1
|
Liu Q, Huang Y, Zhou X, Fernández I, Xiong Y. Visible Light-Mediated [4+2] Annulation of Silylimines with Olefins to 1-Aminotetralins Enabled by Diradical Hydrogen Atom Transfer of C-H Bonds. Angew Chem Int Ed Engl 2024:e202421464. [PMID: 39601644 DOI: 10.1002/anie.202421464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
A facile photochemical, one-pot synthesis of highly functionalized 1-aminotetralins derivatives (>70 examples) from readily accessible o-alkyl and o-formyl aryl silylimines with olefins is described. A diradical-mediated hydrogen atom transfer (DHAT) of primary, secondary, and tertiary C(sp3)-H bonds of o-alkyl arylsilylimines and C(sp2)-H bonds of o-formyl arylsilylimines enabled a [4+2] annulation with olefins in excellent diastereoselectivity. This was accomplished upon irradiation at λ = 420 nm in the presence of thioxanthen-9-one (10 mol %) as the sensitizer via energy transfer. Moreover, sulfur-substituted o-alkyl silylimines can undergo such photochemical process in the absence of an external photosensitizer. This effective protocol is compatible with a variety of functional groups and can be applied to the modification of bioactive molecules. Based on mechanistic evidences and computational studies, it is suggested that the silyl substituent enables an efficient energy transfer leading to the formation of a key C,N-diradical and subsequent [4+2]-cyclization was supported by a better molecular orbital matching between the HSOMO of the 1,4-diradical intermediate and the LUMO of the olefins. Thus, upon irradiation, the excited silylimine unlocks a carbon-to-nitrogen DHAT and subsequent [4+2] cyclization that allows the divergent functionalization of benzylic C(sp3)-H bonds and C(sp2)-H bonds.
Collapse
Affiliation(s)
- Qian Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Xiang Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Israel Fernández
- Departamento de Química Orgánica and Centro de Innovacion en Química Avanzada (ORFEO-CINQA), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Yang Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
2
|
Tunstall-García H, Lawson T, Benincasa KA, Prentice AW, Saravanamuttu K, Evans RC. Interplay of Luminophores and Photoinitiators during Synthesis of Bulk and Patterned Luminescent Photopolymer Blends. ACS APPLIED POLYMER MATERIALS 2024; 6:6314-6322. [PMID: 38903400 PMCID: PMC11186006 DOI: 10.1021/acsapm.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/22/2024]
Abstract
Four-dimensional printing with embedded photoluminescence is emerging as an exciting area in additive manufacturing. Slim polymer films patterned with three-dimensional lattices of multimode cylindrical waveguides (waveguide-encoded lattices, WELs) with enhanced fields of view can be fabricated by localizing light as self-trapped beams within a photopolymerizable formulation. Luminescent WELs have potential applications as solar cell coatings and smart planar optical components. However, as luminophore-photoinitiator interactions are expected to change the photopolymerization kinetics, the design of robust luminescent photopolymer sols is nontrivial. Here, we use model photopolymer systems based on methacrylate-siloxane and epoxide homopolymers and their blends to investigate the influence of the luminophore Lumogen Violet (LV) on the photolysis kinetics of the Omnirad 784 photoinitiator through UV-vis absorbance spectroscopy. Initial rate analysis with different bulk polymers reveals differences in the pseudo-first-order rate constants in the absence and presence of LV, with a notable increase (∼40%) in the photolysis rate for the 1:1 blend. Fluorescence quenching studies, coupled with density functional theory calculations, establish that these differences arise due to electron transfer from the photoexcited LV to the ground-state photoinitiator molecules. We also demonstrate an in situ UV-vis absorbance technique that enables real-time monitoring of both waveguide formation and photoinitiator consumption during the fabrication of WELs. The in situ photolysis kinetics confirm that LV-photoinitiator interactions also influence the photopolymerization process during WEL formation. Our findings show that luminophores play a noninnocent role in photopolymerization and highlight the necessity for both careful consideration of the photopolymer formulation and a real-time monitoring approach to enable the fabrication of high-quality micropatterned luminescent polymeric films.
Collapse
Affiliation(s)
- Helen Tunstall-García
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Takashi Lawson
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Kathryn A. Benincasa
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton L8S 4M1, Canada
| | - Andrew W. Prentice
- School
of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | | | - Rachel C. Evans
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| |
Collapse
|
3
|
Feng J, Xu R, Huang J, Zhou T. Laser-induced locally controllable craze-like microstructures for polymer white structural coloration. MATERIALS HORIZONS 2024; 11:2469-2482. [PMID: 38465992 DOI: 10.1039/d4mh00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
As a promising candidate for the inkless coloring method, white structural color has undergone widespread investigation because of its fascinating properties. Recently, various methods have been developed to prepare disordered micro/nanostructures to produce white structural color. However, complex and high-cost processing procedures severely restrict the efficient and large-scale preparation of disordered micro/nanostructures for achieving white structural color. Herein, we report an ingenious way to realize white structural color by laser-inducing craze-like microstructures in core-shell microfiber-based polymers. A microfiber with copper nanowires (CuNWs) as the core surrounded by a polyformaldehyde (POM) shell is prepared by a simple in situ fibrillation method. The craze-like microstructures with micro/nanofibrils and micropores are locally constructed in polymers by a facile, efficient, inexpensive, controllable, and environmentally friendly laser direct writing (LDW) technique. Ascribed to the broadband visible light reflection caused by disordered microstructures, the laser-induced craze-like microstructures in polymers based on CuNWs@POM core-shell microfibers exhibit a distinct white structural color. This work paves a way for achieving white structural color and provides a novel insight for utilizing the previously considered useless crazing phenomenon.
Collapse
Affiliation(s)
- Jin Feng
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China.
| | - Rui Xu
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China.
| | - Jiameng Huang
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China.
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Gauci SC, Vranic A, Blasco E, Bräse S, Wegener M, Barner-Kowollik C. Photochemically Activated 3D Printing Inks: Current Status, Challenges, and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306468. [PMID: 37681744 DOI: 10.1002/adma.202306468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Indexed: 09/09/2023]
Abstract
3D printing with light is enabled by the photochemistry underpinning it. Without fine control over the ability to photochemically gate covalent bond formation by the light at a certain wavelength and intensity, advanced photoresists with functions spanning from on-demand degradability, adaptability, rapid printing speeds, and tailored functionality are impossible to design. Herein, recent advances in photoresist design for light-driven 3D printing applications are critically assessed, and an outlook of the outstanding challenges and opportunities is provided. This is achieved by classing the discussed photoresists in chemistries that function photoinitiator-free and those that require a photoinitiator to proceed. Such a taxonomy is based on the efficiency with which photons are able to generate covalent bonds, with each concept featuring distinct advantages and drawbacks.
Collapse
Affiliation(s)
- Steven C Gauci
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland, 4000, Australia
| | - Aleksandra Vranic
- Institute of Organic Chemistry (IOC), Karlsruhe institute of Technology (KIT), Fritz-Haber-Weg 6, 76133, Karlsruhe, Germany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Heidelberg University, 69120, Heidelberg, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe institute of Technology (KIT), Fritz-Haber-Weg 6, 76133, Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), 76133, Karlsruhe, Germany
| | - Martin Wegener
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), 76128, Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland, 4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Gauci SC, Du Prez FE, Holloway JO, Houck HA, Barner-Kowollik C. The Power of Action Plots: Unveiling Reaction Selectivity of Light-Stabilized Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2023; 62:e202310274. [PMID: 37551836 DOI: 10.1002/anie.202310274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
Exploiting the optimum wavelength of reactivity for efficient photochemical reactions has been well-established based on the development of photochemical action plots. We herein demonstrate the power of such action plots by a remarkable example of the wavelength-resolved photochemistry of two triazolinedione (TAD) substrates, i.e., aliphatic and aromatic substituted, that exhibit near identical absorption spectra yet possess vastly disparate photoreactivity. We present our findings in carefully recorded action plots, from which reaction selectivity is identified. The profound difference in photoreactivity is exploited by designing a 'hybrid' bisfunctional TAD molecule, enabling the formation of a dual-gated reaction manifold that demonstrates the exceptional and site-selective (photo)chemical behavior of both TAD substrates within a single small molecule.
Collapse
Affiliation(s)
- Steven C Gauci
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Filip E Du Prez
- Department of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281 S4-bis, 9000, Ghent, Belgium
| | - Joshua O Holloway
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
| | - Hannes A Houck
- Department of Chemistry and Institute of Advanced Study, University of Warwick, Library Road, Coventry, CV4 7AL, UK
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
7
|
Monfared V, Ramakrishna S, Nasajpour-Esfahani N, Toghraie D, Hekmatifar M, Rahmati S. Science and Technology of Additive Manufacturing Progress: Processes, Materials, and Applications. METALS AND MATERIALS INTERNATIONAL 2023:1-29. [PMID: 37359738 PMCID: PMC10238782 DOI: 10.1007/s12540-023-01467-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/05/2023] [Indexed: 06/28/2023]
Abstract
As a special review article, several significant and applied results in 3D printing and additive manufacturing (AM) science and technology are reviewed and studied. Which, the reviewed research works were published in 2020. Then, we would have another review article for 2021 and 2022. The main purpose is to collect new and applied research results as a useful package for researchers. Nowadays, AM is an extremely discussed topic and subject in scientific and industrial societies, as well as a new vision of the unknown modern world. Also, the future of AM materials is toward fundamental changes. Which, AM would be an ongoing new industrial revolution in the digital world. With parallel methods and similar technologies, considerable developments have been made in 4D in recent years. AM as a tool is related to the 4th industrial revolution. So, AM and 3D printing are moving towards the fifth industrial revolution. In addition, a study on AM is vital for generating the next developments, which are beneficial for human beings and life. Thus, this article presents the brief, updated, and applied methods and results published in 2020. Graphical Abstract
Collapse
Affiliation(s)
- Vahid Monfared
- Department of Mechanical Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117574 Singapore
| | | | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| | - Maboud Hekmatifar
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
| | - Sadegh Rahmati
- Department of Medical Science and Technology, IAU University, Central Branch, Tehran, Iran
| |
Collapse
|
8
|
Gauci SC, Ehrmann K, Gernhardt M, Tuten B, Blasco E, Frisch H, Jayalatharachchi V, Blinco JP, Houck HA, Barner-Kowollik C. Two Functions from a Single Photoresist: Tuning Microstructure Degradability from Light-Stabilized Dynamic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300151. [PMID: 36869278 DOI: 10.1002/adma.202300151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/17/2023] [Indexed: 06/02/2023]
Abstract
A photoresist-based on a light-stabilized dynamic material driven by an out-of-equilibrium photo-Diels-Alder reaction of triazolinediones with naphthalenes-whose ability to intrinsically degrade postprinting can be tuned by a simple adjustment of laser intensity during 3D laser lithography is introduced. The resist's ability to form stable networks under green light irradiation that degrade in the dark is transformed into a tunable degradable 3D printing material platform. In-depth characterization of the printed microstructures via atomic force microscopy before and during degradation reveals the high dependency of the final structures' properties on the writing parameters. Upon identifying the ideal writing parameters and their effect on the network structure, it is possible to selectively toggle between stable and fully degradable structures. This simplifies the direct laser writing manufacturing process of multifunctional materials significantly, which typically requires the use of separate resists and consecutive writing efforts to achieve degradable and nondegradable material sections.
Collapse
Affiliation(s)
- Steven C Gauci
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Katharina Ehrmann
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Marvin Gernhardt
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Bryan Tuten
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, 69120, Heidelberg, Germany
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Vishakya Jayalatharachchi
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - James P Blinco
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Hannes A Houck
- Department of Chemistry and Institute of Advanced Study, University of Warwick, Library Road, Coventry, CV4 7AL, UK
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Tan X, Martínez JAI, Ulliac G, Wang B, Wu L, Moughames J, Raschetti M, Laude V, Kadic M. Single-Step-Lithography Micro-Stepper Based on Frictional Contact and Chiral Metamaterial. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202128. [PMID: 35708218 DOI: 10.1002/smll.202202128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Stepper motors and actuators are among the main constituents of control motion devices. They are complex multibody systems with rather large overall volume due to their multifunctional parts and elaborate technological assembly processes. Miniaturization of individual parts is still posing assembly problems. In this paper, a single-step lithography process to fabricate a micro-stepper engine with an accurate micrometric rotation axis and an overall sub-millimeter size is demonstrated. The device is based on the frictional contacts and chiral metamaterials to get rid of the dependence on the accuracy of parts. The functional aspects of fabricated samples are discussed for many rotation cycles and for different frictional surfaces.
Collapse
Affiliation(s)
- Xiaojun Tan
- Institut FEMTO-ST, CNRS UMR 6174, University Bourgogne Franche-Comté, Besançon, 25000, France
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | | | - Gwenn Ulliac
- Institut FEMTO-ST, CNRS UMR 6174, University Bourgogne Franche-Comté, Besançon, 25000, France
| | - Bing Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Linzhi Wu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Johnny Moughames
- Institut FEMTO-ST, CNRS UMR 6174, University Bourgogne Franche-Comté, Besançon, 25000, France
| | - Marina Raschetti
- Institut FEMTO-ST, CNRS UMR 6174, University Bourgogne Franche-Comté, Besançon, 25000, France
| | - Vincent Laude
- Institut FEMTO-ST, CNRS UMR 6174, University Bourgogne Franche-Comté, Besançon, 25000, France
| | - Muamer Kadic
- Institut FEMTO-ST, CNRS UMR 6174, University Bourgogne Franche-Comté, Besançon, 25000, France
| |
Collapse
|
10
|
Du M, Houck HA, Yin Q, Xu Y, Huang Y, Lan Y, Yang L, Du Prez FE, Chang G. Force-reversible chemical reaction at ambient temperature for designing toughened dynamic covalent polymer networks. Nat Commun 2022; 13:3231. [PMID: 35680925 PMCID: PMC9184613 DOI: 10.1038/s41467-022-30972-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Force-reversible C-N bonds, resulting from the click chemistry reaction between triazolinedione (TAD) and indole derivatives, offer exciting opportunities for molecular-level engineering to design materials that respond to mechanical loads. Here, we displayed that TAD-indole adducts, acting as crosslink points in dry-state covalently crosslinked polymers, enable materials to display reversible stress-responsiveness in real time already at ambient temperature. Whereas the exergonic TAD-indole reaction results in the formation of bench-stable adducts, they were shown to dissociate at ambient temperature when embedded in a polymer network and subjected to a stretching force to recover the original products. Moreover, the nascent TAD moiety can spontaneously and immediately be recombined after dissociation with an indole reaction partners at ambient temperature, thus allowing for the adjustment of the polymer segment conformation and the maintenance of the network integrity by force-reversible behaviors. Overall, our strategy represents a general method to create toughened covalently crosslinked polymer materials with simultaneous enhancement of mechanical strength and ductility, which is quite challenging to achieve by conventional chemical methods. Weak force-activated covalent bonds as crosslink points can increase mechanical strength and ductility in polymers but the bonds, once broken, cannot be reformed in real time under ambient conditions leading to irreversible damage. Here, the authors demonstrate that triazolinedione (TAD)-indole adducts acting as crosslink points enable materials to display already at ambient temperature reversible stress-responsiveness in real time.
Collapse
Affiliation(s)
- Mengqi Du
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Hannes A Houck
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000, Ghent, Belgium
| | - Qiang Yin
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Yewei Xu
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Ying Huang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Yang Lan
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Li Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China. .,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000, Ghent, Belgium.
| | - Guanjun Chang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China. .,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Mo X, Ouyang L, Xiong Z, Zhang T. Advances in Digital Light Processing of Hydrogels. Biomed Mater 2022; 17. [PMID: 35477166 DOI: 10.1088/1748-605x/ac6b04] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Hydrogels, three-dimensional (3D) networks of hydrophilic polymers formed in water, are a significant type of soft matter used in fundamental and applied sciences. Hydrogels are of particular interest for biomedical applications, owing to their soft elasticity and good biocompatibility. However, the high water content and soft nature of hydrogels often make it difficult to process them into desirable solid forms. The development of 3D printing (3DP) technologies has provided opportunities for the manufacturing of hydrogels, by adopting a freeform fabrication method. Owing to its high printing speed and resolution, vat photopolymerization 3DP has recently attracted considerable interest for hydrogel fabrication, with digital light processing (DLP) becoming a widespread representative technique. Whilst acknowledging that other types of vat photopolymerization 3DP have also been applied for this purpose, we here only focus on DLP and its derivatives. In this review, we first comprehensively outline the most recent advances in both materials and fabrication, including the adaptation of novel hydrogel systems and advances in processing (e.g., volumetric printing and multimaterial integration). Secondly, we summarize the applications of hydrogel DLP, including regenerative medicine, functional microdevices, and soft robotics. To the best of our knowledge, this is the first time that either of these specific review focuses has been adopted in the literature. More importantly, we discuss the major challenges associated with hydrogel DLP and provide our perspectives on future trends. To summarize, this review aims to aid and inspire other researchers investigatng DLP, photocurable hydrogels, and the research fields related to them.
Collapse
Affiliation(s)
- Xingwu Mo
- Tsinghua University Department of Mechanical Engineering, Department of Mechanical Engineering, Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, "Biomanufacturing and Engineering Living Systems" Overseas Expertise Introduction Center for Discipline Innovation(111 Center), Beijing, 100084, CHINA
| | - Liliang Ouyang
- Tsinghua University Department of Mechanical Engineering, Department of Mechanical Engineering, Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, "Biomanufacturing and Engineering Living Systems" Overseas Expertise Introduction Center for Discipline Innovation(111 Center), Beijing, 100084, CHINA
| | - Zhuo Xiong
- Tsinghua University Department of Mechanical Engineering, Department of Mechanical Engineering, Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, "Biomanufacturing and Engineering Living Systems" Overseas Expertise Introduction Center for Discipline Innovation(111 Center), Beijing, 100084, CHINA
| | - Ting Zhang
- Tsinghua University Department of Mechanical Engineering, Department of Mechanical Engineering, Tsinghua University, Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, "Biomanufacturing and Engineering Living Systems" Overseas Expertise Introduction Center for Discipline Innovation(111 Center), Beijing, 100084, CHINA
| |
Collapse
|
12
|
Gil N, Thomas C, Mhanna R, Mauriello J, Maury R, Leuschel B, Malval JP, Clément JL, Gigmes D, Lefay C, Soppera O, Guillaneuf Y. Thionolactone as a Resin Additive to Prepare (Bio)degradable 3D Objects via VAT Photopolymerization. Angew Chem Int Ed Engl 2022; 61:e202117700. [PMID: 35128770 DOI: 10.1002/anie.202117700] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 12/22/2022]
Abstract
Three-dimensional (3D) printing and especially VAT photopolymerization leads to cross-linked materials with high thermal, chemical, and mechanical stability. Nevertheless, these properties are incompatible with requirements of degradability and re/upcyclability. We show here that thionolactone and in particular dibenzo[c,e]-oxepane-5-thione (DOT) can be used as an additive (2 wt %) to acrylate-based resins to introduce weak bonds into the network via a radical ring-opening polymerization process. The low amount of additive makes it possible to modify the printability of the resin only slightly, keep its resolution intact, and maintain the mechanical properties of the 3D object. The resin with additive was used in UV microfabrication and two-photon stereolithography setups and commercial 3D printers. The fabricated objects were shown to degrade in basic solvent as well in a homemade compost. The rate of degradation is nonetheless dependent on the size of the object. This feature was used to prepare 3D objects with support structures that could be easily solubilized.
Collapse
Affiliation(s)
- Noémie Gil
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire (UMR 7273), Av. Esc. Normendie-Niemen, Case 542, 13397, Cedex 20, France
| | - Constance Thomas
- Université de Haute-Alsace CNRS, IS2M UMR 7361, 68100, Mulhouse, France.,Université de Strasbourg, Strasbourg, France
| | - Rana Mhanna
- Université de Haute-Alsace CNRS, IS2M UMR 7361, 68100, Mulhouse, France.,Université de Strasbourg, Strasbourg, France
| | - Jessica Mauriello
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire (UMR 7273), Av. Esc. Normendie-Niemen, Case 542, 13397, Cedex 20, France
| | - Romain Maury
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire (UMR 7273), Av. Esc. Normendie-Niemen, Case 542, 13397, Cedex 20, France
| | - Benjamin Leuschel
- Université de Haute-Alsace CNRS, IS2M UMR 7361, 68100, Mulhouse, France.,Université de Strasbourg, Strasbourg, France
| | - Jean-Pierre Malval
- Université de Haute-Alsace CNRS, IS2M UMR 7361, 68100, Mulhouse, France.,Université de Strasbourg, Strasbourg, France
| | - Jean-Louis Clément
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire (UMR 7273), Av. Esc. Normendie-Niemen, Case 542, 13397, Cedex 20, France
| | - Didier Gigmes
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire (UMR 7273), Av. Esc. Normendie-Niemen, Case 542, 13397, Cedex 20, France
| | - Catherine Lefay
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire (UMR 7273), Av. Esc. Normendie-Niemen, Case 542, 13397, Cedex 20, France
| | - Olivier Soppera
- Université de Haute-Alsace CNRS, IS2M UMR 7361, 68100, Mulhouse, France.,Université de Strasbourg, Strasbourg, France
| | - Yohann Guillaneuf
- Aix-Marseille Univ., CNRS, Institut de Chimie Radicalaire (UMR 7273), Av. Esc. Normendie-Niemen, Case 542, 13397, Cedex 20, France
| |
Collapse
|
13
|
Gil N, Thomas C, Mhanna R, Mauriello J, Maury R, Leuschel B, Malval J, Clément J, Gigmes D, Lefay C, Soppera O, Guillaneuf Y. Thionolactone as a Resin Additive to Prepare (Bio)degradable 3D Objects via VAT Photopolymerization**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Noémie Gil
- Aix-Marseille Univ. CNRS, Institut de Chimie Radicalaire (UMR 7273) Av. Esc. Normendie-Niemen, Case 542 13397 Cedex 20 France
| | - Constance Thomas
- Université de Haute-Alsace CNRS IS2M UMR 7361 68100 Mulhouse France
- Université de Strasbourg Strasbourg France
| | - Rana Mhanna
- Université de Haute-Alsace CNRS IS2M UMR 7361 68100 Mulhouse France
- Université de Strasbourg Strasbourg France
| | - Jessica Mauriello
- Aix-Marseille Univ. CNRS, Institut de Chimie Radicalaire (UMR 7273) Av. Esc. Normendie-Niemen, Case 542 13397 Cedex 20 France
| | - Romain Maury
- Aix-Marseille Univ. CNRS, Institut de Chimie Radicalaire (UMR 7273) Av. Esc. Normendie-Niemen, Case 542 13397 Cedex 20 France
| | - Benjamin Leuschel
- Université de Haute-Alsace CNRS IS2M UMR 7361 68100 Mulhouse France
- Université de Strasbourg Strasbourg France
| | - Jean‐Pierre Malval
- Université de Haute-Alsace CNRS IS2M UMR 7361 68100 Mulhouse France
- Université de Strasbourg Strasbourg France
| | - Jean‐Louis Clément
- Aix-Marseille Univ. CNRS, Institut de Chimie Radicalaire (UMR 7273) Av. Esc. Normendie-Niemen, Case 542 13397 Cedex 20 France
| | - Didier Gigmes
- Aix-Marseille Univ. CNRS, Institut de Chimie Radicalaire (UMR 7273) Av. Esc. Normendie-Niemen, Case 542 13397 Cedex 20 France
| | - Catherine Lefay
- Aix-Marseille Univ. CNRS, Institut de Chimie Radicalaire (UMR 7273) Av. Esc. Normendie-Niemen, Case 542 13397 Cedex 20 France
| | - Olivier Soppera
- Université de Haute-Alsace CNRS IS2M UMR 7361 68100 Mulhouse France
- Université de Strasbourg Strasbourg France
| | - Yohann Guillaneuf
- Aix-Marseille Univ. CNRS, Institut de Chimie Radicalaire (UMR 7273) Av. Esc. Normendie-Niemen, Case 542 13397 Cedex 20 France
| |
Collapse
|
14
|
Rodrigues LL, Micallef AS, Pfrunder MC, Truong VX, McMurtrie JC, Dargaville TR, Goldmann AS, Feist F, Barner-Kowollik C. A Self-Catalyzed Visible Light Driven Thiol Ligation. J Am Chem Soc 2021; 143:7292-7297. [PMID: 33955743 DOI: 10.1021/jacs.1c03213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We introduce a highly efficient ligation system based on a visible light-induced rearrangement affording a thiophenol which rapidly undergoes thiol-Michael additions. Unlike conventional light-triggered thiol-ene/yne systems, which rely on the use of photocaged bases/nucleophiles, (organo)-photo catalysts, or radical photoinitiators, our system provides a light-induced reaction in the absence of any additives. The ligation is self-catalyzed via the pyridine mediated deprotonation of the photochemically generated thiophenol. Subsequently, the thiol-Michael reaction between the thiophenol anion and electron deficient alkynes/alkenes proceeds additive-free. Hereby, the underlying photoinduced rearrangement of o-thiopyrinidylbenzaldehyde (oTPyB) generating the free thiol is described for the first time. We studied the influence of various reactions conditions as well as solvents and substrates. We exemplify our findings in a polymer end group modification and obtained macromolecules with excellent end group fidelity.
Collapse
Affiliation(s)
- Leona L Rodrigues
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Aaron S Micallef
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Michael C Pfrunder
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Vinh X Truong
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - John C McMurtrie
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Tim R Dargaville
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Anja S Goldmann
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Florian Feist
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, Queensland 4000, Australia.,Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
15
|
Fabrication of Microfluidic Devices for Emulsion Formation by Microstereolithography. Molecules 2021; 26:molecules26092817. [PMID: 34068649 PMCID: PMC8126101 DOI: 10.3390/molecules26092817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/10/2021] [Accepted: 04/27/2021] [Indexed: 01/22/2023] Open
Abstract
Droplet microfluidics—the art and science of forming droplets—has been revolutionary for high-throughput screening, directed evolution, single-cell sequencing, and material design. However, traditional fabrication techniques for microfluidic devices suffer from several disadvantages, including multistep processing, expensive facilities, and limited three-dimensional (3D) design flexibility. High-resolution additive manufacturing—and in particular, projection micro-stereolithography (PµSL)—provides a promising path for overcoming these drawbacks. Similar to polydimethylsiloxane-based microfluidics 20 years ago, 3D printing methods, such as PµSL, have provided a path toward a new era of microfluidic device design. PµSL greatly simplifies the device fabrication process, especially the access to truly 3D geometries, is cost-effective, and it enables multimaterial processing. In this review, we discuss both the basics and recent innovations in PµSL; the material basis with emphasis on custom-made photopolymer formulations; multimaterial 3D printing; and, 3D-printed microfluidic devices for emulsion formation as our focus application. Our goal is to support researchers in setting up their own PµSL system to fabricate tailor-made microfluidics.
Collapse
|
16
|
Pang Y, Jiao H, Zou Y, Strehmel B. The NIR-sensitized cationic photopolymerization of oxetanes in combination with epoxide and acrylate monomers. Polym Chem 2021. [DOI: 10.1039/d1py00999k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
NIR-sensitized photopolymerisation at 805 nm facilitates the cationic polymerization of oxetanes. This can additionally be combined with free-radical polymerization.
Collapse
Affiliation(s)
- Yulian Pang
- College of Chemistry, Beijing Normal University, Beijing, PR China
| | - Hongjun Jiao
- Hubei Gurun Technology Co., LTD, Jingmen Chemical Recycling Industrial Park, 448000, Jingmen, Hubei Province, P. R. China
| | - Yingquan Zou
- College of Chemistry, Beijing Normal University, Beijing, PR China
| | - Bernd Strehmel
- Department of Chemistry, Institute for Coatings and Surface Chemistry Niederrhein University of Applied Sciences, Krefeld, Germany
| |
Collapse
|
17
|
Schmitt CW, Walden SL, Delafresnaye L, Houck HA, Barner L, Barner-Kowollik C. The bright and the dark side of the sphere: light-stabilized microparticles. Polym Chem 2021. [DOI: 10.1039/d0py01456g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce degradable microparticles, synthesized from prepolymers in a precipitation-like polymerization. The narrow disperse particles are stabilized with continuous irradiation of green light and can be spontaneously degraded in the dark.
Collapse
Affiliation(s)
- Christian W. Schmitt
- Centre for Materials Science
- Queensland University of Technology
- Brisbane
- Australia
- School of Chemistry and Physics
| | - Sarah L. Walden
- Centre for Materials Science
- Queensland University of Technology
- Brisbane
- Australia
- School of Chemistry and Physics
| | - Laura Delafresnaye
- Centre for Materials Science
- Queensland University of Technology
- Brisbane
- Australia
- School of Chemistry and Physics
| | - Hannes A. Houck
- Polymer Chemistry Research Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- Ghent 9000
| | - Leonie Barner
- Centre for Materials Science
- Queensland University of Technology
- Brisbane
- Australia
- Institute for Future Environments
| | - Christopher Barner-Kowollik
- Centre for Materials Science
- Queensland University of Technology
- Brisbane
- Australia
- School of Chemistry and Physics
| |
Collapse
|