1
|
Xu S, Meng L, Hu Q, Li F, Zhang J, Kong N, Xing Z, Hong G, Zhu X. Closed-Loop Control of Macrophage Engineering Enabled by Focused-Ultrasound Responsive Mechanoluminescence Nanoplatform for Precise Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2401398. [PMID: 39101277 DOI: 10.1002/smll.202401398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/14/2024] [Indexed: 08/06/2024]
Abstract
Macrophage engineering has emerged as a promising approach for modulating the anti-tumor immune response in cancer therapy. However, the spatiotemporal control and real-time feedback of macrophage regulatory process is still challenging, leading to off-targeting effect and delayed efficacy monitoring therefore raising risk of immune overactivation and serious side effects. Herein, a focused ultrasound responsive immunomodulator-loaded optical nanoplatform (FUSION) is designed to achieve spatiotemporal control and status reporting of macrophage engineering in vivo. Under the stimulation of focused ultrasound (FUS), the immune agonist encapsulated in FUSION can be released to induce selective macrophage M1 phenotype differentiation at tumor site and the near-infrared mechanoluminescence of FUSION is generated simultaneously to indicate the initiation of immune activation. Meanwhile, the persistent luminescence of FUSION is enhanced due to hydroxyl radical generation in the pro-inflammatory M1 macrophages, which can report the effectiveness of macrophage regulation. Then, macrophages labeled with FUSION as a living immunotherapeutic agent (FUSION-M) are utilized for tumor targeting and focused ultrasound activated, immune cell-based cancer therapy. By combining the on-demand activation and feedback to form a closed loop, the nanoplatform in this work holds promise in advancing the controllability of macrophage engineering and cancer immunotherapy for precision medicine.
Collapse
Affiliation(s)
- Sixin Xu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Lingkai Meng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Qian Hu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Fang Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Jieying Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Na Kong
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Zhenyu Xing
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - Xingjun Zhu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| |
Collapse
|
2
|
Yan T, Weng F, Ming Y, Zhu S, Zhu M, Wang C, Guo C, Zhu K. Luminescence Probes in Bio-Applications: From Principle to Practice. BIOSENSORS 2024; 14:333. [PMID: 39056609 PMCID: PMC11274413 DOI: 10.3390/bios14070333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Bioanalysis based on optical imaging has gained significant progress in the last few decades. Luminescence probes are capable of detecting, monitoring, and tracing particular biomolecules in complex biological systems to figure out the roles of these molecules in organisms. Considering the rapid development of luminescence probes for bio-applications and their promising future, we have attempted to explore the working principles and recent advances in bio-applications of luminescence probes, in the hope of helping readers gain a detailed understanding of luminescence probes developed in recent years. In this review, we first focus on the current widely used luminescence probes, including fluorescence probes, bioluminescence probes, chemiluminescence probes, afterglow probes, photoacoustic probes, and Cerenkov luminescence probes. The working principles for each type of luminescence probe are concisely described and the bio-application of the luminescence probes is summarized by category, including metal ions detection, secretion detection, imaging, and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunsheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; (T.Y.); (F.W.); (Y.M.); (S.Z.); (M.Z.)
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; (T.Y.); (F.W.); (Y.M.); (S.Z.); (M.Z.)
| | - Kai Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; (T.Y.); (F.W.); (Y.M.); (S.Z.); (M.Z.)
| |
Collapse
|
3
|
Shen S, Xie Q, Sahoo SR, Jin J, Baryshnikov GV, Sun H, Wu H, Ågren H, Liu Q, Zhu L. Edible Long-Afterglow Photoluminescent Materials for Bioimaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404888. [PMID: 38738587 DOI: 10.1002/adma.202404888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 05/14/2024]
Abstract
Confining luminophores into modified hydrophilic matrices or polymers is a straightforward and widely used approach for afterglow bioimaging. However, the afterglow quantum yield and lifetime of the related material remain unsatisfactory, severely limiting the using effect especially for deep-tissue time-resolved imaging. This fact largely stems from the dilemma between material biocompatibility and the quenching effect of water environment. Herein an in situ metathesis promoted doping strategy is presented, namely, mixing ≈10-3 weight ratio of organic-emitter multicarboxylates with inorganic salt reactants, followed by metathesis reactions to prepare a series of hydrophilic but water-insoluble organic-inorganic doping afterglow materials. This strategy leads to the formation of edible long-afterglow photoluminescent materials with superior biocompatibility and excellent bioimaging effect. The phosphorescence quantum yield of the materials can reach dozens of percent (the highest case: 66.24%), together with the photoluminescent lifetime lasting for coupes of seconds. Specifically, a long-afterglow barium meal formed by coronene salt emitter and BaSO4 matrix is applied into animal experiments by gavage, and bright stomach afterglow imaging is observed by instruments or mobile phone after ceasing the photoexcitation with deep tissue penetration. This strategy allows a flexible dosage of the materials during bioimaging, facilitating the development of real-time probing and theranostic technology.
Collapse
Affiliation(s)
- Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Qishan Xie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Smruti Ranjan Sahoo
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| | - Jian Jin
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Glib V Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| | - Hao Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hongwei Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Qingsong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
- Department of Burns Surgery, First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
4
|
Zhao Y, Yang X, Yang L, Xing F, Liu C, Di Y, Cao G, Wei S, Yang X, Zhang X, Liu Y, Gan Z. Advanced Optical Information Encryption Enabled by Polychromatic and Stimuli-Responsive Luminescence of Sb-Doped Double Perovskites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308390. [PMID: 38626374 PMCID: PMC11200084 DOI: 10.1002/advs.202308390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/08/2024] [Indexed: 04/18/2024]
Abstract
The smart materials with multi-color and stimuli-responsive luminescence are very promising for next generation of optical information encryption and anti-counterfeiting, but these materials are still scarce. Herein, a multi-level information encryption strategy is developed based on the polychromatic emission of Sb-doped double perovskite powders (SDPPs). Cs2NaInCl6:Sb, Cs2KInCl6:Sb, and Cs2AgInCl6:Sb synthesized through coprecipitation methods exhibit broadband emissions with bright blue, cyan, and orange colors, respectively. The information transmitted by specific SDPP is encrypted when different SDPPs are mixed. The confidential information can be decrypted by selecting the corresponding narrowband filter. Then, an encrypted quick response (QR) code with improved security is demonstrated based on this multi-channel selection strategy. Moreover, the three types of SDPPs exhibit three different water-triggered luminescence switching behaviors. The confidential information represented by Cs2NaInCl6:Sb can be erased/recovered through a simple water spray/drying. Whereas, the information collected from the green channel is permanently erased by moisture, which fundamentally avoids information leakage. Therefore, different encryption schemes can be designed to meet a variety of encryption requirements. The multicolor and stimuli-responsive luminescence greatly enrich the flexibility of optical information encryption, which leaps the level of security and confidentiality.
Collapse
Affiliation(s)
- Yijun Zhao
- Center for Future Optoelectronic Functional MaterialsSchool of Computer and Electronic Information/School of Artificial IntelligenceNanjing Normal UniversityNanjing210023China
| | - Xingru Yang
- Center for Future Optoelectronic Functional MaterialsSchool of Computer and Electronic Information/School of Artificial IntelligenceNanjing Normal UniversityNanjing210023China
| | - Lun Yang
- Institute for Advanced MaterialsHubei Key Laboratory of Pollutant Analysis & Reuse TechnologyHubei Normal UniversityHuangshi435002China
| | - Fangjian Xing
- Center for Future Optoelectronic Functional MaterialsSchool of Computer and Electronic Information/School of Artificial IntelligenceNanjing Normal UniversityNanjing210023China
| | - Cihui Liu
- Center for Future Optoelectronic Functional MaterialsSchool of Computer and Electronic Information/School of Artificial IntelligenceNanjing Normal UniversityNanjing210023China
| | - Yunsong Di
- Center for Future Optoelectronic Functional MaterialsSchool of Computer and Electronic Information/School of Artificial IntelligenceNanjing Normal UniversityNanjing210023China
| | - Guiyuan Cao
- Nanophotonics Research CenterShenzhen Key Laboratory of Micro‐Scale Optical Information TechnologyShenzhen UniversityShenzhen518060China
| | - Shibiao Wei
- Nanophotonics Research CenterShenzhen Key Laboratory of Micro‐Scale Optical Information TechnologyShenzhen UniversityShenzhen518060China
| | - Xifeng Yang
- College of Electronic and Information EngineeringChangshu Institute of TechnologySuzhou215500China
| | - Xiaowei Zhang
- Department of Electrical Engineering and Computer ScienceNingbo UniversityNingbo315211China
| | - Yushen Liu
- College of Electronic and Information EngineeringChangshu Institute of TechnologySuzhou215500China
| | - Zhixing Gan
- Center for Future Optoelectronic Functional MaterialsSchool of Computer and Electronic Information/School of Artificial IntelligenceNanjing Normal UniversityNanjing210023China
| |
Collapse
|
5
|
Lei L, Yi M, Wang Y, Hua Y, Zhang J, Prasad PN, Xu S. Dual heterogeneous interfaces enhance X-ray excited persistent luminescence for low-dose 3D imaging. Nat Commun 2024; 15:1140. [PMID: 38326310 PMCID: PMC10850100 DOI: 10.1038/s41467-024-45390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Lanthanide-doped fluoride nanoparticles (NPs) showcase adjustable X-ray-excited persistent luminescence (XEPL), holding significant promise for applications in three-dimensional (3D) imaging through the creation of flexible X-ray detectors. However, a dangerous high X-ray irradiation dose rate and complicated heating procedure are required to generate efficient XEPL for high-resolution 3D imaging, which is attributed to a lack of strategies to significantly enhance the XEPL intensity. Here we report that the XEPL intensity of a series of lanthanide activators (Dy, Pr, Er, Tm, Gd, Tb) is greatly improved by constructing dual heterogeneous interfaces in a double-shell nanostructure. Mechanistic studies indicate that the employed core@shell@shell structure could not only passivate the surface quenchers to lower the non-radiative relaxation possibility, but also reduce the interfacial Frenkel defect formation energy leading to increase the trap concentration. By employing a NPs containing flexible film as the scintillation screen, the inside 3D electrical structure of a watch was clearly achieved based on the delayed XEPL imaging and 3D reconstruction procedure. We foresee that these findings will promote the development of advanced X-ray activated persistent fluoride NPs and offer opportunities for safer and more efficient X-ray imaging techniques in a number of scientific and practical areas.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China.
| | - Minghao Yi
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China
| | - Yubin Wang
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China
| | - Youjie Hua
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China
| | - Junjie Zhang
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - Shiqing Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, 310018, P.R. China.
| |
Collapse
|
6
|
Yang L, Zhao M, Chen W, Zhu J, Xu W, Li Q, Pu K, Miao Q. A Highly Bright Near-Infrared Afterglow Luminophore for Activatable Ultrasensitive In Vivo Imaging. Angew Chem Int Ed Engl 2024; 63:e202313117. [PMID: 38018329 DOI: 10.1002/anie.202313117] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Afterglow luminescence imaging probes, with long-lived emission after cessation of light excitation, have drawn increasing attention in biomedical imaging field owing to their elimination of autofluorescence. However, current afterglow agents always suffer from an unsatisfactory signal intensity and complex systems consisting of multiple ingredients. To address these issues, this study reports a near-infrared (NIR) afterglow luminophore (TPP-DO) by chemical conjugation of an afterglow substrate and a photosensitizer acting as both an afterglow initiator and an energy relay unit into a single molecule, resulting in an intramolecular energy transfer process to improve the afterglow brightness. The constructed TPP-DO NPs emit a strong NIR afterglow luminescence with a signal intensity of up to 108 p/s/cm2 /sr at a low concentration of 10 μM and a low irradiation power density of 0.05 W/cm2 , which is almost two orders of magnitude higher than most existing organic afterglow probes. The highly bright NIR afterglow luminescence with minimized background from TPP-DO NPs allows a deep tissue penetration depth ability. Moreover, we develop a GSH-activatable afterglow probe (Q-TPP-DO NPs) for ultrasensitive detection of subcutaneous tumor with the smallest tumor volume of 0.048 mm3 , demonstrating the high potential for early diagnosis and imaging-guided surgical resection of tumors.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Min Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jieli Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Weina Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
7
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Yang R, Yang D, Wang M, Zhang F, Ji X, Zhang M, Jia M, Chen X, Wu D, Li XJ, Zhang Y, Shi Z, Shan C. High-Efficiency and Stable Long-Persistent Luminescence from Undoped Cesium Cadmium Chlorine Crystals Induced by Intrinsic Point Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207331. [PMID: 36825674 PMCID: PMC10214269 DOI: 10.1002/advs.202207331] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/11/2023] [Indexed: 05/27/2023]
Abstract
Application of long-persistent luminescence (LPL) materials in many technological fields is in the spotlight. However, the exploration of undoped persistent luminescent materials with high emission efficiency, robust stability, and long persistent duration remains challenging. Here, inorganic cesium cadmium chlorine (CsCdCl3 ) is developed, featuring remarkable LPL characteristics at room temperature, which is synthesized by a facile hydrothermal method. Excited by ultraviolet light, the CsCdCl3 crystals exhibit an intense yellow emission with a large photoluminescence quantum yield of ≈90%. Different from the reported systems with lanthanides or transition metals doping, the CsCdCl3 crystals without dopants perform yellow LPL with a long duration of 6000 s. Joint experiment-theory characterizations reveal the intrinsic point defects of CsCdCl3 act as the trap centers of excited electrons and the carrier de-trapping process from such trap sites to localized emission centers contributes to the LPL. Encouraged by the attractive fluorescence and persistent luminescence as well as good stability of CsCdCl3 against environment oxygen/moisture (75%), heat (100 °C for 10 h), and ultraviolet light irradiation, an effective dual-mode information storage-reading application is demonstrated. The results open up a new frontier for exploring LPL materials without dopants and provide an opportunity for advanced information storage compatible for practical applications.
Collapse
Affiliation(s)
- Ruoting Yang
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Dongwen Yang
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Meng Wang
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Fei Zhang
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Xinzhen Ji
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Mengyao Zhang
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Mochen Jia
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Xu Chen
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Di Wu
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Xin Jian Li
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Yu Zhang
- State Key Laboratory on Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin UniversityQianjin Street 2699Changchun130012P. R. China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| | - Chongxin Shan
- Key Laboratory of Materials Physics of Ministry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityDaxue Road 75Zhengzhou450052P. R. China
| |
Collapse
|
9
|
Lee C, Schuck PJ. Photodarkening, Photobrightening, and the Role of Color Centers in Emerging Applications of Lanthanide-Based Upconverting Nanomaterials. Annu Rev Phys Chem 2023; 74:415-438. [PMID: 37093661 DOI: 10.1146/annurev-physchem-082720-032137] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Upconverting nanoparticles (UCNPs) compose a class of luminescent materials that utilize the unique wavelength-converting properties of lanthanide (Ln) ions for light-harvesting applications, photonics technologies, and biological imaging and sensing experiments. Recent advances in UCNP design have shed light on the properties of local color centers, both intrinsic and controllably induced, within these materials and their potential influence on UCNP photophysics. In this review, we describe fundamental studies of color centers in Ln-based materials, including research into their origins and their roles in observed photodarkening and photobrightening mechanisms. We place particular focus on the new functionalities that are enabled by harnessing the properties of color centers within Ln-doped nanocrystals, illustrated through applications in afterglow-based bioimaging, X-ray detection, all-inorganic nanocrystal photoswitching, and fully rewritable optical patterning and memory.
Collapse
Affiliation(s)
- Changhwan Lee
- Department of Mechanical Engineering, Columbia University, New York, NY, USA; ,
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY, USA; ,
| |
Collapse
|
10
|
Wang R, Shi J, Zhang Q, Peng Q, Sun X, Song L, Zhang Y. Dual-Triggered Near-Infrared Persistent Luminescence Nanoprobe for Autofluorescence-Free Imaging-Guided Precise Therapy of Rheumatoid Arthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205320. [PMID: 36461720 PMCID: PMC9896051 DOI: 10.1002/advs.202205320] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/12/2022] [Indexed: 06/17/2023]
Abstract
Rheumatoid arthritis (RA) is a common, chronic, and highly disabling autoimmune disease characterized by difficult treatment, long disease duration, and easy recurrence. The development and application of high-sensitivity theranostic probes for RA that will facilitate precise monitoring of disease progression and enable effective treatment are currently hotspots in the field of RA theranostics. In this study, mZMI@HA, a dual-triggered theranostics nanoprobe, is constructed based on near-infrared persistent luminescence nanoparticles (NIR-PLNPs) for precise RA treatment and therapeutic evaluation. This is the first reported use of high-sensitivity autofluorescence-free imaging based on NIR-PLNPs for precise RA treatment and therapeutic evaluation. Compared with the NIR fluorescence imaging probe-indocyanine green, the signal-to-background ratio of persistent luminescence (PersL) imaging is improved nearly 14-fold. Using PersL imaging to guide photothermal therapy and controllable drug release through NIR/pH-responsiveness, the progress of collagen-induced RA is relieved. Additionally, the therapeutic evaluation of RA by PersL imaging is consistent with clinical micro-computed tomography and histological analyses. This study demonstrates the potential of NIR-PLNPs for high-sensitivity imaging-guided RA treatment, providing a new strategy for RA precise theranostics.
Collapse
Affiliation(s)
- Ruoping Wang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
- University of Chinese Academy of SciencesBeijing100049China
| | - Junpeng Shi
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qian Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
| | - Qiang Peng
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhou, Fujian350108China
| | - Liang Song
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
| | - Yun Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou, FujianChina
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional MaterialsXiamen Institute of Rare Earth Materials, Haixi InstituteChinese Academy of SciencesXiamen, Fujian361021China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
11
|
Feng Y, Chen T, Rao Q, Xie X, Zhang L, Lv Y. Time-Resolved Persistent Luminescence Encoding for Multiplexed Severe Acute Respiratory Syndrome Coronavirus 2 Detection. Anal Chem 2022; 94:16967-16974. [DOI: 10.1021/acs.analchem.2c04788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yang Feng
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Tingyan Chen
- College of Mathematics, Sichuan University, Chengdu, Sichuan610064, China
| | - Qianli Rao
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Xiaobo Xie
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
| |
Collapse
|
12
|
Kim SJ, Choi M, Hong G, Hahn SK. Controlled afterglow luminescent particles for photochemical tissue bonding. LIGHT, SCIENCE & APPLICATIONS 2022; 11:314. [PMID: 36302759 PMCID: PMC9613626 DOI: 10.1038/s41377-022-01011-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Upconversion materials (UCMs) have been developed to convert tissue-penetrating near-infrared (NIR) light into visible light. However, the low energy conversion efficiency of UCMs has limited their further biophotonic applications. Here, we developed controlled afterglow luminescent particles (ALPs) of ZnS:Ag,Co with strong and persistent green luminescence for photochemical tissue bonding (PTB). The co-doping of Ag+ and Co2+ ions into ZnS:Ag,Co particles with the proper vacancy formation of host ions resulted in high luminescence intensity and long-term afterglow. In addition, the ALPs of ZnS:Ag,Co could be recharged rapidly under short ultraviolet (UV) irradiation, which effectively activated rose bengal (RB) in hyaluronate-RB (HA-RB) conjugates for the crosslinking of dissected collagen layers without additional light irradiation. The remarkable PTB of ZnS:Ag,Co particles with HA-RB conjugates was confirmed by in vitro collagen fibrillogenesis assay, in vivo animal wound closure rate analysis, and in vivo tensile strength evaluation of incised skin tissues. Taken together, we could confirm the feasibility of controlled ALPs for various biophotonic applications.
Collapse
Affiliation(s)
- Seong-Jong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea
| | - Minji Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.
| |
Collapse
|
13
|
Manipulation of time-dependent multicolour evolution of X-ray excited afterglow in lanthanide-doped fluoride nanoparticles. Nat Commun 2022; 13:5739. [PMID: 36180442 PMCID: PMC9525643 DOI: 10.1038/s41467-022-33489-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
External manipulation of emission colour is of significance for scientific research and applications, however, the general stimulus-responsive colour modulation method requires both stringent control of microstructures and continously adjustment of particular stimuli conditions. Here, we introduce pathways to manipulate the kinetics of time evolution of both intensity and spectral characteristics of X-ray excited afterglow (XEA) by regioselective doping of lanthanide activators in core-shell nanostructures. Our work reported here reveals the following phenomena: 1. The XEA intensities of multiple lanthanide activators are significantly enhanced via incorporating interstitial Na+ ions inside the nanocrystal structure. 2. The XEA intensities of activators exhibit diverse decay rates in the core and the shell and can largely be tuned separately, which enables us to realize a series of core@shell NPs featuring distinct time-dependent afterglow colour evolution. 3. A core/multi-shell NP structure can be designed to simultaneously generate afterglow, upconversion and downshifting to realize multimode time-dependent multicolour evolutions. These findings can promote the development of superior XEA and plentiful spectral manipulation, opening up a broad range of applications ranging from multiplexed biosensing, to high-capacity information encryption, to multidimensional displays and to multifunctional optoelectronic devices. X-ray activated afterglow nanomaterials are desirable components for advanced optoelectronic applications. Here, the authors present pathways to modulate the stimulus-responsive color emissions in lanthanide-doped fluoride core-shell nanoparticles.
Collapse
|
14
|
Wang Z, Li A, Zhao Z, Zhu T, Zhang Q, Zhang Y, Tan Y, Yuan WZ. Accessing Excitation- and Time-Responsive Afterglows from Aqueous Processable Amorphous Polymer Films through Doping and Energy Transfer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202182. [PMID: 35684938 DOI: 10.1002/adma.202202182] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Smart afterglow materials in response to excitation and delay time, including crystals, polymeric films, and carbon dots, have attracted considerable attention on account of their fundamental value in photophysics and promising applications in optoelectronics. However, the fabrication of amorphous and flexible polymer films with fine control remains underexplored. Herein, new doped polymer films based on sodium alginate and aromatic carboxylates are developed, which demonstrate following advantages: (i) easy and fast fabrication through the aqueous solution process, (ii) flexible, transparent, and re-dissolvable characteristics, (iii) multi-tunable afterglow colors from blue to red and even white with fine control. Specifically, even better controllability can be achieved through co-doping and triplet-to-singlet Förster resonance energy transfer (TS-FRET). Multimode advanced anti-counterfeiting of these materials is demonstrated using their excitation- and time-dependent as well as TS-FRET-mediated afterglow colors.
Collapse
Affiliation(s)
- Zhengshuo Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological textile Technology, School of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Anze Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Zihao Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Tianwen Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Yongzhi Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological textile Technology, School of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| | - Yeqiang Tan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological textile Technology, School of Materials Science and Engineering, Qingdao University, No. 308 Ningxia Rd., Shinan District, Qingdao, 266071, China
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang District, Shanghai, 200240, China
| |
Collapse
|
15
|
Yang F, Wu X, Cui H, Ou Z, Jiang S, Cai S, Zhou Q, Wong BG, Huang H, Hong G. A biomineral-inspired approach of synthesizing colloidal persistent phosphors as a multicolor, intravital light source. SCIENCE ADVANCES 2022; 8:eabo6743. [PMID: 35905189 PMCID: PMC9337768 DOI: 10.1126/sciadv.abo6743] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/14/2022] [Indexed: 05/19/2023]
Abstract
Many in vivo biological techniques, such as fluorescence imaging, photodynamic therapy, and optogenetics, require light delivery into biological tissues. The limited tissue penetration of visible light discourages the use of external light sources and calls for the development of light sources that can be delivered in vivo. A promising material for internal light delivery is persistent phosphors; however, there is a scarcity of materials with strong persistent luminescence of visible light in a stable colloid to facilitate systemic delivery in vivo. Here, we used a bioinspired demineralization (BID) strategy to synthesize stable colloidal solutions of solid-state phosphors in the range of 470 to 650 nm and diameters down to 20 nm. The exceptional brightness of BID-produced colloids enables their utility as multicolor luminescent tags in vivo with favorable biocompatibility. Because of their stable dispersion in water, BID-produced nanophosphors can be delivered systemically, acting as an intravascular colloidal light source to internally excite genetically encoded fluorescent reporters within the mouse brain.
Collapse
Affiliation(s)
- Fan Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Xiang Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Han Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Shan Jiang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Sa Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Qi Zhou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Bryce G. Wong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Hans Huang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Anjong TF, Choi H, Yoo J, Bak Y, Cho Y, Kim D, Lee S, Lee K, Kim BG, Kim S. Multifunction-Harnessed Afterglow Nanosensor for Molecular Imaging of Acute Kidney Injury In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200245. [PMID: 35315219 DOI: 10.1002/smll.202200245] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Afterglow is superior to other optical modalities for biomedical applications in that it can exclude the autofluorescence background. Nevertheless, afterglow has rarely been applied to the high-contrast "off-to-on" activatable sensing scheme because the complicated afterglow systems hamper the additional inclusion of sensory functions while preserving the afterglow luminescence. Herein, a simple formulation of a multifunctional components-incorporated afterglow nanosensor (MANS) is developed for the superoxide-responsive activatable afterglow imaging of cisplatin-induced kidney injury. A multifunctional iridium complex (Ir-OTf) is designed to recover its photoactivities (phosphorescence and the ability of singlet oxygen-generating afterglow initiator) upon exposure to superoxide. To construct the nanoscopic afterglow detection system (MANS), Ir-OTf is incorporated with another multifunctional molecule (rubrene) in the polymeric micellar nanoparticle, where rubrene also plays dual roles as an afterglow substrate and a luminophore. The multiple functions covered by Ir-OTf and rubrene renders the composition of MANS quite simple, which exhibits superoxide-responsive "off-to-on" activatable afterglow luminescence for periods longer than 11 min after the termination of pre-excitation. Finally, MANS is successfully applied to the molecular imaging of cisplatin-induced kidney injury with activatable afterglow signals responsive to pathologically overproduced superoxide in a mouse model without autofluorescence background.
Collapse
Affiliation(s)
- Tikum Florence Anjong
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Honghwan Choi
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Organic and Nano System Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jounghyun Yoo
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yecheol Bak
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuri Cho
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dojin Kim
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seokyung Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bong-Gi Kim
- Department of Organic and Nano System Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sehoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
17
|
Xie Y, Song Y, Sun G, Hu P, Bednarkiewicz A, Sun L. Lanthanide-doped heterostructured nanocomposites toward advanced optical anti-counterfeiting and information storage. LIGHT, SCIENCE & APPLICATIONS 2022; 11:150. [PMID: 35595732 PMCID: PMC9122995 DOI: 10.1038/s41377-022-00813-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 05/27/2023]
Abstract
The continuously growing importance of information storage, transmission, and authentication impose many new demands and challenges for modern nano-photonic materials and information storage technologies, both in security and storage capacity. Recently, luminescent lanthanide-doped nanomaterials have drawn much attention in this field because of their photostability, multimodal/multicolor/narrowband emissions, and long luminescence lifetime. Here, we report a multimodal nanocomposite composed of lanthanide-doped upconverting nanoparticle and EuSe semiconductor, which was constructed by utilizing a cation exchange strategy. The nanocomposite can emit blue and white light under 365 and 394 nm excitation, respectively. Meanwhile, the nanocomposites show different colors under 980 nm laser excitation when the content of Tb3+ ions is changed in the upconversion nanoparticles. Moreover, the time-gating technology is used to filter the upconversion emission of a long lifetime from Tb3+ or Eu3+, and the possibilities for modulating the emission color of the nanocomposites are further expanded. Based on the advantage of multiple tunable luminescence, the nanocomposites are designed as optical modules to load optical information. This work enables multi-dimensional storage of information and provides new insights into the design and fabrication of next-generation storage materials.
Collapse
Affiliation(s)
- Yao Xie
- Department of Physics, College of Sciences, Shanghai University, Shanghai, 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yapai Song
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Pengfei Hu
- Instrumental Analysis & Research Center, Shanghai University, Shanghai, 200444, China
| | - Artur Bednarkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422, Wrocław, Poland
| | - Lining Sun
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China.
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China.
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
18
|
Huang K, Le N, Wang JS, Huang L, Zeng L, Xu WC, Li Z, Li Y, Han G. Designing Next Generation of Persistent Luminescence: Recent Advances in Uniform Persistent Luminescence Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107962. [PMID: 34877721 DOI: 10.1002/adma.202107962] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Persistent luminescence is a unique optical process where long-lasting afterglow persists after the cessation of excitation. Nanoscale persistent luminescent materials are getting increased research interest from various fields due to their unique optical property. In recent years, inspiring achievements have been made to produce uniform persistent luminescence nanoparticles (PLNPs) in a controllable manner, unleashing their fascinating potential, surpassing other types of luminescent materials in a wide variety of application such as high-contrast bioimaging and high-resolution X-ray detection. In this review, the evolution of uniform PLNPs, from their bulk phosphor counterparts, to the "top-down" preparation of nanoscale persistent luminescent materials, to the recent "bottom-up" synthesis of uniform PLNPs is first summarized. The respective milestones of uniform PLNPs prepared by templated synthesis, aqueous synthesis, and colloidal synthesis are highlighted. The key optical properties that can be enhanced in uniform PLNPs, including increasing the persistent luminescence intensity, tuning the excitation irradiance, as well as the emission wavelengths are then analyzed. Detailed strategies to enhance each optical property are also discussed in various sections. Finally, future challenges are highlighted with respect to the perspectives on the development of next-generation PLNPs with novel applications.
Collapse
Affiliation(s)
- Kai Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Nhu Le
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Chemistry Department, Worcester State University, Worcester, MA, 01602, USA
| | - Justin S Wang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Ling Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Le Zeng
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Wei-Chu Xu
- Chemistry Department, Worcester State University, Worcester, MA, 01602, USA
| | - Zhanjun Li
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yang Li
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Gang Han
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
19
|
Cui M, Dai P, Ding J, Li M, Sun R, Jiang X, Wu M, Pang X, Liu M, Zhao Q, Song B, He Y. Millisecond-Range Time-Resolved Bioimaging Enabled through Ultralong Aqueous Phosphorescence Probes. Angew Chem Int Ed Engl 2022; 61:e202200172. [PMID: 35098631 DOI: 10.1002/anie.202200172] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/12/2022]
Abstract
Probes featuring room-temperature phosphorescence (RTP) are promising tools for time-resolved imaging. It is worth noting that the time scale of time-resolved bioimaging generally ranges around the microsecond level, because of the short-lived emission. Herein, the first example of millisecond-range time-resolved bioimaging is illustrated, which is enabled through a kind of ultralong aqueous phosphorescence probes (i.e., cyclo-(Arg-Gly-AspD-Tyr-Cys)-conjugated zinc-doped silica nanospheres), with a RTP emission lasting for ≈5 s and a lifetime as long as 743.7 ms. We demonstrate that live cells and deep tumor tissue in mice can be specifically targeted through immune-phosphorescence imaging, with a high signal-to-background ratio (SBR) value of ≈69 for in vitro imaging, and ≈627 for in vivo imaging, respectively. We further show that, compared to that of fluorescence imaging, the SBR enhancement of millisecond-range time-resolved in vivo bioimaging is up to 105 times.
Collapse
Affiliation(s)
- Mingyue Cui
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Peiling Dai
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jiali Ding
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Manjing Li
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Rong Sun
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Xin Jiang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Menglin Wu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Xueke Pang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Mingzhu Liu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| |
Collapse
|
20
|
Cui M, Dai P, Ding J, Li M, Sun R, Jiang X, Wu M, Pang X, Liu M, Zhao Q, Song B, He Y. Millisecond‐Range Time‐Resolved Bioimaging Enabled through Ultralong Aqueous Phosphorescence Probes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mingyue Cui
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Peiling Dai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jiali Ding
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Manjing Li
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Rong Sun
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Xin Jiang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Menglin Wu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Xueke Pang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Mingzhu Liu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology) Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| |
Collapse
|
21
|
Zhang P, Xie W, Wang Z, Lin Z, Huang X, Ju Z, Liu W. Time-dependent dynamic multicolor afterglow of simple LiGa 5O 8:Eu 3+/Tb 3+ particles for advanced anticounterfeiting and encryption. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00836j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A series of LiGa5O8:Eu3+/Tb3+ phosphors exhibit time-dependent dynamic multicolor afterglow from blue to red or green over several seconds after ceasing the excitation.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- College of Chemistry and Biology Engineering, Hechi University, Yizhou 546300, P. R. China
| | - Wanying Xie
- College of Chemistry and Biology Engineering, Hechi University, Yizhou 546300, P. R. China
| | - Zhenbin Wang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, P. R. China
| | - Zenggang Lin
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiuxiang Huang
- College of Chemistry and Biology Engineering, Hechi University, Yizhou 546300, P. R. China
| | - Zhenghua Ju
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
22
|
|
23
|
Xu M, Liu J, Su X, Zhou Q, Yuan H, Wen Y, Cheng Y, Li F. Lanthanide-containing persistent luminescence materials with superbright red afterglow and excellent solution processability. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1099-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Zheng W, Li X, Liu N, Yan S, Wang X, Zhang X, Liu Y, Liang Y, Zhang Y, Liu H. Solution-Grown Chloride Perovskite Crystal of Red Afterglow. Angew Chem Int Ed Engl 2021; 60:24450-24455. [PMID: 34453771 DOI: 10.1002/anie.202110308] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 01/29/2023]
Abstract
We report the growth of a halide-based double perovskite, Cs2 Nax Ag1-x InCl6 :y%Mn, via a facile hydrothermal reaction at 180 °C. Through a co-doping strategy of both Na+ and Mn2+ , the as-prepared crystals exhibited a red afterglow featuring a high color purity (ca. 100 %) and a long duration time (>5400 s), three orders of magnitude longer than those solution-processed organic afterglow crystals. The energy transfer (ET) process between self-trapped excitons (STE) and activators was investigated through time-resolved spectroscopy, which suggested an ET efficiency up to 41 %. Importantly, the nominal concentration of dopants, especially in the case of Na+ , was found a useful tool to control both energy level and number distribution of traps. Cryogenic afterglow measurements suggested that the afterglow phenomenon was likely governed by thermal-activated exciton diffusion and electron tunneling process.
Collapse
Affiliation(s)
- Wei Zheng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Xiuling Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Nianqiao Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China.,School of Physics and Technology, University of Jinan, Jinan, 250022, Shandong, China
| | - Shao Yan
- Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| | - Xiaojia Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Xiangzhou Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Yeqi Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Yanjie Liang
- Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| | - Yuhai Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China.,State Key Laboratory of Crystal Materials, Shandong University, 27 Shandanan Road, Jinan, Shandong, 250100, China
| |
Collapse
|
25
|
Zheng W, Li X, Liu N, Yan S, Wang X, Zhang X, Liu Y, Liang Y, Zhang Y, Liu H. Solution‐Grown Chloride Perovskite Crystal of Red Afterglow. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wei Zheng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 Shandong China
| | - Xiuling Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 Shandong China
| | - Nianqiao Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 Shandong China
- School of Physics and Technology University of Jinan Jinan 250022 Shandong China
| | - Shao Yan
- Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials Ministry of Education Shandong University Jinan 250061 P. R. China
| | - Xiaojia Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 Shandong China
| | - Xiangzhou Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 Shandong China
| | - Yeqi Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 Shandong China
| | - Yanjie Liang
- Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials Ministry of Education Shandong University Jinan 250061 P. R. China
| | - Yuhai Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 Shandong China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 Shandong China
- State Key Laboratory of Crystal Materials Shandong University 27 Shandanan Road Jinan Shandong 250100 China
| |
Collapse
|
26
|
Wei X, Kershaw SV, Huang X, Jiao M, Beh CC, Liu C, Sarmadi M, Rogach AL, Jing L. Continuous Flow Synthesis of Persistent Luminescent Chromium-Doped Zinc Gallate Nanoparticles. J Phys Chem Lett 2021; 12:7067-7075. [PMID: 34291946 DOI: 10.1021/acs.jpclett.1c01767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Near-infrared persistent luminescent (or afterglow) nanoparticles with the biologically appropriate size are promising materials for background-free imaging applications, while the conventional batch synthesis hardly allows for reproducibility in controlling particle size because of the random variations of reaction parameters. Here, highly efficient chemistry was matched with an automated continuous flow approach for directly synthesizing differently sized ZnGa2O4:Cr3+ (ZGC) nanoparticles exhibiting long persistent luminescence. The key flow factors responsible for regulating the particle formation process, especially the high pressure-temperature and varied residence time, were investigated to be able to tune the particle size from 2 to 6 nm and to improve the persistent luminescence. Upon silica shell encapsulation of the nanoparticles accompanied by an annealing process, the persistent luminescence of the resulting particles was remarkably enhanced. High-fidelity automated flow chemistry demonstrated here offers an alternative for producing ZGC nanoparticles and will be helpful for other compositionally complex metal oxide nanoparticles.
Collapse
Affiliation(s)
- Xiaojun Wei
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Stephen V Kershaw
- Department of Materials Science and Engineering & Centre for Functional Photonics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Xiaodan Huang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Mingxia Jiao
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
- Key Laboratory of Sensor Analysis of Tumor Marker Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chau Chun Beh
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley, Western Australia 6102, Australia
| | - Chunyan Liu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Morteza Sarmadi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrey L Rogach
- Department of Materials Science and Engineering & Centre for Functional Photonics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| |
Collapse
|
27
|
Cui M, Li M, Wang J, Chen R, Xu Z, Wang J, Han J, Hu G, Sun R, Jiang X, Song B, He Y. Hydrothermal Synthesis of Zinc‐Doped Silica Nanospheres Simultaneously Featuring Stable Fluorescence and Long‐Lived Room‐Temperature Phosphorescence. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyue Cui
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Manjing Li
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Jinhua Wang
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Runzhi Chen
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Zhaojian Xu
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Jingyang Wang
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Junfei Han
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Guyue Hu
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Rong Sun
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Xin Jiang
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Bin Song
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University Jiangsu Suzhou 215123 China
| |
Collapse
|
28
|
Cui M, Li M, Wang J, Chen R, Xu Z, Wang J, Han J, Hu G, Sun R, Jiang X, Song B, He Y. Hydrothermal Synthesis of Zinc-Doped Silica Nanospheres Simultaneously Featuring Stable Fluorescence and Long-Lived Room-Temperature Phosphorescence. Angew Chem Int Ed Engl 2021; 60:15490-15496. [PMID: 33904244 DOI: 10.1002/anie.202103200] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/09/2021] [Indexed: 01/28/2023]
Abstract
Fluorescence and phosphorescence are known as two kinds of fundamental optical signals, which have been used for myriad applications. To date, simultaneous activation of stable fluorescence and long-lived room-temperature phosphorescence (RTP) emission in the aqueous phase remains a big challenge. We prepare zinc-doped silica nanospheres (Zn@SiNSs) with fluorescence and RTP properties using a facile hydrothermal synthetic strategy. For the as-prepared Zn@SiNSs, the recombination of electrons and holes in defects and defect-stabilized excitons derived from oxygen vacancy/C=N bonds lead to the production of stable fluorescence and long-lived RTP (emission lasting for ≈9 s, quantum yield (QY): ≈33.6 %, RTP lifetime: ≈236 ms). The internal Si-O bonded networks and hydrophilic surface in Zn@SiNSs can reduce nonradiative decay to form self-protective RTP, and also provide high water solubility, excellent pH- and photostability.
Collapse
Affiliation(s)
- Mingyue Cui
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Manjing Li
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Jinhua Wang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Runzhi Chen
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Zhaojian Xu
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Jingyang Wang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Junfei Han
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Guyue Hu
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Rong Sun
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Xin Jiang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Bin Song
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123, China
| |
Collapse
|
29
|
Zhuang Y, Chen D, Chen W, Zhang W, Su X, Deng R, An Z, Chen H, Xie RJ. X-ray-charged bright persistent luminescence in NaYF 4:Ln 3+@NaYF 4 nanoparticles for multidimensional optical information storage. LIGHT, SCIENCE & APPLICATIONS 2021; 10:132. [PMID: 34162833 PMCID: PMC8222364 DOI: 10.1038/s41377-021-00575-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 05/09/2023]
Abstract
NaYF4:Ln3+, due to its outstanding upconversion characteristics, has become one of the most important luminescent nanomaterials in biological imaging, optical information storage, and anticounterfeiting applications. However, the large specific surface area of NaYF4:Ln3+ nanoparticles generally leads to serious nonradiative transitions, which may greatly hinder the discovery of new optical functionality with promising applications. In this paper, we report that monodispersed nanoscale NaYF4:Ln3+, unexpectedly, can also be an excellent persistent luminescent (PersL) material. The NaYF4:Ln3+ nanoparticles with surface-passivated core-shell structures exhibit intense X-ray-charged PersL and narrow-band emissions tunable from 480 to 1060 nm. A mechanism for PersL in NaYF4:Ln3+ is proposed by means of thermoluminescence measurements and host-referred binding energy (HRBE) scheme, which suggests that some lanthanide ions (such as Tb) may also act as effective electron traps to achieve intense PersL. The uniform and spherical NaYF4:Ln3+ nanoparticles are dispersible in solvents, thus enabling many applications that are not accessible for traditional PersL phosphors. A new 3-dimensional (2 dimensions of planar space and 1 dimension of wavelength) optical information-storage application is demonstrated by inkjet-printing multicolor PersL nanoparticles. The multicolor persistent luminescence, as an emerging and promising emissive mode in NaYF4:Ln3+, will provide great opportunities for nanomaterials to be applied to a wider range of fields.
Collapse
Affiliation(s)
- Yixi Zhuang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome and College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Dunrong Chen
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome and College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wenjing Chen
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome and College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wenxing Zhang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xin Su
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315221, China
| | - Renren Deng
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Rong-Jun Xie
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome and College of Materials, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
30
|
Ding D, Li S, Xu H, Zhu L, Meng S, Liu J, Lin Q, Leung SW, Sun W, Li Y, Chen H. X-ray-Activated Simultaneous Near-Infrared and Short-Wave Infrared Persistent Luminescence Imaging for Long-Term Tracking of Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16166-16172. [PMID: 33797886 DOI: 10.1021/acsami.1c02372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Both short-wave infrared (SWIR: 900-1700 nm) and near-infrared (NIR: 650-900 nm) luminescence possess lower optical scattering and higher signal-to-noise in deep tissues than conventional luminescence, gaining increasing attention in biomedicine. Herein, we designed mesoporous silica-coated Yb-doped magnesium germanate nanoparticles (mMGOs) with excellent two-in-one NIR and SWIR persistent luminescence after X-ray irradiation by simply regulating the valence of rare-earth ions, which also possess high cargo loading and a controlled release profile in the tumor region. The investigations in vitro and in vivo showed that mMGOs were repeatedly activated to realize rechargeable persistent luminescence imaging for tracking cargo delivery in mice. Moreover, the stimulative drug-release profile inhibited tumor growth effectively. Both of the X-ray excited two-in-one NIR and SWIR persistent luminescence imaging not only allowed for rechargeable imaging of deep tumors but also achieved long-term tracking with a remarkable tumor inhibition effect.
Collapse
Affiliation(s)
- Dandan Ding
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shi Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Han Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Luchao Zhu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Shanshan Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jun Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Qin Lin
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Stephen Wan Leung
- Department of Radiation Oncology, Kaohsiung Yuan's General Hospital, Kaohsiung 80249, Taiwan
| | - Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yimin Li
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|