1
|
Fu B, Luo D, Li C, Feng Y, Liang W. Advances in micro-/nanorobots for cancer diagnosis and treatment: propulsion mechanisms, early detection, and cancer therapy. Front Chem 2025; 13:1537917. [PMID: 39981265 PMCID: PMC11839623 DOI: 10.3389/fchem.2025.1537917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
In recent years, medical micro-/nanorobots (MNRs) have emerged as a promising technology for diagnosing and treating malignant tumors. MNRs enable precise, targeted actions at the cellular level, addressing several limitations of conventional cancer diagnosis and treatment, such as insufficient early diagnosis, nonspecific drug delivery, and chemoresistance. This review provides an in-depth discussion of the propulsion mechanisms of MNRs, including chemical fuels, external fields (light, ultrasound, magnetism), biological propulsion, and hybrid methods, highlighting their respective advantages and limitations. Additionally, we discuss novel approaches for tumor diagnosis, precision surgery, and drug delivery, emphasizing their potential clinical applications. Despite significant advancements, challenges such as biocompatibility, propulsion efficiency, and clinical translation persist. This review examines the current state of MNR applications and outlines future directions for their development, with the aim of enhancing their diagnostic and therapeutic efficacy and facilitating their integration into clinical practice.
Collapse
Affiliation(s)
- Baiyang Fu
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Luo
- College of Automotive and Mechanical Engineering, Harbin Cambridge University, Harbin, China
| | - Chao Li
- Department of Rheumatology and Immunology, Daqing Oilfield General Hospital, Daqing, China
| | - Yiwen Feng
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, China
| | - Wenlong Liang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Wang Y, Li Z, Yu R, Chen Y, Wang D, Zhao W, Ge S, Liu H, Li J. Metal-phenolic network biointerface-mediated cell regulation for bone tissue regeneration. Mater Today Bio 2025; 30:101400. [PMID: 39759849 PMCID: PMC11699301 DOI: 10.1016/j.mtbio.2024.101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Bone tissue regeneration presents a significant challenge in clinical treatment due to inadequate coordination between implant materials and reparative cells at the biomaterial-bone interfaces. This gap underscores the necessity of enhancing interaction modulation between cells and biomaterials, which is a crucial focus in bone tissue engineering. Metal-polyphenolic networks (MPN) are novel inorganic-organic hybrid complexes that are formed through coordination interactions between phenolic ligands and metal ions. These networks provide a multifunctional platform for biomedical applications, with the potential for tailored design and modifications. Despite advances in understanding MPN and their role in bone tissue regeneration, a comprehensive overview of the related mechanisms is lacking. Here, we address this gap by focusing on MPN biointerface-mediated cellular regulatory mechanisms during bone regeneration. We begin by reviewing the natural healing processes of bone defects, followed by a detailed examination of MPN, including their constituents and distinctive characteristics. We then explore the regulatory influence of MPN biointerfaces on key cellular activities during bone regeneration. Additionally, we illustrate their primary applications in addressing inflammatory bone loss, regenerating critical-size bone defects, and enhancing implant-bone integration. In conclusion, this review elucidates how MPN-based interfaces facilitate effective bone tissue regeneration, advancing our understanding of material interface-mediated cellular control and the broader field of tissue engineering.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Zhibang Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Ruiqing Yu
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Yi Chen
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Danyang Wang
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Weiwei Zhao
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Shaohua Ge
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250012, China
| |
Collapse
|
3
|
Wang Y, Chen H, Xie L, Liu J, Zhang L, Yu J. Swarm Autonomy: From Agent Functionalization to Machine Intelligence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312956. [PMID: 38653192 PMCID: PMC11733729 DOI: 10.1002/adma.202312956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Swarm behaviors are common in nature, where individual organisms collaborate via perception, communication, and adaptation. Emulating these dynamics, large groups of active agents can self-organize through localized interactions, giving rise to complex swarm behaviors, which exhibit potential for applications across various domains. This review presents a comprehensive summary and perspective of synthetic swarms, to bridge the gap between the microscale individual agents and potential applications of synthetic swarms. It is begun by examining active agents, the fundamental units of synthetic swarms, to understand the origins of their motility and functionality in the presence of external stimuli. Then inter-agent communications and agent-environment communications that contribute to the swarm generation are summarized. Furthermore, the swarm behaviors reported to date and the emergence of machine intelligence within these behaviors are reviewed. Eventually, the applications enabled by distinct synthetic swarms are summarized. By discussing the emergent machine intelligence in swarm behaviors, insights are offered into the design and deployment of autonomous synthetic swarms for real-world applications.
Collapse
Affiliation(s)
- Yibin Wang
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Hui Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Leiming Xie
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Jinbo Liu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Li Zhang
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong Kong999077China
| | - Jiangfan Yu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| |
Collapse
|
4
|
Xu W, Lin Z, Kim CJ, Wang Z, Wang T, Cortez-Jugo C, Caruso F. Assembly and biological functions of metal-biomolecule network nanoparticles formed by metal-phosphonate coordination. SCIENCE ADVANCES 2024; 10:eads9542. [PMID: 39671490 PMCID: PMC11641004 DOI: 10.1126/sciadv.ads9542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024]
Abstract
Metal-organic networks have attracted widespread interest owing to their hybrid physicochemical properties. Natural biomolecules represent attractive building blocks for these materials because of their inherent biological function and high biocompatibility; however, assembling them into coordination network materials, especially nanoparticles (NPs), is challenging. Herein, we exploit the coordination between metal ions and phosphonate groups, which are present in many biomolecules, to form metal-biomolecule network (MBN) NPs in aqueous solution at room temperature. Various phosphonate-containing biomolecules, including plant phytate, DNA, and proteins, were used to assemble MBN NPs with tunable physicochemical properties (e.g., size). In addition to excellent biocompatibility and high cargo-loading efficiency (>95%), these two-component MBN NPs have various biological functionalities, including endosomal escape, immune regulation, and molecular recognition, thus offering advantages over nonbiomolecular-based coordination materials. This work expands our understanding of metal-organic chemistry with the emerging class of metal-biomolecule systems and provides a pathway for incorporating biofunctionalities into advanced coordination materials for diverse fields.
Collapse
Affiliation(s)
| | | | - Chan-Jin Kim
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhaoran Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tianzheng Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
He T, Liu S, Yang Y, Chen X. Application of Micro/Nanomotors in Environmental Remediation: A Review. MICROMACHINES 2024; 15:1443. [PMID: 39770197 PMCID: PMC11679765 DOI: 10.3390/mi15121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
The advent of self-propelled micro/nanomotors represents a paradigm shift in the field of environmental remediation, offering a significant enhancement in the efficiency of conventional operations through the exploitation of the material phenomenon of active motion. Despite the considerable promise of micro/nanomotors for applications in environmental remediation, there has been a paucity of reviews that have focused on this area. This review identifies the current opportunities and challenges in utilizing micro/nanomotors to enhance contaminant degradation and removal, accelerate bacterial death, or enable dynamic environmental monitoring. It illustrates how mobile reactors or receptors can dramatically increase the speed and efficiency of environmental remediation processes. These studies exemplify the wide range of environmental applications of dynamic micro/nanomotors associated with their continuous motion, force, and function. Finally, the review discusses the challenges of transferring these exciting advances from the experimental scale to larger-scale field applications.
Collapse
Affiliation(s)
| | | | | | - Xuebo Chen
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan 114051, China; (T.H.); (S.L.); (Y.Y.)
| |
Collapse
|
6
|
Lin Z, Liu H, Richardson JJ, Xu W, Chen J, Zhou J, Caruso F. Metal-phenolic network composites: from fundamentals to applications. Chem Soc Rev 2024; 53:10800-10826. [PMID: 39364569 DOI: 10.1039/d3cs00273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Composites with tailored compositions and functions have attracted widespread scientific and industrial interest. Metal-phenolic networks (MPNs), which are composed of phenolic ligands and metal ions, are amorphous adhesive coordination polymers that have been combined with various functional components to create composites with potential in chemistry, biology, and materials science. This review aims to provide a comprehensive summary of both fundamental knowledge and advancements in the field of MPN composites. The advantages of amorphous MPNs, over crystalline metal-organic frameworks, for fabricating composites are highlighted, including their mild synthesis, diverse interactions, and numerous intrinsic functionalities. The formation mechanisms and state-of-the-art synthesis strategies of MPN composites are summarized to guide their rational design. Subsequently, a detailed overview of the chemical interactions and structure-property relationships of composites based on different functional components (e.g., small molecules, polymers, biomacromolecules) is provided. Finally, perspectives are offered on the current challenges and future directions of MPN composites. This tutorial review is expected to serve as a fundamental guide for researchers in the field of metal-organic materials and to provide insights and avenues to enhance the performance of existing functional materials in applications across diverse fields.
Collapse
Affiliation(s)
- Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Hai Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Joseph J Richardson
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
7
|
Wang Y, Zhao Y, Ma S, Fu M, Wu M, Li J, Wu K, Zhuang X, Lu Z, Guo J. Injective Programmable Proanthocyanidin-Coordinated Zinc-Based Composite Hydrogel for Infected Bone Repair. Adv Healthc Mater 2024; 13:e2302690. [PMID: 37885334 DOI: 10.1002/adhm.202302690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Effectively integrating infection control and osteogenesis to promote infected bone repair is challenging. Herein, injective programmable proanthocyanidin (PC)-coordinated zinc-based composite hydrogels (ipPZCHs) are developed by compositing antimicrobial and antioxidant PC-coordinated zinc oxide (ZnO) microspheres with thioether-grafted sodium alginate (TSA), followed by calcium chloride (CaCl2 ) crosslinking. Responsive to the high endogenous reactive oxygen species (ROS) microenvironment in infected bone defects, the hydrophilicity of TSA can be significantly improved, to trigger the disintegration of ipPZCHs and the fast release of PC-coordinated ZnOs. This together with the easily dissociable PC-Zn2+ coordination induced fast release of antimicrobial zinc (Zn2+ ) with/without silver (Ag+ ) ions from PC-coordinated ZnOs (for Zn2+ , > 100 times that of pure ZnO) guarantees the strong antimicrobial activity of ipPZCHs. The exogenous ROS generated by ZnO and silver nanoparticles during the antimicrobial process further speeds up the disintegration of ipPZCHs, augmenting the antimicrobial efficacy. At the same time, ROS-responsive degradation/disintegration of ipPZCHs vacates space for bone ingrowth. The concurrently released strong antioxidant PC scavenges excess ROS thus enhances the immunomodulatory (in promoting the anti-inflammatory phenotype (M2) polarization of macrophages) and osteoinductive properties of Zn2+ , thus the infected bone repair is effectively promoted via the aforementioned programmable and self-adaptive processes.
Collapse
Affiliation(s)
- Yue Wang
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Yitao Zhao
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Shiyuan Ma
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Meimei Fu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Min Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Jintao Li
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Keke Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Zhihui Lu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
- Regenerative Medicine and Tissue Repair Material Research Center, Huangpu Institute of Materials, 88 Yonglong Avenue of Xinlong Town, Guangzhou, 511363, P. R. China
| | - Jinshan Guo
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Guangzhou, 510515, P. R. China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, P. R. China
- Regenerative Medicine and Tissue Repair Material Research Center, Huangpu Institute of Materials, 88 Yonglong Avenue of Xinlong Town, Guangzhou, 511363, P. R. China
- Guangzhou New Materials Science Center, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 88 Yonglong Avenue of Xinlong Town, Guangzhou, 511361, P. R. China
| |
Collapse
|
8
|
Sridhar V, Yildiz E, Rodríguez‐Camargo A, Lyu X, Yao L, Wrede P, Aghakhani A, Akolpoglu BM, Podjaski F, Lotsch BV, Sitti M. Designing Covalent Organic Framework-Based Light-Driven Microswimmers toward Therapeutic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301126. [PMID: 37003701 PMCID: PMC11475396 DOI: 10.1002/adma.202301126] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
While micromachines with tailored functionalities enable therapeutic applications in biological environments, their controlled motion and targeted drug delivery in biological media require sophisticated designs for practical applications. Covalent organic frameworks (COFs), a new generation of crystalline and nanoporous polymers, offer new perspectives for light-driven microswimmers in heterogeneous biological environments including intraocular fluids, thus setting the stage for biomedical applications such as retinal drug delivery. Two different types of COFs, uniformly spherical TABP-PDA-COF sub-micrometer particles and texturally nanoporous, micrometer-sized TpAzo-COF particles are described and compared as light-driven microrobots. They can be used as highly efficient visible-light-driven drug carriers in aqueous ionic and cellular media. Their absorption ranging down to red light enables phototaxis even in deeper and viscous biological media, while the organic nature of COFs ensures their biocompatibility. Their inherently porous structures with ≈2.6 and ≈3.4 nm pores, and large surface areas allow for targeted and efficient drug loading even for insoluble drugs, which can be released on demand. Additionally, indocyanine green (ICG) dye loading in the pores enables photoacoustic imaging, optical coherence tomography, and hyperthermia in operando conditions. This real-time visualization of the drug-loaded COF microswimmers enables unique insights into the action of photoactive porous drug carriers for therapeutic applications.
Collapse
Affiliation(s)
- Varun Sridhar
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Erdost Yildiz
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Andrés Rodríguez‐Camargo
- Nanochemistry DepartmentMax Planck Institute for Solid State Research70569StuttgartGermany
- Department of ChemistryUniversity of Stuttgart70569StuttgartGermany
| | - Xianglong Lyu
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Liang Yao
- Nanochemistry DepartmentMax Planck Institute for Solid State Research70569StuttgartGermany
| | - Paul Wrede
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH Zurich8092ZurichSwitzerland
| | - Amirreza Aghakhani
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Birgul M. Akolpoglu
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH Zurich8092ZurichSwitzerland
| | - Filip Podjaski
- Nanochemistry DepartmentMax Planck Institute for Solid State Research70569StuttgartGermany
- Department of ChemistryImperial College LondonW12 0BZLondonUK
| | - Bettina V. Lotsch
- Nanochemistry DepartmentMax Planck Institute for Solid State Research70569StuttgartGermany
- Department of ChemistryUniversity of Stuttgart70569StuttgartGermany
- Cluster of Excellence e‐conversion85748Lichtenbergstrasse 4GarchingGermany
- Department of ChemistryUniversity of Munich (LMU)81377MunichGermany
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH Zurich8092ZurichSwitzerland
- School of Medicine and College of EngineeringKoç University34450IstanbulTurkey
| |
Collapse
|
9
|
Zhang X, Qu Q, Yang A, Wang J, Cheng W, Zhou A, Xiong R, Huang C. Prussian blue composite microswimmer based on alginate-chitosan for biofilm removal. Int J Biol Macromol 2023:124963. [PMID: 37244336 DOI: 10.1016/j.ijbiomac.2023.124963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/10/2023] [Accepted: 05/05/2023] [Indexed: 05/29/2023]
Abstract
Bacterial infections pose a serious threat to public health, causing worldwide morbidity and about 80 % of bacterial infections are related to biofilm. Removing biofilm without antibiotics remains an interdisciplinary challenge. To solve this problem, we presented a dual-power driven antibiofilm system Prussian blue composite microswimmers based on alginate-chitosan, which designed into an asymmetric structure to achieve self-driven in the fuel solution and magnetic field. Prussian blue embedded in the microswimmers given it the ability to convert light and heat, catalyze Fenton reaction, and produce bubbles and reactive oxygen species. Moreover, with the addition of Fe3O4, the microswimmers could move in group under external magnetic field. The composite microswimmers displayed excellent antibacterial activity against S. aureus biofilm with an efficiency as high as 86.94 %. It is worth mentioning that the microswimmers were fabricated with device-simple and low-cost gas-shearing method. This system integrating physical destruction, chemical damage such chemodynamic therapy and photothermal therapy, and finally kill the plankton bacteria embedded in biofilm. This approach may cause an autonomous, multifunctional antibiofilm platform to promote the present most areas with harmful biofilm difficult to locate the surface for removal.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qingli Qu
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Anquan Yang
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, PR China
| | - Jing Wang
- Zhejiang OSM Group Co., Ltd, Huzhou 313000, PR China
| | - Weixia Cheng
- Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Aying Zhou
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ranhua Xiong
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chaobo Huang
- Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
10
|
Chen Y, Zhuo M, Wen X, Chen W, Zhang K, Li M. Organic Photothermal Cocrystals: Rational Design, Controlled Synthesis, and Advanced Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206830. [PMID: 36707495 PMCID: PMC10104673 DOI: 10.1002/advs.202206830] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Indexed: 05/22/2023]
Abstract
Organic photothermal cocrystals, integrating the advantages of intrinsic organic cocrystals and the fascinating photothermal conversion ability, hold attracted considerable interest in both basic science and practical applications, involving photoacoustic imaging, seawater desalination, and photothermal therapy, and so on. However, these organic photothermal cocrystals currently suffer individual cases discovered step by step, as well as the deep and systemic investigation in the corresponding photothermal conversion mechanisms is rarely carried out, suggesting a huge challenge for their further developments. Therefore, it is urgently necessary to investigate and explore the rational design and synthesis of high-performance organic photothermal cocrystals for future applications. This review first and systematically summarizes the organic photothermal cocrystal in terms of molecular classification, the photothermal conversion mechanism, and their corresponding applications. The timely interpretation of the cocrystal photothermal effect will provide broad prospects for the purposeful fabrication of excellent organic photothermal cocrystals toward great efficiency, low cost, and multifunctionality.
Collapse
Affiliation(s)
- Ye‐Tao Chen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Ming‐Peng Zhuo
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Xinyi Wen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Wenbin Chen
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
| | - Ke‐Qin Zhang
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ming‐De Li
- College of Chemistry and Chemical Engineering and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong ProvinceShantou University515063ShantouChina
- Chemistry and Chemical Engineering Guangdong LaboratoryShantou UniversityShantou515031China
| |
Collapse
|
11
|
Guo Z, Liu T, Gao W, Iffelsberger C, Kong B, Pumera M. Multi-Wavelength Light-Responsive Metal-Phenolic Network-Based Microrobots for Reactive Species Scavenging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210994. [PMID: 36591619 DOI: 10.1002/adma.202210994] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Light-driven microrobots with different propulsion mechanisms have attracted great attention in microrobot synthesis and applications. However, current systems rely heavily on precious metals, using a complex synthesis process and limited working wavelength. It is therefore of great interest to fabricate microrobots that can be driven by multi-wavelength irradiation and with simple components. Here, metal-phenolic network (MPN)-based microrobots are synthesized using a sacrificial polystyrene bead template and an extra capping is added to regulate their symmetry. The hollow MPN microrobots with different layers of capping are capable of moving under both near-infrared (NIR) irradiation and ultraviolet (UV) irradiation, without fuel. The velocity of the microrobots under irradiation is altered by the thickness of the asymmetric capping and their motion could be manipulated remotely by switching the NIR or UV irradiation on and off. With light-driven mobility, the reactive oxygen and nitrogen species (RONS) scavenging activity of the microrobots is significantly increased. Therefore, this proposed microrobot system provides a synthesis strategy to develop asymmetric light-navigated microrobots for future medical treatment with tunable structure, multi-wavelength light-responsive mobility, and great RONS scavenging capacity.
Collapse
Affiliation(s)
- Ziyi Guo
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Czech Republic
| | - Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Wanli Gao
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Czech Republic
| | - Christian Iffelsberger
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Czech Republic
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, China
- Shandong Research Institute, Fudan University, Shandong, 250103, China
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200, Czech Republic
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
12
|
Smart micro- and nanorobots for water purification. NATURE REVIEWS BIOENGINEERING 2023; 1:236-251. [PMID: 37064655 PMCID: PMC9901418 DOI: 10.1038/s44222-023-00025-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Less than 1% of Earth's freshwater reserves is accessible. Industrialization, population growth and climate change are further exacerbating clean water shortage. Current water-remediation treatments fail to remove most pollutants completely or release toxic by-products into the environment. The use of self-propelled programmable micro- and nanoscale synthetic robots is a promising alternative way to improve water monitoring and remediation by overcoming diffusion-limited reactions and promoting interactions with target pollutants, including nano- and microplastics, persistent organic pollutants, heavy metals, oils and pathogenic microorganisms. This Review introduces the evolution of passive micro- and nanomaterials through active micro- and nanomotors and into advanced intelligent micro- and nanorobots in terms of motion ability, multifunctionality, adaptive response, swarming and mutual communication. After describing removal and degradation strategies, we present the most relevant improvements in water treatment, highlighting the design aspects necessary to improve remediation efficiency for specific contaminants. Finally, open challenges and future directions are discussed for the real-world application of smart micro- and nanorobots.
Collapse
|
13
|
Ercole F, Kim CJ, Dao NV, Tse WKL, Whittaker MR, Caruso F, Quinn JF. Synthesis of Thermoresponsive, Catechol-Rich Poly(ethylene glycol) Brush Polymers for Attenuating Cellular Oxidative Stress. Biomacromolecules 2023; 24:387-399. [PMID: 36469858 DOI: 10.1021/acs.biomac.2c01211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report a platform to integrate customizable quantities of catechol units into polymers by reacting caffeic acid carbonic anhydride with polymers having pendant amine groups. Brush poly(ethylene glycol)-caffeamide (PEG-CAF) copolymers based on oligo(ethylene glycol)methyl ether methacrylate (OEGMA500) were obtained with a catechol content of approximately 30, 40, and 50 mol % (vs OEGMA content). Owing to the hydrophobicity of the introduced CAF groups, the catechol copolymers exhibited cloud points in the range of 23-46 °C and were used to fabricate thermoresponsive FeIII metal-phenolic network capsules. Polymers with the highest CAF content (50 mol %) proved most effective for attenuating reactive oxygen species levels in vitro, in co-cultured fibroblasts, and breast cancer cells, even in the presence of an exogenous oxidant source. The reported approach to synthesize customizable catechol materials could be generalized to other amine-functional polymers, with potential biomedical applications such as adhesives or stimuli-responsive drug delivery systems.
Collapse
Affiliation(s)
- Francesca Ercole
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Chan-Jin Kim
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nam V Dao
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Physical Chemistry and Physics, Hanoi University of Pharmacy, Hanoi 10000, Vietnam
| | - Warren K L Tse
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Michael R Whittaker
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John F Quinn
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
14
|
Wang J, Dong Y, Ma P, Wang Y, Zhang F, Cai B, Chen P, Liu BF. Intelligent Micro-/Nanorobots for Cancer Theragnostic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201051. [PMID: 35385160 DOI: 10.1002/adma.202201051] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most intractable diseases owing to its high mortality rate and lack of effective diagnostic and treatment tools. Advancements in micro-/nanorobot (MNR)-assisted sensing, imaging, and therapeutics offer unprecedented opportunities to develop MNR-based cancer theragnostic platforms. Unlike ordinary nanoparticles, which exhibit Brownian motion in biofluids, MNRs overcome viscous resistance in an ultralow Reynolds number (Re << 1) environment by effective self-propulsion. This unique locomotion property has motivated the advanced design and functionalization of MNRs as a basis for next-generation cancer-therapy platforms, which offer the potential for precise distribution and improved permeation of therapeutic agents. Enhanced barrier penetration, imaging-guided operation, and biosensing are additionally studied to enable the promising cancer-related applications of MNRs. Herein, the recent advances in MNR-based cancer therapy are comprehensively addresses, including actuation engines, diagnostics, medical imaging, and targeted drug delivery; promising research opportunities that can have a profound impact on cancer therapy over the next decade is highlighted.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yue Dong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yu Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fangyu Zhang
- Department of Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bocheng Cai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
15
|
Yamaguchi T, Ogawa M. Photoinduced movement: how photoirradiation induced the movements of matter. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:796-844. [PMID: 36465797 PMCID: PMC9718566 DOI: 10.1080/14686996.2022.2142955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Pioneered by the success on active transport of ions across membranes in 1980 using the regulation of the binding properties of crown ethers with covalently linked photoisomerizable units, extensive studies on the movements by using varied interactions between moving objects and environments have been reported. Photoinduced movements of various objects ranging from molecules, polymers to microscopic particles were discussed from the aspects of the driving for the movements, materials design to achieve the movements and systems design to see and to utilize the movements are summarized in this review.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
16
|
Li Y, Miao Y, Yang L, Zhao Y, Wu K, Lu Z, Hu Z, Guo J. Recent Advances in the Development and Antimicrobial Applications of Metal-Phenolic Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202684. [PMID: 35876402 PMCID: PMC9507365 DOI: 10.1002/advs.202202684] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/23/2022] [Indexed: 05/04/2023]
Abstract
Due to the abuse of antibiotics and the emergence of multidrug resistant microorganisms, medical devices, and related biomaterials are at high risk of microbial infection during use, placing a heavy burden on patients and healthcare systems. Metal-phenolic networks (MPNs), an emerging organic-inorganic hybrid network system developed gradually in recent years, have exhibited excellent multifunctional properties such as anti-inflammatory, antioxidant, and antibacterial properties by making use of the coordination between phenolic ligands and metal ions. Further, MPNs have received widespread attention in antimicrobial infections due to their facile synthesis process, excellent biocompatibility, and excellent antimicrobial properties brought about by polyphenols and metal ions. In this review, different categories of biomaterials based on MPNs (nanoparticles, coatings, capsules, hydrogels) and their fabrication strategies are summarized, and recent research advances in their antimicrobial applications in biomedical fields (e.g., skin repair, bone regeneration, medical devices, etc.) are highlighted.
Collapse
Affiliation(s)
- Yue Li
- Department of Histology and EmbryologySchool of Basic Medical SciencesDepartment of Plastic and Aesthetic SurgeryNanfang Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510515P. R. China
| | - Yong Miao
- Department of Histology and EmbryologySchool of Basic Medical SciencesDepartment of Plastic and Aesthetic SurgeryNanfang Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510515P. R. China
| | - Lunan Yang
- Department of Histology and EmbryologySchool of Basic Medical SciencesDepartment of Plastic and Aesthetic SurgeryNanfang Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510515P. R. China
| | - Yitao Zhao
- Department of Histology and EmbryologySchool of Basic Medical SciencesDepartment of Plastic and Aesthetic SurgeryNanfang Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510515P. R. China
| | - Keke Wu
- Department of Histology and EmbryologySchool of Basic Medical SciencesDepartment of Plastic and Aesthetic SurgeryNanfang Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510515P. R. China
| | - Zhihui Lu
- Department of Histology and EmbryologySchool of Basic Medical SciencesDepartment of Plastic and Aesthetic SurgeryNanfang Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510515P. R. China
- Regenerative Medicine and Tissue Repair Research CenterHuangpu Institute of MaterialsGuangzhou510530P. R. China
| | - Zhiqi Hu
- Department of Histology and EmbryologySchool of Basic Medical SciencesDepartment of Plastic and Aesthetic SurgeryNanfang Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510515P. R. China
| | - Jinshan Guo
- Department of Histology and EmbryologySchool of Basic Medical SciencesDepartment of Plastic and Aesthetic SurgeryNanfang Hospital of Southern Medical UniversitySouthern Medical UniversityGuangzhou510515P. R. China
| |
Collapse
|
17
|
Kim CJ, Ercole F, Chen J, Pan S, Ju Y, Quinn JF, Caruso F. Macromolecular Engineering of Thermoresponsive Metal-Phenolic Networks. J Am Chem Soc 2021; 144:503-514. [PMID: 34958559 DOI: 10.1021/jacs.1c10979] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dynamic nanostructured materials that can react to physical and chemical stimuli have attracted interest in the biomedical and materials science fields. Metal-phenolic networks (MPNs) represent a modular class of such materials: these networks form via coordination of phenolic molecules with metal ions and can be used for surface and particle engineering. To broaden the range of accessible MPN properties, we report the fabrication of thermoresponsive MPN capsules using FeIII ions and the thermoresponsive phenolic building block biscatechol-functionalized poly(N-isopropylacrylamide) (biscatechol-PNIPAM). The MPN capsules exhibited reversible changes in capsule size and shell thickness in response to temperature changes. The temperature-induced capsule size changes were influenced by the chain length of biscatechol-PNIPAM and catechol-to-FeIII ion molar ratio. The metal ion type also influenced the capsule size changes, allowing tuning of the MPN capsule mechanical properties. AlIII-based capsules, having a lower stiffness value (10.7 mN m-1), showed a larger temperature-induced size contraction (∼63%) than TbIII-based capsules, which exhibit a higher stiffness value (52.6 mN m-1) and minimal size reduction (<1%). The permeability of the MPN capsules was controlled by changing the temperature (25-50 °C)─a reduced permeability was obtained as the temperature was increased above the lower critical solution temperature of biscatechol-PNIPAM. This temperature-dependent permeability behavior was exploited to encapsulate and release model cargo (500 kDa fluorescein isothiocyanate-tagged dextran) from the capsules; approximately 70% was released over 90 min at 25 °C. This approach provides a synthetic strategy for developing dynamic and thermoresponsive-tunable MPN systems for potential applications in biological science and biotechnology.
Collapse
Affiliation(s)
- Chan-Jin Kim
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Francesca Ercole
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shuaijun Pan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John F Quinn
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Chemical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
18
|
He X, Jiang H, Li J, Ma Y, Fu B, Hu C. Dipole-Moment Induced Phototaxis and Fuel-Free Propulsion of ZnO/Pt Janus Micromotors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101388. [PMID: 34173337 DOI: 10.1002/smll.202101388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Indexed: 06/13/2023]
Abstract
Light-driven micromotors have stimulated considerate interests due to their potentials in biomedicine, environmental remediation, or serving as the model system for non-equilibrium physics of active matter. Simultaneous control over the motion direction and speed of micro/nanomotors is crucial for their functionality but still difficult since Brownian motion always randomizes the orientations. Here, a highly efficient light-driven ZnO/Pt Janus micromotor capable of aligning itself to illumination direction and exhibiting negative phototaxis at high speeds (up to 32 µm s-1 ) without the addition of any chemical fuels is developed. A light-triggered self-built electric field parallel to the light illumination exists due to asymmetrical surface chemical reactions induced by the limited penetration depth of light along the illumination. The phototactic motion of the motor is achieved through electrophoretic rotation induced by the asymmetrical distribution of zeta potential on the two hemispheres of the Janus micromotor, into alignment with the electric field. Notably, similar phototactic propulsion is also achieved on TiO2 /Pt and CdS/Pt micromotors, which presents explicit proof of extending the mechanism of dipole-moment induced phototactic propulsion in other light-driven Janus micromotors. Finally, active transportation of yeast cells are achieved by the motor, proving its capability in performing complex tasks.
Collapse
Affiliation(s)
- Xiaoli He
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huaide Jiang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianjie Li
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanmei Ma
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bi Fu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|