue Zhao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Dongyang Wang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Xiao Zhang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Liyao Liu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiyuan Han
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Lixin Niu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Yuqiu Di
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Ye Zou
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
| | - Chong-an Di
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
| | - Daoben Zhu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Organic Solids, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Cho Y, Gao L, Yao Y, Kim J, Zhang D, Forti G, Duplessis I, Wang Y, Pankow RM, Ji X, Rivnay J, Marks TJ, Facchetti A. Small-Molecule Mixed Ionic-Electronic Conductors for Efficient N-Type Electrochemical Transistors: Structure-Function Correlations. Angew Chem Int Ed Engl 2024:e202414180. [PMID: 39312509 DOI: 10.1002/anie.202414180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
The fundamental challenge in electron-transporting organic mixed ionic-electronic conductors (OMIECs) is simultaneous optimization of electron and ion transport. Beginning from Y6-type/U-shaped non-fullerene solar cell acceptors, we systematically synthesize and characterize molecular structures that address the aforementioned challenge, progressively introducing increasing numbers of oligoethyleneglycol (OEG; g) sidechains from 1 g to 3 g, affording OMIECs 1gY, 2gY, and 3gY, respectively. The crystal structure of 1gY preserves key structural features of the Yn series: a U-shaped/planar core, close π-π molecular stacking, and interlocked acceptor groups. Versus inactive Y6 and Y11, all of the new glycolated compounds exhibit mixed ion-electron transport in both conventional organic electrochemical transistor (cOECT) and vertical OECT (vOECT) architectures. Notably, 3gY with the highest OEG density achieves a high transconductance of 16.5 mS, an on/off current ratio of ~106, and a turn-on/off response time of 94.7/5.7 ms in vOECTs. Systematic optoelectronic, electrochemical, architectural, and crystallographic analysis explains the superior 3gY-based OECT performance in terms of denser ngY OEG content, increased crystallite dimensions with decreased long-range crystalline order, and enhanced film hydrophilicity which facilitates ion transport and efficient redox processes. Finally, we demonstrate an efficient small-molecule-based complementary inverter using 3gY vOECTs, showcasing the bioelectronic applicability of these new small-molecule OMIECs.
Collapse
Affiliation(s)
- Yongjoon Cho
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Lin Gao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Yao Yao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Jaehyun Kim
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Dayong Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Giacomo Forti
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Isaiah Duplessis
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Yuyang Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Robert M Pankow
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Tobin J Marks
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Antonio Facchetti
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Liu J, Zhao Z, Qian J, Liang Z, Wu C, Wang K, Liu SF, Yang D. Thermal Radiation Annealing for Overcoming Processing Temperature Limitation of Flexible Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401236. [PMID: 38599344 DOI: 10.1002/adma.202401236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Common polymeric conductive electrodes, such as polyethylene terephthalate (PET) coated with indium tin oxide, face a major challenge due to their low processing-temperature limits, attributed to PET's low glass transition temperature (Tg) of (70-80 °C). This limitation significantly narrows the scope of material selection, limits the processing techniques applicable to the low Tg, and hinders the ripened technology transfer from glass substrates to them. Addressing the temperature constraints of the flexible substrates is impactful yet underexplored, with broader implications for fields beyond photovoltaics. Here, a new thermal radiation annealing methodology is introduced to address this issue. By applying the above Tg radiation annealing in conjunction with thermoelectric cooling, highly ordered molecular packing on PET substrates is successfully created, which is exclusively unachievable due to PET's low thermal tolerance. As a result, in the context of perovskite solar cells, this approach enables the circumvention of high-temperature annealing limitations of PET substrates, leading to a remarkable flexible device efficiency of 22.61% and a record fill factor of 83.42%. This approach proves especially advantageous for advancing the field of flexible optoelectronic devices.
Collapse
Affiliation(s)
- Jieqiong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, 620, West Chang'an Avenue, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zinan Zhao
- Huanjiang Laboratory, Zhuji, 311800, China
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, 310027, China
| | - Jin Qian
- Huanjiang Laboratory, Zhuji, 311800, China
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, 310027, China
| | - Zihui Liang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan, 430073, China
| | - Congcong Wu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Kai Wang
- Huanjiang Laboratory, Zhuji, 311800, China
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, 310027, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, 620, West Chang'an Avenue, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Yang
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Wu X, Chen S, Jiang L, Wang X, Qiu L, Zheng L. Highly Sensitive, Low-Energy-Consumption Biomimetic Olfactory Synaptic Transistors Based on the Aggregation of the Semiconductor Films. ACS Sens 2024; 9:2673-2683. [PMID: 38688032 DOI: 10.1021/acssensors.4c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Artificial olfactory synaptic devices with low energy consumption and low detection limits are important for the further development of neuromorphic computing and intelligent robotics. In this work, an ultralow energy consumption and low detection limit imitation olfactory synaptic device based on organic field-effect transistors (OFETs) was prepared. The aggregation state of poly(diketopyrrolopyrrole-selenophene) (PTDPP) semiconductor films is modulated by adding unfavorable solvents and annealing treatments to obtain excellent charge transfer and gas synaptic properties. The regulated OFET device can execute basic biological synaptic functions, including excitatory postsynaptic currents (EPSCs), paired-pulse facilitation (PPF), and the transition from short-term to long-term plasticity, at an ultralow operating voltage of -0.0005 V. The ultralow energy consumption during the biomimetic simulation is in the range of 8.94-88 fJ per spike. Noteworthily, the gas detection limit of the device is as low as 50 ppb, well below normal human NO2 gas perception limits (100-1000 ppb). Additionally, high-pass filtering, Pavlovian conditioned reflexes, and decoding of "Morse code" were simulated. Finally, a grid-free conformal device with outstanding flexibility and stability was fabricated. In conclusion, the control of semiconductor thin-film aggregation provides effective guidance for preparing low-energy-consumption, highly sensitive olfactory nerve-mimicking devices and promoting the development of wearable electronics.
Collapse
Affiliation(s)
- Xiaocheng Wu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Siyu Chen
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Longlong Jiang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, P. R. China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
5
|
Ren S, Wang Z, Chen J, Wang S, Yi Z. Organic Transistors Based on Highly Crystalline Donor-Acceptor π-Conjugated Polymer of Pentathiophene and Diketopyrrolopyrrole. Molecules 2024; 29:457. [PMID: 38257368 PMCID: PMC10819643 DOI: 10.3390/molecules29020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Oligomers and polymers consisting of multiple thiophenes are widely used in organic electronics such as organic transistors and sensors because of their strong electron-donating ability. In this study, a solution to the problem of the poor solubility of polythiophene systems was developed. A novel π-conjugated polymer material, PDPP-5Th, was synthesized by adding the electron acceptor unit, DPP, to the polythiophene system with a long alkyl side chain, which facilitated the solution processing of the material for the preparation of devices. Meanwhile, the presence of the multicarbonyl groups within the DPP molecule facilitated donor-acceptor interactions in the internal chain, which further improved the hole-transport properties of the polythiophene-based material. The weak forces present within the molecules that promoted structural coplanarity were analyzed using theoretical simulations. Furthermore, the grazing incidence wide-angle X-ray scanning (GIWAXS) results indicated that PDPP-5Th features high crystallinity, which is favorable for efficient carrier migration within and between polymer chains. The material showed hole transport properties as high as 0.44 cm2 V-1 s-1 in conductivity testing. Our investigations demonstrate the great potential of this polymer material in the field of optoelectronics.
Collapse
Affiliation(s)
- Shiwei Ren
- Zhuhai-Fudan Research Institute of Innovation, Guangdong-Macao In-Depth Cooperation Zone, Hengqin 519031, China;
- Department of Materials Science, Fudan University, Shanghai 200438, China
- Technical Center of Gongbei Customs District, Zhuhai 519001, China
| | - Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Jinyang Chen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Sichun Wang
- Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Zhengran Yi
- Zhuhai-Fudan Research Institute of Innovation, Guangdong-Macao In-Depth Cooperation Zone, Hengqin 519031, China;
- Department of Materials Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Ren S, Wang Z, Zhang W, Yassar A, Chen J, Wang S. Incorporation of Diketopyrrolopyrrole into Polythiophene for the Preparation of Organic Polymer Transistors. Molecules 2024; 29:260. [PMID: 38202843 PMCID: PMC10780697 DOI: 10.3390/molecules29010260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Polythiophene, as a class of potential electron donor units, is widely used in organic electronics such as transistors. In this work, a novel polymeric material, PDPPTT-FT, was prepared by incorporating the electron acceptor unit into the polythiophene system. The incorporation of the DPP molecule assists in improving the solubility of the material and provides a convenient method for the preparation of field effect transistors via subsequent solution processing. The introduction of fluorine atoms forms a good intramolecular conformational lock, and theoretical calculations show that the structure displays excellent co-planarity and regularity. Grazing incidence wide-angle X-ray (GIWAXS) results indicate that the PDPPTT-FT is highly crystalline, which facilitates carrier migration within and between polymer chains. The hole mobility of this π-conjugated material is as high as 0.30 cm2 V-1 s-1 in organic transistor measurements, demonstrating the great potential of this polymer material in the field of optoelectronics.
Collapse
Affiliation(s)
- Shiwei Ren
- Zhuhai-Fudan Research Institute of Innovation, Hengqin 519000, China;
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
- Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenqing Zhang
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Abderrahim Yassar
- Laboratory of Physics of Interfaces and Thin Films, Institut Polytechnique de Paris, 91128 Palaiseau, France;
| | - Jinyang Chen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Sichun Wang
- Department of Materials Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
7
|
Ren C, Cao L, Wu T. Meniscus-Guided Deposition of Organic Semiconductor Thin Films: Materials, Mechanism, and Application in Organic Field-Effect Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300151. [PMID: 36869409 DOI: 10.1002/smll.202300151] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/13/2023] [Indexed: 06/02/2023]
Abstract
Solution-processable organic semiconductors are one of the promising materials for the next generation of organic electronic products, which call for high-performance materials and mature processing technologies. Among many solution processing methods, meniscus-guided coating (MGC) techniques have the advantages of large-area, low-cost, adjustable film aggregation, and good compatibility with the roll-to-roll process, showing good research results in the preparation of high-performance organic field-effect transistors. In this review, the types of MGC techniques are first listed and the relevant mechanisms (wetting mechanism, fluid mechanism, and deposition mechanism) are introduced. The MGC processes are focused and the effect of the key coating parameters on the thin film morphology and performance with examples is illustrated. Then, the performance of transistors based on small molecule semiconductors and polymer semiconductor thin films prepared by various MGC techniques is summarized. In the third section, various recent thin film morphology control strategies combined with the MGCs are introduced. Finally, the advanced progress of large-area transistor arrays and the challenges for roll-to-roll processes are presented using MGCs. Nowadays, the application of MGCs is still in the exploration stage, its mechanism is still unclear, and the precise control of film deposition still needs experience accumulation.
Collapse
Affiliation(s)
- Chunxing Ren
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Long Cao
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| | - Ti Wu
- Laboratory of Optoelectronic and Information Marking Materials, Key Laboratory of Printing and Packaging Material and Technology, Beijing Institute of Graphic Communication, Beijing, 102600, P. R. China
| |
Collapse
|
8
|
Shen Z, Lu W, Wei P, Zhu Y, Jiang Y, Bu L, Lu G. Highly Conductive Ultrathin Layers of Conjugated Polymers for Metal-Free Coplanar Transistors with Single-Polymer Transport Layers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12099-12108. [PMID: 36808932 DOI: 10.1021/acsami.2c20298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although metal or oxide conductive films are widely used as electrodes of electronic devices, organic electrodes would be more favorable for next-generation organic electronics. Here, using some model conjugated polymers as examples, we report a class of highly conductive and optically transparent polymer ultrathin layers. Vertical phase separation of semiconductor/insulator blends leads to a highly ordered two-dimensional (2D) ultrathin layer of conjugated-polymer chains on the insulator. Afterwards, the thermally evaporated dopants on the ultrathin layer lead to a conductivity of up to 103 S cm-1 and a sheet resistance 103 Ω/square for a model conjugated polymer poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophenes) (PBTTT). The high conductivity is due to the high hole mobility (∼ 20 cm2 V-1 s-1), although doping-induced charge density is still in the moderate range of 1020 cm-3 with a 1 nm thick dopant. Metal-free monolithic coplanar field-effect transistors using the same conjugated-polymer ultrathin layer with alternatively doped regions as electrodes and a semiconductor layer are realized. The field-effect mobility of this monolithic transistor is over 2 cm2 V-1 s-1 for PBTTT, one order higher than that of the conventional PBTTT transistor using metal electrodes. The optical transparency of the single conjugated-polymer transport layer is over 90%, demonstrating a bright future for all-organic transparent electronics.
Collapse
Affiliation(s)
- Zichao Shen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wanlong Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Peng Wei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuanwei Zhu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yihang Jiang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Laju Bu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
9
|
Wang D, Ding J, Dai X, Xiang L, Ye D, He Z, Zhang F, Jung SH, Lee JK, Di CA, Zhu D. Triggering ZT to 0.40 by Engineering Orientation in One Polymeric Semiconductor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208215. [PMID: 36305596 DOI: 10.1002/adma.202208215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Breaking the thermoelectric (TE) trade-off relationship is an important task for maximizing the TE performance of polymeric semiconductors. Existing efforts have focused on designing high-mobility semiconductors and achieving ordered molecular doping, ignoring the critical role of the molecular orientation during TE conversion. Herein, the achievement of ZT to 0.40 is reported by fine-tuning the molecular orientation of one diketopyrrolopyrrole (DPP)-based polymer (DPP-BTz). Films with bimodal molecular orientation yield superior doping efficiency by increasing the lamellar spacing and achieve increased splitting between the Fermi energy and the transport energy to enhance the thermopower. These factors contribute to the simultaneous improvement in the Seebeck coefficient and electrical conductivity in an unexpected manner. Importantly, the bimodal film exhibits a maximum power factor of up to 346 µW m-1 K-2 , >400% higher than that of unimodal films. These results demonstrate the great potential of molecular orientation engineering in polymeric semiconductors for developing state-of-the-art organic TE (OTE) materials.
Collapse
Affiliation(s)
- Dongyang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiamin Ding
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojuan Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lanyi Xiang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dekai Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Seok-Heon Jung
- Department of Polymer Science & Engineering, Inha University, Incheon, 402-751, South Korea
| | - Jin-Kyun Lee
- Department of Polymer Science & Engineering, Inha University, Incheon, 402-751, South Korea
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
10
|
Li L, Zhan H, Chen S, Zhao Q, Peng J. Interrogating the Effect of Block Sequence on Cocrystallization, Microphase Separation, and Charge Transport in All-Conjugated Triblock Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lixin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hao Zhan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Shuwen Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qingqing Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Juan Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
11
|
Kafle P, Huang S, Park KS, Zhang F, Yu H, Kasprzak CE, Kim H, Schroeder CM, van der Zande AM, Diao Y. Role of Interfacial Interactions in the Graphene-Directed Assembly of Monolayer Conjugated Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6984-6995. [PMID: 35613042 DOI: 10.1021/acs.langmuir.2c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Development of graphene-organic hybrid electronics is one of the most promising directions for next-generation electronic materials. However, it remains challenging to understand the graphene-organic semiconductor interactions right at the interface, which is key to designing hybrid electronics. Herein, we study the influence of graphene on the multiscale morphology of solution-processed monolayers of conjugated polymers (PII-2T, DPP-BTz, DPP2T-TT, and DPP-T-TMS). The strong interaction between graphene and PII-2T was manifested in the high fiber density and high film coverage of monolayer films deposited on graphene compared to plasma SiO2 substrates. The monolayer films on graphene also exhibited a higher relative degree of crystallinity and dichroic ratio or polymer alignment, i.e., higher degree of order. Raman spectroscopy revealed the increased backbone planarity of the conjugated polymers upon deposition on graphene as well as the existence of electronic interaction across the interface. This speculation was further substantiated by the results of photoelectron spectroscopy (XPS and UPS) of PII-2T, which showed a decrease in binding energy of several atomic energy levels, movement of the Fermi level toward HOMO, and an increase in work function, all of which indicate p-doping of the polymer. Our results provide a new level of understanding on graphene-polymer interactions at nanoscopic interfaces and the consequent impact on multiscale morphology, which will aid in the design of efficient graphene-organic hybrid electronics.
Collapse
Affiliation(s)
- Prapti Kafle
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Siyuan Huang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyung Sun Park
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Caroline E Kasprzak
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hyunchul Kim
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles M Schroeder
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Arend M van der Zande
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ying Diao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Parr ZS, Borges-González J, Rashid RB, Thorley KJ, Meli D, Paulsen BD, Strzalka J, Rivnay J, Nielsen CB. From p- to n-Type Mixed Conduction in Isoindigo-Based Polymers through Molecular Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107829. [PMID: 35075720 DOI: 10.1002/adma.202107829] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Organic mixed ionic and electronic conductors are of significant interest for bioelectronic applications. Here, three different isoindigoid building blocks are used to obtain polymeric mixed conductors with vastly different structural and electronic properties which can be further fine-tuned through the choice of comonomer unit. This work shows how careful design of the isoindigoid scaffold can afford highly planar polymer structures with high degrees of electronic delocalization, while subtle structural modifications can control the dominant charge carrier (hole or electron) when probed in organic electrochemical transistors. A combination of experimental and computational techniques is employed to probe electrochemical, structural, and mixed ionic and electronic properties of the polymer series which in turn allows the derivation of important structure-property relations for this promising class of materials in the context of organic bioelectronics. Ultimately, these findings are used to outline robust molecular-design strategies for isoindigo-based mixed conductors that can support efficient p-type, n-type, and ambipolar transistor operation in an aqueous environment.
Collapse
Affiliation(s)
- Zachary S Parr
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Jorge Borges-González
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Reem B Rashid
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Karl J Thorley
- Center for Applied Energy Research, University of Kentucky, Lexington, KY, 40511, USA
| | - Dilara Meli
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Christian B Nielsen
- Department of Chemistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
13
|
Scaccabarozzi AD, Basu A, Aniés F, Liu J, Zapata-Arteaga O, Warren R, Firdaus Y, Nugraha MI, Lin Y, Campoy-Quiles M, Koch N, Müller C, Tsetseris L, Heeney M, Anthopoulos TD. Doping Approaches for Organic Semiconductors. Chem Rev 2021; 122:4420-4492. [PMID: 34793134 DOI: 10.1021/acs.chemrev.1c00581] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electronic doping in organic materials has remained an elusive concept for several decades. It drew considerable attention in the early days in the quest for organic materials with high electrical conductivity, paving the way for the pioneering work on pristine organic semiconductors (OSCs) and their eventual use in a plethora of applications. Despite this early trend, however, recent strides in the field of organic electronics have been made hand in hand with the development and use of dopants to the point that are now ubiquitous. Here, we give an overview of all important advances in the area of doping of organic semiconductors and their applications. We first review the relevant literature with particular focus on the physical processes involved, discussing established mechanisms but also newly proposed theories. We then continue with a comprehensive summary of the most widely studied dopants to date, placing particular emphasis on the chemical strategies toward the synthesis of molecules with improved functionality. The processing routes toward doped organic films and the important doping-processing-nanostructure relationships, are also discussed. We conclude the review by highlighting how doping can enhance the operating characteristics of various organic devices.
Collapse
Affiliation(s)
- Alberto D Scaccabarozzi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Aniruddha Basu
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Filip Aniés
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K
| | - Jian Liu
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Osnat Zapata-Arteaga
- Materials Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Ross Warren
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Yuliar Firdaus
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia.,Research Center for Electronics and Telecommunication, Indonesian Institute of Science, Jalan Sangkuriang Komplek LIPI Building 20 level 4, Bandung 40135, Indonesia
| | - Mohamad Insan Nugraha
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Yuanbao Lin
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Mariano Campoy-Quiles
- Materials Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Norbert Koch
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Kekulé-Strasse 5, 12489 Berlin, Germany.,Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Leonidas Tsetseris
- Department of Physics, National Technical University of Athens, Athens GR-15780, Greece
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| |
Collapse
|
14
|
Li H, Yang H, Zhang L, Wang S, Chen Y, Zhang Q, Zhang J, Tian H, Han Y. Optimizing the Crystallization Behavior and Film Morphology of Donor–Acceptor Conjugated Semiconducting Polymers by Side-Chain–Solvent Interaction in Nonpolar Solvents. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hongxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hua Yang
- Spallation Neutron Source Science Center, Dongguan 523803, P. R. China
| | - Lu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Sichun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yu Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|