1
|
He Y, Tian J, Li F, Peng W, He Y. Evolution of Tribotronics: From Fundamental Concepts to Potential Uses. MICROMACHINES 2024; 15:1259. [PMID: 39459133 PMCID: PMC11509801 DOI: 10.3390/mi15101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
The intelligent sensing network is one of the key components in the construction of the Internet of Things, and the power supply technology of sensor communication nodes needs to be solved urgently. As a new field combining tribo-potential with semiconductor devices, tribotronics, based on the contact electrification (CE) effect, realizes direct interaction between the external environment and semiconductor devices by combining triboelectric nanogenerator (TENG) and field-effect transistor (FET), further expanding the application prospects of micro/nano energy. In this paper, the research progress of tribotronics is systematically reviewed. Firstly, the mechanism of the CE effect and the working principles of TENG are introduced. Secondly, the regulation theory of tribo-potential on carrier transportation in semiconductor devices and the research status of tribotronic transistors are summarized. Subsequently, the applications of tribotronics in logic circuits and memory devices, smart sensors, and artificial synapses in recent years are demonstrated. Finally, the challenges and development prospects of tribotronics in the future are projected.
Collapse
Affiliation(s)
- Yue He
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Jia Tian
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Fangpei Li
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Wenbo Peng
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| | - Yongning He
- School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China
- The Key Lab of Micro-Nano Electronics and System Integration of Xi’an City, Xi’an 710049, China
| |
Collapse
|
2
|
Cho YH, Jin M, Jin H, Han J, Yu S, Li L, Kim YS. Efficient Ionovoltaic Energy Harvesting via Water-Induced p-n Junction in Reduced Graphene Oxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404893. [PMID: 39099395 PMCID: PMC11481184 DOI: 10.1002/advs.202404893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Indexed: 08/06/2024]
Abstract
Water motion-induced energy harvesting has emerged as a prominent means of facilitating renewable electricity from the interaction between nanostructured materials and water over the past decade. Despite the growing interest, comprehension of the intricate solid-liquid interfacial phenomena related to solid state physics remains elusive and serves as a hindrance to enhancing energy harvesting efficiency up to the practical level. Herein, the study introduces the energy harvester by utilizing inversion on the majority charge carrier in graphene materials upon interaction with water molecules. Specifically, various metal electrode configurations are employed on reduced graphene oxide (rGO) to unravel its distinctive charge carriers that experience the inversion in semiconductor type upon water contact, and exploit this characteristic to leverage the efficacy of generated electricity. Through the strategic arrangement of the metal electrodes on rGO membrane, the open-circuit voltage (Voc) and short-circuit current (Isc) have exhibited a remarkable augmentation, reaching 1.05 V and 31.6 µA, respectively. The demonstration of effectively tailoring carrier dynamics via electrode configuration expands the practicality by achieving high power density and elucidating how the water-induced carrier density modulation occurs in 2D nanomaterials.
Collapse
Affiliation(s)
- Yong Hyun Cho
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul08826Republic of Korea
| | - Minho Jin
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul08826Republic of Korea
| | - Huding Jin
- Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
- Department of Chemical & Biological EngineeringCollege of EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Junghyup Han
- Department of Chemical & Biological EngineeringCollege of EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Seungyeon Yu
- Department of Chemical & Biological EngineeringCollege of EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Lianghui Li
- Department of Chemical & Biological EngineeringCollege of EngineeringSeoul National UniversitySeoul08826Republic of Korea
| | - Youn Sang Kim
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversitySeoul08826Republic of Korea
- Institute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
- Department of Chemical & Biological EngineeringCollege of EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Advanced Institute of Convergence TechnologySuwon‐si16229Republic of Korea
| |
Collapse
|
3
|
Han J, Lee WH, Park J, Jin H, Cho YH, Yu S, Li L, Lee J, Woo G, Kim T, Kim YS. Lateral Electronic Junction of a Single Ultrathin Silicon Induced by Interfacial Dipole of Self-Assembled Monolayer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403970. [PMID: 39248337 DOI: 10.1002/advs.202403970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/29/2024] [Indexed: 09/10/2024]
Abstract
Interface engineering is pivotal for enhancing the performance and stability of devices with layered structures, including solar cells, electronic devices, and electrochemical systems. Incorporating the interfacial dipole between the bulk layers effectively modulates the energy level difference at the interface and does not significantly influence adjacent layers overall. However, interfaces can drastically affect adjoining layers in ultrathin devices, which are essential for next-generation electronics with high integrity, excellent performance, and low power consumption. In particular, the interfacial effect is pronounced in ultrathin semiconductors, which have a weak electric field screening effect. Herein, the substantial interfacial impact on the ultrathin silicon is shown, the p- to n-type inversion of the semiconductor solely through the deposition of a self-assembled monolayer (SAM) without external bias. The effects of SAMs with different interfacial dipoles are investigated by using Hall measurement and surface analytic techniques, such as UPS, XPS, and KPFM. Furthermore, the lateral electronic junction of the ultrathin silicon is engineered by the regioselective deposition of SAMs with opposite dipoles, and the device exhibits rectification behavior. When the interfacial dipole of SAM is manipulated, the rectification ratio changes sensitively, and thus the fabricated diode shows potential to be developed as a sensing platform.
Collapse
Affiliation(s)
- Junghyup Han
- Department of Chemical and Biological Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Won Hyung Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Samsung SDI Co. Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-Do, 16678, Republic of Korea
| | - Junwoo Park
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Huding Jin
- Department of Chemical and Biological Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yong Hyun Cho
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seungyeon Yu
- Department of Chemical and Biological Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Lianghui Li
- Department of Chemical and Biological Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jaewon Lee
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Gunhoo Woo
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-Do, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-Do, 16419, Republic of Korea
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-Do, 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-Do, 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-Do, 16419, Republic of Korea
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-Do, 16419, Republic of Korea
| | - Youn Sang Kim
- Department of Chemical and Biological Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-Do, 16229, Republic of Korea
| |
Collapse
|
4
|
Park H, Choi G, Yoon S, Jung Y, Bang J, Kim M, Ko SH. MXene-Enhanced Ionovoltaic Effect by Evaporation and Water Infiltration in Semiconductor Nanochannels. ACS NANO 2024; 18:13130-13140. [PMID: 38709625 DOI: 10.1021/acsnano.4c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In recent years, substantial attention has been directed toward energy-harvesting systems that exploit sunlight energy and water resources. Intensive research efforts are underway to develop energy generation methodologies through interactions with water using various materials. In the present investigation, we synthesized sodium vanadium oxide (SVO) nanorods with n-type semiconductor characteristics. These nanorods facilitate the initiation of capillary phenomena within nanochannels, thereby enhancing the interfacial area between nanomaterials and ions. The open-circuit voltage (VOC) was 0.8 V, and the short-circuit current (ISC) was 30 μA, which were continuously monitored at room temperature using a 0.1 M saltwater solution. Additionally, we achieved enhanced energy generation by efficiently converting light energy into thermal energy using MXene, a 2D material. This was accomplished through the photothermal effect, leveraging the inherent semiconductor characteristics. Under light exposure, the system exhibited improved performance attributed to heightened ion diffusion and increased conductivity. This phenomenon was a result of the concerted synergy between ions and electrons facilitated by a semiconductor nanofluidic channel. Ultimately, we demonstrated an application to showcase real-world viability. In this scenario, electricity was harvested through a smart buoy floating on the water, and, based on this, data from the surrounding environment was sensed and wirelessly transmitted.
Collapse
Affiliation(s)
- Huijae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-road, Gwanak-gu, Seoul 08826, Korea
| | - Gyuho Choi
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-road, Gwanak-gu, Seoul 08826, Korea
| | - Sangjin Yoon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-road, Gwanak-gu, Seoul 08826, Korea
| | - Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-road, Gwanak-gu, Seoul 08826, Korea
| | - Junhyuk Bang
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-road, Gwanak-gu, Seoul 08826, Korea
| | - Minwoo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-road, Gwanak-gu, Seoul 08826, Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-road, Gwanak-gu, Seoul 08826, Korea
- Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-road, Gwanak-gu, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, 1 Gwanak-road, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Wang Q, Wang M, Zheng K, Ye W, Zhang S, Wang B, Long X. High-Performance Room Temperature Ammonia Sensors Based on Pure Organic Molecules Featuring B-N Covalent Bond. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308483. [PMID: 38482745 PMCID: PMC11109643 DOI: 10.1002/advs.202308483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/26/2024] [Indexed: 05/23/2024]
Abstract
Exploring organic semiconductor gas sensors with high sensitivity and selectivity is crucial for the development of sensor technology. Herein, for the first time, a promising chemiresistive organic polymer P-BNT based on a novel π-conjugated triarylboron building block is reported, showcasing an excellent responsivity over 30 000 (Ra/Rg) against 40 ppm of NH3, which is ≈3300 times higher than that of its B-N organic small molecule BN-H. More importantly, a molecular induction strategy to weaken the bond dissociation energy between polymer and NH3 caused by strong acid-base interaction is further executed to optimize the response and recovery time. As a result, the BN-H/P-BNT system with rapid response and recovery times can still exhibit a high responsivity of 718, which is among the highest reported NH3 chemiresistive sensors. Supported by in situ FTIR spectroscopy and theoretical calculations, it is revealed that the N-H fractions in BN-H small molecule promoted the charge distribution on phenyl groups, which increases charge delocalization and is more conducive to gas adsorption in such molecular systems. Notably, these distinctive small molecules also promoted charge transfer and enhanced electron concentration of the P-BNT sensing polymer, thus achieving superior B-N-containing organic molecules with excellent sensing performance.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Bio‐fibers and Eco‐textilesCollaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological TextilesInstitute of Marine Biobased MaterialsCollege of Materials Science and EngineeringQingdao UniversityQingdao266071P. R. China
| | - Meilong Wang
- State Key Laboratory of Bio‐fibers and Eco‐textilesCollaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological TextilesInstitute of Marine Biobased MaterialsCollege of Materials Science and EngineeringQingdao UniversityQingdao266071P. R. China
| | - Kunpeng Zheng
- State Key Laboratory of Bio‐fibers and Eco‐textilesCollaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological TextilesInstitute of Marine Biobased MaterialsCollege of Materials Science and EngineeringQingdao UniversityQingdao266071P. R. China
| | - Wanneng Ye
- State Key Laboratory of Bio‐fibers and Eco‐textilesCollaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological TextilesInstitute of Marine Biobased MaterialsCollege of Materials Science and EngineeringQingdao UniversityQingdao266071P. R. China
| | - Sheng Zhang
- Institute of Nanoscience and EngineeringHenan UniversityKaifeng475004P. R. China
| | - Binbin Wang
- State Key Laboratory of Bio‐fibers and Eco‐textilesCollaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological TextilesInstitute of Marine Biobased MaterialsCollege of Materials Science and EngineeringQingdao UniversityQingdao266071P. R. China
| | - Xiaojing Long
- State Key Laboratory of Bio‐fibers and Eco‐textilesCollaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological TextilesInstitute of Marine Biobased MaterialsCollege of Materials Science and EngineeringQingdao UniversityQingdao266071P. R. China
| |
Collapse
|
6
|
Han J, Yoon SG, Lee WH, Jin H, Cho YH, Kim YS. Ionic Diffusion-Driven Ionovoltaic Transducer for Probing Ion-Molecular Interactions at Solid-Liquid Interface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103038. [PMID: 34719879 PMCID: PMC8728816 DOI: 10.1002/advs.202103038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/14/2021] [Indexed: 05/09/2023]
Abstract
Ion-solid surface interactions are one of the fundamental principles in liquid-interfacing devices ranging from various electrochemical systems to electrolyte-driven energy conversion devices. The interplays between these two phases, especially containing charge carriers in the solid layer, work as a pivotal role in the operation of these devices, but corresponding details of those effects remain as unrevealed issues in academic fields. Herein, an ion-charge carrier interaction at an electrolyte-semiconductor interface is interrogated with an ion-dynamics-induced (ionovoltaic) energy transducer, controlled by interfacial self-assembled molecules. An electricity generating mechanism from interfacial ionic diffusion is elucidated in terms of the ion-charge carrier interaction, originated from a dipole potential effect of the self-assembled molecular layer (SAM). In addition, this effect is found to be modulated via chemical functionalization of the interfacial molecular layer and transition metal ion complexation therein. With the aiding of surface analytic techniques and a liquid-interfacing Hall measurement, electrical behaviors of the device depending on the magnitude of the ion-ligand complexation are interrogated, thereby demonstrating the ion-charge carrier interplays spanning at electrolyte-SAM-semiconductor interface. Hence, this system can be applied to study molecular interactions, including chemical and physical influences, occurring at the solid-liquid interfacial region.
Collapse
Affiliation(s)
- Junghyup Han
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesCollege of EngineeringSeoul National UniversityGwanak‐guSeoul08826Republic of Korea
| | - Sun Geun Yoon
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversityGwanak‐guSeoul08826Republic of Korea
| | - Won Hyung Lee
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversityGwanak‐guSeoul08826Republic of Korea
| | - Huding Jin
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversityGwanak‐guSeoul08826Republic of Korea
| | - Yong Hyun Cho
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversityGwanak‐guSeoul08826Republic of Korea
| | - Youn Sang Kim
- School of Chemical and Biological Engineeringand Institute of Chemical ProcessesCollege of EngineeringSeoul National UniversityGwanak‐guSeoul08826Republic of Korea
- Program in Nano Science and TechnologyGraduate School of Convergence Science and TechnologySeoul National UniversityGwanak‐guSeoul08826Republic of Korea
- Advanced Institute of Convergence TechnologySuwon16229Republic of Korea
| |
Collapse
|
7
|
Sun Z, Zhang W, Guo J, Song J, Deng X. Is Heat Really Beneficial to Water Evaporation-Driven Electricity? J Phys Chem Lett 2021; 12:12370-12375. [PMID: 34939816 DOI: 10.1021/acs.jpclett.1c03718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Water evaporation-driven electricity (EDE) has attracted a great deal of attention in recent years as a novel renewable energy. Previous works have demonstrated that a high evaporation rate leads to a large output voltage. Hence, it is believed that heating is beneficial to EDE by enhancing the evaporation rate. However, experimental verification is lacking. This study demonstrates that heat induces a thermodiffusion effect that drives hydrated ions in the opposite direction of the evaporation-driven water flow, which reduces the output voltage as a synergistic effect. Our findings could be useful for designing a multifunction EDE generator and provide insight into the electricity generation mechanism.
Collapse
Affiliation(s)
- Zhengnan Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Wenluan Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Junchang Guo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jianing Song
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Xu Deng
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, P. R. China
| |
Collapse
|
8
|
Jin H, Park J, Yoon SG, Lee WH, Cho YH, Han J, Yin Z, Kim YS. Verification of Carrier Concentration-Dependent Behavior in Water-Infiltration-Induced Electricity Generation by Ionovoltaic Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103448. [PMID: 34611985 DOI: 10.1002/smll.202103448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Water-infiltration-induced power generation has the renewable characteristic of generating electrical energy from ambient water. Importantly, it is found that the carrier concentration in semiconductor constituting the energy generator seriously affect the electricity generation. Nevertheless, few studies are conducted on the influence of semiconductor carrier concentration, a crucial factor on electricity generation. Due to this, understanding of the energy harvesting mechanism is still insufficient. Herein, the semiconductor carrier concentration-dependent behavior in water-infiltration-induced electricity generation and the energy harvesting mechanism by ionovoltaic effect are comprehensively verified. A clue to enhance the electric power generation efficiency is also proposed. When 20 µL of water (NaCl, 0.1 m) infiltrates into a porous CuO nanowires film (PCNF), electric power of ≈0.5 V and ≈1 µA are produced for 25 min. Moreover, the PCNF shows good practicability by generating electricity using various ambient water, turning on LEDs, and being fabricated as a curved one.
Collapse
Affiliation(s)
- Huding Jin
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junwoo Park
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Sun Geun Yoon
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Hyung Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong Hyun Cho
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghyup Han
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Zhenxing Yin
- Department of Chemistry, Yanbian University, Yanji, Jilin, 133002, China
| | - Youn Sang Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Suwon, 16229, Republic of Korea
| |
Collapse
|
9
|
Yoon SG, Park BJ, Jin H, Lee WH, Han J, Cho YH, Yook H, Han JW, Kim YS. Probing an Interfacial Ionic Pairing-Induced Molecular Dipole Effect in Ionovoltaic System. SMALL METHODS 2021; 5:e2100323. [PMID: 34927990 DOI: 10.1002/smtd.202100323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Indexed: 06/14/2023]
Abstract
A surficial molecular dipole effect depending on ion-molecular interactions has been crucial issues regarding to an interfacial potential, which can modulate solid electronic and electrochemical systems. Their properties near the interfacial region can be dictated by specific interactions between surface and adsorbates, but understandings of the corresponding details remain at interesting issues. Here, intuitive observations of an ionic pair formation-induced interfacial potential shifts are presented with an ionovoltaic system, and corresponding output signal variations are analyzed in terms of the surficial dipole changes on self-assembled monolayer. With aiding of photoelectron spectroscopies and density function theory simulation, the ionic pair formation-induced potential shifts are revealed to strongly rely on a paired molecular structure and a binding affinity of the paired ionic moieties. Chemical contributions to the binding event are interrogated in terms of polarizability in each ionic group and consistent with chaotropic/kosmotropic character of the ionic groups. Based on these findings, the ionovoltaic output changes are theoretically correlated with an adsorption isotherm reflecting the molecular dipole effect, thereby demonstrating as an efficient interfacial molecular probing method under electrolyte interfacing conditions.
Collapse
Affiliation(s)
- Sun Geun Yoon
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Byoung Joon Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Huding Jin
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Won Hyung Lee
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Junghyup Han
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yong Hyun Cho
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyunwoo Yook
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Youn Sang Kim
- Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
- School of Chemical & Biological Engineering and Institute of Chemical Processes, College of Engineering, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
- Advanced Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon, 16229, Republic of Korea
| |
Collapse
|