1
|
Rong D, Wu Y, Wang W, Shang X, Wang S, Wang S. Polyvinyl Butyral Solid Electrolyte Film and Its Electrochromic Laminated Safety Glass. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65394-65401. [PMID: 39535152 DOI: 10.1021/acsami.4c16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In recent years, the application of electrochromic laminated safety glass has attracted more and more attention, relying on polyvinyl butyral (PVB) solid electrolyte film. Herein, the ionic conductivity (σ) of the PVB film has been improved by a cross-linked structure and blended with LiClO4, which can reach as high as 1.78 × 10-4 S cm-1 at room temperature. In addition, their excellent comprehensive characteristics have been confirmed, such as mechanical strength, high visible light transmittance (>90%), high bond strength (4.2 MPa), and excellent thermal stability. Based on the PVB film above, WO3-laminated electrochromic devices with 5 × 5 cm2 and 10 × 10 cm2 areas are constructed. They can remain stable after 20 000 cycles monitored by cyclic voltammetry curves, indicating the PVB solid polymer electrolyte (PSPE) with a cross-linked structure has the potential commercial viability of large-area electrochromic devices (ECDs).
Collapse
Affiliation(s)
- Di Rong
- School of Chemical Engineering, Advanced Research Institute of Materials Science, Changchun University of Technology, Changchun 130000, China
- School of Material Science and Engineering, Changchun University of Technology, Changchun 130000, China
| | - Yingli Wu
- School of Chemical Engineering, Advanced Research Institute of Materials Science, Changchun University of Technology, Changchun 130000, China
| | - Wei Wang
- School of Chemical Engineering, Advanced Research Institute of Materials Science, Changchun University of Technology, Changchun 130000, China
| | - Xiaohong Shang
- School of Chemical and Life Sciences, Changchun University of Technology, Changchun 130000, China
| | - Siqi Wang
- School of Chemical Engineering, Advanced Research Institute of Materials Science, Changchun University of Technology, Changchun 130000, China
| | - Shiwei Wang
- School of Chemical Engineering, Advanced Research Institute of Materials Science, Changchun University of Technology, Changchun 130000, China
| |
Collapse
|
2
|
Zhou M, Liu W, Su Q, Zeng J, Jiang X, Wu X, Chen Z, Wang X, Li Z, Liu H, Zhang S. Ionic Liquid Additive Mitigating Lithium Loss and Aluminum Corrosion for High-Voltage Anode-Free Lithium Metal Batteries. ACS NANO 2024; 18:32959-32972. [PMID: 39546425 DOI: 10.1021/acsnano.4c13203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Concentrated electrolytes based on lithium bis(fluorosulfonyl)imide (LiFSI) have been proposed as an effective Li-compatible electrolyte for anode-free lithium metal batteries (AFLMBs). However, these electrolytes suffer from severe aluminum corrosion at an elevated potential. To address this issue, we propose a binary ionic liquid (IL) electrolyte additive comprising the 1-methyl-1-butyl pyrrolidinium cation (Pyr14+), difluoro(oxalate)borate anion (DFOB-), and difluorophosphate (PO2F2-) anion to mitigate the Li inventory loss and Al corrosion in 4 M LiFSI/DME electrolyte simultaneously. On the anode side, the IL additive facilitates the formation of a robust Li3N- and LiF-rich solid electrolyte interphase, promoting highly reversible Li plating/stripping and uniform Li deposition. Additionally, the ILs alter the Li+ solvation structure, leading to enhanced tLi+ and rapid Li+ desolvation kinetics. Concurrently, on the cathode side, the ILs aid in the generation of dense LiF- and AlF-rich passivation films against Al corrosion. By using the IL-added electrolyte, the Cu||LiMn0.7Fe0.3PO4 cell operates stably at 4.5 V, and the Cu||NCM613 cell with a high loading of 4.0 mA h cm-2 sustains 142 cycles until 80% capacity retention. This research contributes to a deeper understanding of the IL additive mechanism at the electrode-electrolyte interfaces and offers a straightforward approach to designing practical high-voltage AFLMB electrolytes.
Collapse
Affiliation(s)
- Minghan Zhou
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, China
| | - Weijian Liu
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, China
| | - Qili Su
- China Science Lab, General Motors Global Research & Development, Shanghai 201206, P. R. China
| | - Junfeng Zeng
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, China
| | - Xueao Jiang
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, China
| | - Xuansheng Wu
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, China
| | - Zhengjian Chen
- Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Biomaterials Research Center, Zhuhai 519003, China
| | - Xiwen Wang
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, China
| | - Zhe Li
- China Science Lab, General Motors Global Research & Development, Shanghai 201206, P. R. China
| | - Haijing Liu
- China Science Lab, General Motors Global Research & Development, Shanghai 201206, P. R. China
| | - Shiguo Zhang
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Hu Y, Li H, Ma M, Cao W, Hamza M, Ma Y, Wang ZG, Li X. Controlled Interfacial Tailoring of Hierarchical Silicon Synergizes Charge Transport Enabling Stable and Fast Lithium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407016. [PMID: 39520333 DOI: 10.1002/smll.202407016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Silicon is a promising anode material candidate but encounters volume change and capacity decay issues. Although diverse demonstrations in structural and interfacial engineering, the performance toward industrial applications remains to be improved. Herein, a controlled interfacial tailoring strategy is proposed for micro-nano hierarchically structured silicon. The resultant granules, consisting of randomly interconnected silicon debris modified by an electrically conductive carbon layer and a superionic sulfide conductor specifically in a controlled form (nanoparticles, coats, and matrices), attain distinctly different cyclic performances. As the carbon coating generally provides electron transfer paths for silicon, the introduced fast ion conductor exhibits a strong correlation with its configuration in facilitating ion transportation as well as improving the materials utilization and cyclic stability. Impressively, the granules encapsulated with a fast ion conductor layer show remarkably improved cycling performance and rate capability, attributable to a decent synergy of transmitting both electrons and lithium ions throughout the granule.
Collapse
Affiliation(s)
- Yingtong Hu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Haimei Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Minghao Ma
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Weifeng Cao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Mathar Hamza
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Yingjie Ma
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xianglong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100039, P. R. China
| |
Collapse
|
4
|
Dong L, Yan HJ, Liu QX, Liang JY, Yue J, Niu M, Chen X, Wang E, Xin S, Zhang X, Yang C, Guo YG. Quantification of Charge Transport and Mass Deprivation in Solid Electrolyte Interphase for Kinetically-Stable Low-Temperature Lithium-Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202411029. [PMID: 38955769 DOI: 10.1002/anie.202411029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Graphite (Gr)-based lithium-ion batteries with admirable electrochemical performance below -20 °C are desired but are hindered by sluggish interfacial charge transport and desolvation process. Li salt dissociation via Li+-solvent interaction enables mobile Li+ liberation and contributes to bulk ion transport, while is contradictory to fast interfacial desolvation. Designing kinetically-stable solid electrolyte interphase (SEI) without compromising strong Li+-solvent interaction is expected to compatibly improve interfacial charge transport and desolvation kinetics. However, the relationship between physicochemical features and temperature-dependent kinetics properties of SEI remains vague. Herein, we propose four key thermodynamics parameters of SEI potentially influencing low-temperature electrochemistry, including electron work function, Li+ transfer barrier, surface energy, and desolvation energy. Based on the above parameters, we further define a novel descriptor, separation factor of SEI (SSEI), to quantitatively depict charge (Li+/e-) transport and solvent deprivation processes at Gr/electrolyte interface. A Li3PO4-based, inorganics-enriched SEI derived by Li difluorophosphate (LiDFP) additive exhibits the highest SSEI (4.89×103) to enable efficient Li+ conduction, e- blocking and rapid desolvation, and as a result, much suppressed Li-metal precipitation, electrolyte decomposition and Gr sheets exfoliation, thus improving low-temperature battery performances. Overall, our work originally provides visualized guides to improve low-temperature reaction kinetics/thermodynamics by constructing desirable SEI chemistry.
Collapse
Affiliation(s)
- Liwei Dong
- MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Hui-Juan Yan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Qing-Xiang Liu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Jia-Yan Liang
- MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Junpei Yue
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Min Niu
- MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Xingyu Chen
- MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Enhui Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
| | - Sen Xin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Xinghong Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, and Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Chunhui Yang
- MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Yu-Guo Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Ge B, Deng J, Wang Z, Liang Q, Hu L, Ren X, Li R, Lin Y, Li Y, Wang Q, Han B, Deng Y, Fan X, Li B, Chen G, Yu X. Aggregate-Dominated Dilute Electrolytes with Low-Temperature-Resistant Ion-Conducting Channels for Highly Reversible Na Plating/Stripping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408161. [PMID: 39136199 DOI: 10.1002/adma.202408161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/16/2024] [Indexed: 10/11/2024]
Abstract
Developing rechargeable batteries with high power delivery at low temperatures (LT) below 0 °C is significant for cold-climate applications. Initial anode-free sodium metal batteries (AFSMBs) promise high LT performances because of the low de-solvation energy and smaller Stokes radius of Na+, nondiffusion-limited plating/stripping electrochemistry, and maximized energy density. However, the severe reduction in electrolyte ionic conductivity and formation of unstable solid electrolyte interphase (SEI) hinder their practical applications at LT. In this study, a 2-methyltetrahydrofuran-based dilute electrolyte is designed to concurrently achieve an anion-coordinated solvation structure and impressive ionic conductivity of 3.58 mS cm-1 at -40 °C. The dominant aggregate solvates enable the formation of highly efficient and LT-resistant Na+ hopping channels in the electrolyte. Moreover, the methyl-regulated electronic structure in 2-methyltetrahydrofuran induces gradient decomposition toward an inorganic-organic bilayer SEI with high Na+ mobility, composition homogeneity, and mechanical robustness. As such, a record-high Coulombic efficiency beyond 99.9% is achieved even at -40 °C. The as-constructed AFSMBs sustain 300 cycles with 80% capacity maintained, and a 0.5-Ah level pouch cell delivers 85% capacity over 180 cycles at -25 °C. This study affords new insights into electrolyte formulation for fast ionic conduction and superior Na reversibility at ultralow temperatures.
Collapse
Affiliation(s)
- Bingcheng Ge
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiaojiao Deng
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhijie Wang
- Department of Applied Physics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Qinghua Liang
- Key Laboratory of Rare Earth, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, China
| | - Liang Hu
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xiuyun Ren
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Runmin Li
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yuxiao Lin
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yunsong Li
- Zhejiang Laboratory, Hangzhou, 311100, China
| | - Qingrong Wang
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Han
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yonghong Deng
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiulin Fan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Baohua Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Guohua Chen
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xiaoliang Yu
- Department of Mechanical Engineering and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
6
|
Ji Y, Zhang H, Yang D, Pan Y, Zhu Z, Qi X, Pi X, Du W, Cheng Z, Yao Y, Qie L, Huang Y. Regenerated Graphite Electrodes with Reconstructed Solid Electrolyte Interface and Enclosed Active Lithium Toward >100% Initial Coulombic Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312548. [PMID: 38323869 DOI: 10.1002/adma.202312548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Solid electrolyte interface (SEI) is arguably the most important concern in graphite anodes, which determines their achievable Coulombic efficiency (CE) and cycling stability. In spent graphite anodes, there are already-formed (yet loose and/or broken) SEIs and some residual active lithium, which, if can be inherited in the regenerated electrodes, are highly desired to compensate for the lithium loss due to SEI formation. However, current graphite regenerated approaches easily destroy the thin SEIs and residue active lithium, making their reuse impossible. Herein, this work reports a fast-heating strategy (e.g., 1900 K for ≈150 ms) to upcycle degraded graphite via instantly converting the loose original SEI layer (≈100 nm thick) to a compact and mostly inorganic one (≈10-30 nm thick with a 26X higher Young's Modulus) and still retaining the activity of residual lithium. Thanks to the robust SEI and enclosed active lithium, the regenerated graphite exhibited 104.7% initial CE for half-cell and gifted the full cells with LiFePO4 significantly improved initial CE (98.8% versus 83.2%) and energy density (309.4 versus 281.4 Wh kg-1), as compared with commercial graphite. The as-proposed upcycling strategy turns the "waste" graphite into high-value prelithiated ones, along with significant economic and environmental benefits.
Collapse
Affiliation(s)
- Yongsheng Ji
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Hao Zhang
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Dan Yang
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yujun Pan
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhenglu Zhu
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaoqun Qi
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xinpeng Pi
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Weichen Du
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhiheng Cheng
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yonggang Yao
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Long Qie
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die and Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
7
|
Wang R, Sun S, Xu C, Cai J, Gou H, Zhang X, Wang G. The interface engineering and structure design of an alloying-type metal foil anode for lithium ion batteries: a review. MATERIALS HORIZONS 2024; 11:903-922. [PMID: 38084018 DOI: 10.1039/d3mh01565c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
An alloying-type metal foil serves as an integrated anode that is distinct from the prevalent powder-casting production of lithium ion batteries (LIBs) and emerging lithium metal batteries (LMBs), and also its energy density and processing technology can be profoundly developed. However, besides their apparent intriguing advantages of a high specific capacity, electrical conductivity, and the ease of formation, metal foil anodes suffer from slow lithiation kinetics, a trade-off between specific capacity and cycle life, and a low initial Coulombic efficiency (ICE) owing to their multi-scaled structural geometry, huge volume change, and induced interfacial issues during the alloying process. In this review, we attempt to present a comprehensive overview on the recent research progress with respect to alloying-type metal foil anodes toward high-energy-density and low-cost LIBs. The failure mechanism of metal foil anodes during lithiation/delithiation and existing challenges are also summarized. Subsequently, the structural design and interface engineering strategies that have witnessed significant achievements are highlighted, which can promote the practical development of LIBs, including artificial SEI, alloying, structural design, and grain refinement. Furthermore, scientific perspectives are proposed to further improve the overall performance and decouple the complex mechanisms in terms of interdisciplinary fields of electrochemistry, metallic materials science, mechanics, and interfacial science, demonstrating that metal foil anode-based LIBs require more research efforts.
Collapse
Affiliation(s)
- Rui Wang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Song Sun
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Chunyi Xu
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Jiazhen Cai
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Huiyang Gou
- Center for High Pressure Science & Technology Advanced Research, Beijing 100193, China
| | - Xin Zhang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Gongkai Wang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Material Science and Engineering, Hebei University of Technology, Tianjin, 300130, China.
| |
Collapse
|
8
|
Bai S, Huang Z, Liang G, Yang R, Liu D, Wen W, Jin X, Zhi C, Wang X. Electrolyte Additives for Stable Zn Anodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304549. [PMID: 38009799 PMCID: PMC10811481 DOI: 10.1002/advs.202304549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/28/2023] [Indexed: 11/29/2023]
Abstract
Zn-ion batteries are regarded as the most promising batteries for next-generation, large-scale energy storage because of their low cost, high safety, and eco-friendly nature. The use of aqueous electrolytes results in poor reversibility and leads to many challenges related to the Zn anode. Electrolyte additives can effectively address many such challenges, including dendrite growth and corrosion. This review provides a comprehensive introduction to the major challenges in and current strategies used for Zn anode protection. In particular, an in-depth and fundamental understanding is provided of the various functions of electrolyte additives, including electrostatic shielding, adsorption, in situ solid electrolyte interphase formation, enhancing water stability, and surface texture regulation. Potential future research directions for electrolyte additives used in aqueous Zn-ion batteries are also discussed.
Collapse
Affiliation(s)
- Shengchi Bai
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| | - Zhaodong Huang
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SARChina
| | - Guojin Liang
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SARChina
| | - Rui Yang
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| | - Di Liu
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| | - Wen Wen
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| | - Xu Jin
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| | - Chunyi Zhi
- Department of Materials Science and EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SARChina
| | - Xiaoqi Wang
- Research Institute of Petroleum Exploration & Development of China National Petroleum Corporation (RIPED)Beijing100083China
| |
Collapse
|
9
|
Wu J, Wu Y, Wang L, Ye H, Lu J, Li Y. Challenges and Advances in Rechargeable Batteries for Extreme-Condition Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308193. [PMID: 37847882 DOI: 10.1002/adma.202308193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/23/2023] [Indexed: 10/19/2023]
Abstract
Rechargeable batteries are widely used as power sources for portable electronics, electric vehicles and smart grids. Their practical performances are, however, largely undermined under extreme conditions, such as in high-altitude drones, ocean exploration and polar expedition. These extreme environmental conditions not only bring new challenges for batteries but also incur unique battery failure mechanisms. To fill in the gap, it is of great importance to understand the battery failure mechanisms under different extreme conditions and figure out the key parameters that limit battery performances. In this review, the authors start by investigating the key challenges from the viewpoints of ionic/charge transfer, material/interface evolution and electrolyte degradation under different extreme conditions. This is followed by different engineering approaches through electrode materials design, electrolyte modification and battery component optimization to enhance practical battery performances. Finally, a short perspective is provided about the future development of rechargeable batteries under extreme conditions.
Collapse
Affiliation(s)
- Jialing Wu
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Yunling Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hualin Ye
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yanguang Li
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| |
Collapse
|
10
|
Du H, Song K, Yang M, Huang P, Chen W. Interface Regulation via Electric Double Layer for Rechargeable Batteries. CHEMSUSCHEM 2023; 16:e202300708. [PMID: 37624682 DOI: 10.1002/cssc.202300708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 08/27/2023]
Abstract
Interphases, especially the electrochemically formed solid electrolyte interphase (SEI), are significantly important for cycling stability, reaction kinetics and safety of rechargeable batteries. The structure and composition of the electric double layer (EDL) greatly affect the formation of the SEI and the performance of electrodes. However, as far as we know, there is no review discussing the theme specifically. Herein, the recent substantial progress for EDL and its impact on the formation of SEI in rechargeable batteries are reviewed and discussed. Firstly, the specific adsorption of electrolyte components on electrodes' surface and the ionic solvation structure are introduced. Furthermore, various methods for controlling EDL in different electrode systems are described. Finally, the potential future advancements of the SEI through the manipulation of EDL are discussed, aiming to enhance the electrochemical performance of rechargeable batteries.
Collapse
Affiliation(s)
- Haiying Du
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Keming Song
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Mingrui Yang
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Peng Huang
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Weihua Chen
- College of Chemistry & Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| |
Collapse
|
11
|
Zhao Z, Ye W, Zhang F, Pan Y, Zhuo Z, Zou F, Xu X, Sang X, Song W, Zhao Y, Li H, Wang K, Lin C, Hu H, Li Q, Yang W, Li Q. Revealing the effect of LiOH on forming a SEI using a Co magnetic "probe". Chem Sci 2023; 14:12219-12230. [PMID: 37969610 PMCID: PMC10631223 DOI: 10.1039/d3sc04377k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
The solid-electrolyte-interphase (SEI) plays a critical role in lithium-ion batteries (LIBs) because of its important influence on electrochemical performance, such as cycle stability, coulombic efficiency, etc. Although LiOH has been recognized as a key component of the SEI, its influence on the SEI and electrochemical performance has not been well clarified due to the difficulty in precisely controlling the LiOH content and characterize the detailed interface reactions. Here, a gradual change of LiOH content is realized by different reduction schemes among Co(OH)2, CoOOH and CoO. With reduced Co nanoparticles as magnetic "probes", SEI characterization is achieved by operando magnetometry. By combining comprehensive characterization and theoretical calculations, it is verified that LiOH leads to a composition transformation from lithium ethylene di-carbonate (LEDC) to lithium ethylene mono-carbonate (LEMC) in the SEI and ultimately results in capacity decay. This work unfolds the detailed SEI reaction scenario involving LiOH, provides new insights into the influence of SEI composition, and has value for the co-development between the electrode materials and electrolyte.
Collapse
Affiliation(s)
- Zhiqiang Zhao
- College of Physics, Weihai Innovation Research Institute, Institute of Materials for Energy and Environment, Qingdao University Qingdao 266071 P. R. China
| | - Wanneng Ye
- College of Physics, Weihai Innovation Research Institute, Institute of Materials for Energy and Environment, Qingdao University Qingdao 266071 P. R. China
| | - Fengling Zhang
- College of Physics, Weihai Innovation Research Institute, Institute of Materials for Energy and Environment, Qingdao University Qingdao 266071 P. R. China
| | - Yuanyuan Pan
- College of Physics, Weihai Innovation Research Institute, Institute of Materials for Energy and Environment, Qingdao University Qingdao 266071 P. R. China
| | - Zengqing Zhuo
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Feihu Zou
- College of Physics, Weihai Innovation Research Institute, Institute of Materials for Energy and Environment, Qingdao University Qingdao 266071 P. R. China
| | - Xixiang Xu
- College of Physics, Weihai Innovation Research Institute, Institute of Materials for Energy and Environment, Qingdao University Qingdao 266071 P. R. China
| | - Xiancheng Sang
- College of Physics, Weihai Innovation Research Institute, Institute of Materials for Energy and Environment, Qingdao University Qingdao 266071 P. R. China
| | - Weiqi Song
- College of Physics, Weihai Innovation Research Institute, Institute of Materials for Energy and Environment, Qingdao University Qingdao 266071 P. R. China
| | - Yue Zhao
- College of Physics, Weihai Innovation Research Institute, Institute of Materials for Energy and Environment, Qingdao University Qingdao 266071 P. R. China
| | - Hongsen Li
- College of Physics, Weihai Innovation Research Institute, Institute of Materials for Energy and Environment, Qingdao University Qingdao 266071 P. R. China
| | - Kuikui Wang
- College of Physics, Weihai Innovation Research Institute, Institute of Materials for Energy and Environment, Qingdao University Qingdao 266071 P. R. China
| | - Chunfu Lin
- College of Physics, Weihai Innovation Research Institute, Institute of Materials for Energy and Environment, Qingdao University Qingdao 266071 P. R. China
| | - Han Hu
- College of Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Qinghao Li
- College of Physics, Weihai Innovation Research Institute, Institute of Materials for Energy and Environment, Qingdao University Qingdao 266071 P. R. China
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Qiang Li
- College of Physics, Weihai Innovation Research Institute, Institute of Materials for Energy and Environment, Qingdao University Qingdao 266071 P. R. China
| |
Collapse
|
12
|
Li L, Jia S, Cheng Z, Zhang C. Recent Research Progress into Zinc Ion Battery Solid-Electrolyte Interfaces. CHEMSUSCHEM 2023; 16:e202300632. [PMID: 37312016 DOI: 10.1002/cssc.202300632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023]
Abstract
Aqueous zinc ion batteries (ZIBs) are prospective next-generation energy storage device candidates owing to resource abundance, affordability, eco-friendliness, and safety. The solid-electrolyte interface (SEI) produced in a ZIB by electrolyte/electrode interactions significantly impacts battery performance. The SEI is known to promote dendrite growth, determine the electrochemical stability window, passivate zinc-metal-anodic corrosion, and mutate the electrolyte. Accordingly, the SEI is closely related to the overall property of a ZIB device. This review provides an overview of the impact of SEIs on ZIB performance recently and provides an SEI design strategy based on the formation mechanism, type, and characteristics of the SEI. Finally, future investigational directions for SEIs in ZIBs are expected to lead to a deep understanding of the SEI, enhance ZIB performance, and facilitate their extensive implementation.
Collapse
Affiliation(s)
- Le Li
- Shaanxi Key Laboratory of Industrial Automation, Manufacturing and Testing of Landing Gear and Aircraft Structural Parts Shaanxi University Engineering Research Center, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, P. R. China
| | - Shaofeng Jia
- Shaanxi Key Laboratory of Industrial Automation, Manufacturing and Testing of Landing Gear and Aircraft Structural Parts Shaanxi University Engineering Research Center, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, P. R. China
| | - Zhiyi Cheng
- Shaanxi Key Laboratory of Industrial Automation, Manufacturing and Testing of Landing Gear and Aircraft Structural Parts Shaanxi University Engineering Research Center, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, P. R. China
| | - Changming Zhang
- Shaanxi Key Laboratory of Industrial Automation, Manufacturing and Testing of Landing Gear and Aircraft Structural Parts Shaanxi University Engineering Research Center, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, P. R. China
| |
Collapse
|
13
|
Li Y, Wang T, Chen J, Peng X, Chen M, Liu B, Mu Y, Zeng L, Zhao T. An artificial interfacial layer with biomimetic ionic channels towards highly stable Li metal anodes. Sci Bull (Beijing) 2023:S2095-9273(23)00378-X. [PMID: 37336686 DOI: 10.1016/j.scib.2023.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Lithium (Li) metal with low electrochemical potential and high theoretical capacity is a promising anode material for next-generation batteries. However, the low reversibility and safety problems caused by the notorious dendrite growth significantly impede the development of high-energy-density lithium metal batteries (LMBs). Here, to enable a dendrite-free and highly reversible Li metal anode (LMA), we develop a cytomembrane-inspired artificial layer (CAL) with biomimetic ionic channels using a scalable spread coating method. The negatively charged CAL with uniform intraparticle and interparticle ionic channels facilitates the Li-ion transport and redistributes the Li-ion flux, contributing to stable and homogeneous Li stripping and plating. Furthermore, a robust underneath transition layer with abundant lithiophilic inorganic components is in-situ formed through the transformation of CAL during cycling, which promotes Li-ion diffusion and suppresses the continuous side reactions with the electrolyte. Additionally, the resulting cytomembrane-inspired artificial Janus layer (CAJL) displays an ultrahigh Young's modulus (≥10.7 GPa) to inhibit the dendrite growth. Consequently, the CAJL-protected LMA (Li@CAJL) is stably cycled with a high areal capacity of 10 mAh cm-2 at a high current density of 10 mA cm-2. More importantly, the effective CAJL modification realizes the stable operation of a practical 429.2 Wh kg-1 lithium-sulfur (Li-S) pouch cell using a low electrolyte/sulfur (E/S) ratio of 3 μL mg-1. The facile yet effective protection strategy of LMAs can promote the practical application of LMBs.
Collapse
Affiliation(s)
- Yiju Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tianshuai Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Junjie Chen
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xudong Peng
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Minghui Chen
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Bin Liu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yongbiao Mu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lin Zeng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tianshou Zhao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
14
|
Yu X, Jiang Z, Yuan R, Song H. A Review of the Relationship between Gel Polymer Electrolytes and Solid Electrolyte Interfaces in Lithium Metal Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111789. [PMID: 37299691 DOI: 10.3390/nano13111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Lithium metal batteries (LMBs) are a dazzling star in electrochemical energy storage thanks to their high energy density and low redox potential. However, LMBs have a deadly lithium dendrite problem. Among the various methods for inhibiting lithium dendrites, gel polymer electrolytes (GPEs) possess the advantages of good interfacial compatibility, similar ionic conductivity to liquid electrolytes, and better interfacial tension. In recent years, there have been many reviews of GPEs, but few papers discussed the relationship between GPEs and solid electrolyte interfaces (SEIs). In this review, the mechanisms and advantages of GPEs in inhibiting lithium dendrites are first reviewed. Then, the relationship between GPEs and SEIs is examined. In addition, the effects of GPE preparation methods, plasticizer selections, polymer substrates, and additives on the SEI layer are summarized. Finally, the challenges of using GPEs and SEIs in dendrite suppression are listed and a perspective on GPEs and SEIs is considered.
Collapse
Affiliation(s)
- Xiaoqi Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zipeng Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Renlu Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huaihe Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Bouibes A, Sakaki N, Nagaoka M. Microscopic Analysis of the Mechanical Stability of an SEI Layer Structure Depending on the FEC Additive Concentration in Na-Ion Batteries: Maximum Appearance in Vickers Hardness at Lower FEC Concentrations. ACS OMEGA 2023; 8:16570-16578. [PMID: 37214693 PMCID: PMC10193395 DOI: 10.1021/acsomega.2c06224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/20/2023] [Indexed: 05/24/2023]
Abstract
The stability of the solid electrolyte interphase (SEI) layer during the charging-discharging cycles is reasonably related to its microscopic elasticity. For the first time, it was theoretically revealed that each component of the elastic moduli takes a maximum at an optimal concentration of 1.0 vol % of fluoroethylene carbonate (FEC) for the SEI layer formed in the FEC-added NaPF6/PC-based electrolyte. The elastic constants indicated that the SEI layer formed at lower FEC concentrations is more resistant to tensile and shear deformations. The optimal hardness is sensitive in the lower FEC concentrations although it simply decreases as the FEC concentration increases. This is due to the formation of a denser SEI structure with small cavities in the lower concentrations. The results are excellently consistent with the experimental one, justifying the microscopic understanding of the FEC additive effect on the mechanical stability of the SEI layers designed through the Red Moon simulation.
Collapse
Affiliation(s)
- Amine Bouibes
- Graduate
School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyodai Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Nisrine Sakaki
- Graduate
School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masataka Nagaoka
- Graduate
School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyodai Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
- Future
Value Creation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
16
|
Song L, Ning D, Chai Y, Ma M, Zhang G, Wang A, Su H, Hao D, Zhu M, Zhang J, Zhou D, Wang J, Li Y. Correlating Solid Electrolyte Interphase Composition with Dendrite-Free and Long Life-Span Lithium Metal Batteries via Advanced Characterizations and Simulations. SMALL METHODS 2023:e2300168. [PMID: 37148175 DOI: 10.1002/smtd.202300168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Indexed: 05/08/2023]
Abstract
Lithium metal anode attracts great attention because of its high specific capacity and low redox potential. However, the uncontrolled dendrite growth and its infinite volume expansion during cycling are extremely detrimental to the practical application. The formation of a solid electrolyte interphase (SEI) plays a decisive role in the behavior of lithium deposition/dissolution during electrochemical processing. Clarifying the essential relationship between SEI and battery performance is a priority. Research in SEI is accelerated in recent years by the use of advanced simulation tools and characterization techniques. The chemical composition and micromorphology of SEIs with various electrolytes are analyzed to clarify the effects of SEI on the Coulombic efficiency and cycle life. In this review, the recent research progress focused on the composition and structure of SEI is summarized, and various advanced characterization techniques applied to the investigation of SEI are discussed. The comparisons of the representative experimental results and theoretical models of SEI in lithium metal batteries (LMBs) are exhibited, and the underneath mechanisms of interaction between SEI and the electrochemical properties of the cell are highlighted. This work offers new insights into the development of safe LMBs with higher energy density.
Collapse
Affiliation(s)
- Linjian Song
- Institute for Clean Energy Technology, North China Electric Power University, Beijing, 102206, China
| | - De Ning
- Centre for Photonics Information and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yan Chai
- Institute for Clean Energy Technology, North China Electric Power University, Beijing, 102206, China
| | - Muyu Ma
- Institute for Clean Energy Technology, North China Electric Power University, Beijing, 102206, China
| | - Gaoyuan Zhang
- Institute for Clean Energy Technology, North China Electric Power University, Beijing, 102206, China
| | - Anzhe Wang
- Institute for Clean Energy Technology, North China Electric Power University, Beijing, 102206, China
| | - Hai Su
- Institute for Clean Energy Technology, North China Electric Power University, Beijing, 102206, China
| | - Dingbang Hao
- Institute for Clean Energy Technology, North China Electric Power University, Beijing, 102206, China
| | - Mingdong Zhu
- Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu, Sichuan, 610213, China
| | - Jie Zhang
- Centre for Photonics Information and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Dong Zhou
- Institute of Advanced Science Facilities, Shenzhen, Guangdong, 518107, China
| | - Jun Wang
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yongli Li
- Institute for Clean Energy Technology, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
17
|
Wang F, Sun Y, Cheng J. Switching of Redox Levels Leads to High Reductive Stability in Water-in-Salt Electrolytes. J Am Chem Soc 2023; 145:4056-4064. [PMID: 36758145 DOI: 10.1021/jacs.2c11793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Developing nonflammable electrolytes with wide electrochemical windows is of great importance for energy storage devices. Water-in-salt electrolytes (WiSE) have attracted great interests due to their widely opened electrochemical windows and high stability. Previous theoretical investigations have revealed changes in solvation shell of water molecules result in opening of HOMO-LUMO gaps of water, leading to the formation of an anion-derived solid-electrolyte-interphase (SEI) in WiSE. However, how solvation structures affect electrochemical windows at atomic level is still a puzzle, which hinders optimization and design of aqueous electrolytes. Herein, machine learning molecular dynamics and free energy calculation method are applied to compute redox potentials of anions of Li-salts and water of aqueous electrolytes at a range of salt concentrations. Furthermore, an analysis based on local solvation structures is employed to demonstrate the structure-property relations. Our calculation shows that the hydrogen evolution reaction is impeded in WiSE due to switching of the order of redox levels of the anion and H2O, leading to formation of SEI and high reductive stability. Level switching is caused by the special solvation environments of isolated water molecules. Our work provides new insight into the electrochemistry of aqueous electrolytes which would benefit the electrolyte design in energy storage devices.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, China
| |
Collapse
|
18
|
Hu T, Tian J, Dai F, Wang X, Wen R, Xu S. Impact of the Local Environment on Li Ion Transport in Inorganic Components of Solid Electrolyte Interphases. J Am Chem Soc 2023; 145:1327-1333. [PMID: 36576963 DOI: 10.1021/jacs.2c11521] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The spontaneously formed passivation layer, the solid electrolyte interphase (SEI) between the electrode and electrolyte, is crucial to the performance and durability of Li ion batteries. However, the Li ion transport mechanism in the major inorganic components of the SEI (Li2CO3 and LiF) is still unclear. Particularly, whether introducing an amorphous environment is beneficial for improving the Li ion diffusivity is under debate. Here, we investigate the Li ion diffusion mechanism in amorphous LiF and Li2CO3 via machine-learning-potential-assisted molecular dynamics simulations. Our results show that the Li ion diffusivity in LiF at room temperature cannot be accurately captured by the Arrhenius extrapolation from the high temperature (>600 K) diffusivities (difference of ∼2 orders of magnitude). We reveal that the spontaneous formation of Li-F regular tetrahedrons at low temperatures (<500 K) leads to an extremely low Li ion diffusivity, suggesting that designing an amorphous bulk LiF-based SEI cannot help with the Li ion transport. We further show the critical role of Li2CO3 in suppressing the Li-F regular tetrahedron formation when these two components of SEIs are mixed. Overall, our work provides atomic insights into the impact of the local environment on Li ion diffusion in the major SEI components and suggests that suppressing the formation of large-sized bulk-phase LiF might be critical to improve battery performance.
Collapse
Affiliation(s)
- Taiping Hu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.,AI for Science Institute, Beijing 100084, People's Republic of China
| | - Jianxin Tian
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Fuzhi Dai
- AI for Science Institute, Beijing 100084, People's Republic of China.,DP Technology, Beijing 100080, People's Republic of China
| | - Xiaoxu Wang
- DP Technology, Beijing 100080, People's Republic of China
| | - Rui Wen
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Shenzhen Xu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.,AI for Science Institute, Beijing 100084, People's Republic of China
| |
Collapse
|
19
|
Wang X, Li X, Fan H, Ma L. Solid Electrolyte Interface in Zn-Based Battery Systems. NANO-MICRO LETTERS 2022; 14:205. [PMID: 36261666 PMCID: PMC9582111 DOI: 10.1007/s40820-022-00939-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/30/2022] [Indexed: 05/30/2023]
Abstract
Due to its high theoretical capacity (820 mAh g-1), low standard electrode potential (- 0.76 V vs. SHE), excellent stability in aqueous solutions, low cost, environmental friendliness and intrinsically high safety, zinc (Zn)-based batteries have attracted much attention in developing new energy storage devices. In Zn battery system, the battery performance is significantly affected by the solid electrolyte interface (SEI), which is controlled by electrode and electrolyte, and attracts dendrite growth, electrochemical stability window range, metallic Zn anode corrosion and passivation, and electrolyte mutations. Therefore, the design of SEI is decisive for the overall performance of Zn battery systems. This paper summarizes the formation mechanism, the types and characteristics, and the characterization techniques associated with SEI. Meanwhile, we analyze the influence of SEI on battery performance, and put forward the design strategies of SEI. Finally, the future research of SEI in Zn battery system is prospected to seize the nature of SEI, improve the battery performance and promote the large-scale application.
Collapse
Affiliation(s)
- Xinyu Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xiaomin Li
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Huiqing Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Longtao Ma
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
20
|
Wang F, Cheng J. Unraveling the origin of reductive stability of super-concentrated electrolytes from first principles and unsupervised machine learning. Chem Sci 2022; 13:11570-11576. [PMID: 36320382 PMCID: PMC9557245 DOI: 10.1039/d2sc04025e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 03/28/2024] Open
Abstract
Developing electrolytes with excellent electrochemical stability is critical for next-generation rechargeable batteries. Super-concentrated electrolytes (SCEs) have attracted great interest due to their high electrochemical performances and stability. Previous studies have revealed changes in solvation structures and shifts in lowest unoccupied molecular orbitals from solvents to anions, promoting the formation of an anion-derived solid-electrolyte-interphase (SEI) in SCE. However, a direct connection at the atomic level to electrochemical properties is still missing, hindering the rational optimization of electrolytes. Herein, we combine ab initio molecular dynamics with the free energy calculation method to compute redox potentials of propylene carbonate electrolytes at a range of LiTFSI concentrations, and moreover employ an unsupervised machine learning model with a local structure descriptor to establish the structure-property relations. Our calculation indicates that the network of TFSI- in SCE not only helps stabilize the added electron and renders the anion more prone to reductive decomposition, but also impedes the solvation of F- and favors LiF precipitation, together leading to effective formation of protective SEI layers. Our work provides new insights into the solvation structures and electrochemistry of concentrated electrolytes which are essential to electrolyte design in batteries.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|
21
|
Ikeda N, Ishikawa A, Fujii K. Polyether-based solid electrolytes with a homogeneous polymer network: effect of the salt concentration on the Li-ion coordination structure. Phys Chem Chem Phys 2022; 24:9626-9633. [PMID: 35403631 DOI: 10.1039/d1cp05351e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a solid polymer electrolyte with an ideal polyether network that was synthesized by using tetra-functional poly(ethylene glycol) (TetraPEG) and lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) salt. The solid TetraPEG electrolyte had few network defects (<5%) and exhibited high mechanical toughness by enduring approximately 11-fold elongation at a 1 : 10 ratio of Li salt to O atoms of PEG (Li/OPEG). We found that the mechanical properties strongly depend on the Li/OPEG ratio, which mainly contributes to the density of crosslinking points in the electrolyte. Raman spectroscopy and high-energy X-ray total scattering were used with all-atom molecular dynamics simulations to visualize the structural effects of Li-ion coordination in the TetraPEG network. At lower salt contents (Li/OPEG = 1 : 10), Li ions were found to preferentially coordinate with OPEG atoms rather than the TFSA anions to form crown ether-like Li+-PEG complexes as ion pair-free species. With increasing salt content, the TFSA anions partially coordinated with Li ions through O atoms of TFSA (OTFSA) to afford contact ion pairs surrounded by both OPEG and OTFSA atoms. Finally, the ion pairing enhanced mononuclear ion pairs as well as multinuclear ionic aggregates when more Li salt was added. This structural change in the Li-ion complexes was directly reflected by the ion-conducting properties of the electrolyte. The TetraPEG electrolyte composed of the ion pair-free Li+ species (Li/OPEG = 1 : 10) exhibited higher ionic conductivity, and the conductivity gradually decreased with increasing salt content because of extensive ion pairing for both mononuclear contact ion pairs and multinuclear aggregates. Regarding the electrochemical properties, the optimum electrolyte composition to realize a reversible Li deposition/dissolution reaction for a negative electrode was found to be Li/OPEG = 1 : 4.
Collapse
Affiliation(s)
- Namie Ikeda
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| | - Asumi Ishikawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| | - Kenta Fujii
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan.
| |
Collapse
|
22
|
Abbott JW, Hanke F. Kinetically Corrected Monte Carlo-Molecular Dynamics Simulations of Solid Electrolyte Interphase Growth. J Chem Theory Comput 2022; 18:925-934. [PMID: 35007421 DOI: 10.1021/acs.jctc.1c00921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a kinetic approach to the Monte Carlo-molecular dynamics (MC-MD) method for simulating reactive liquids using nonreactive force fields. A graphical reaction representation allows definition of reactions of arbitrary complexity, including their local solvation environment. Reaction probabilities and molecular dynamics (MD) simulation times are derived from ab initio calculations. Detailed validation is followed by studying the development of the solid electrolyte interphase (SEI) in lithium-ion batteries. We reproduce the experimentally observed two-layered structure on graphite, with an inorganic layer close to the anode and an outer organic layer. This structure develops via a near-shore aggregation mechanism.
Collapse
|
23
|
Bouibes A, Takenaka N, Kubota K, Komaba S, Nagaoka M. Development of advanced electrolytes in Na-ion batteries: application of the Red Moon method for molecular structure design of the SEI layer. RSC Adv 2021; 12:971-984. [PMID: 35425108 PMCID: PMC8978880 DOI: 10.1039/d1ra07333h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022] Open
Abstract
This review aims to overview state-of-the-art progress in the collaborative work between theoretical and experimental scientists to develop advanced electrolytes for Na-ion batteries (NIBs). Recent investigations were summarized on NaPF6 salt and fluoroethylene carbonate (FEC) additives in propylene carbonate (PC)-based electrolyte solution, as one of the best electrolytes to effectively passivate the hard-carbon electrode with higher cycling performance for next-generation NIBs. The FEC additive showed high efficiency to significantly enhance the capacity and cyclability of NIBs, with an optimal performance that is sensitive at low concentration. Computationally, both microscopic effects, positive and negative, were revealed at low and high concentrations of FEC, respectively. In addition to the role of FEC decomposition to form a NaF-rich solid electrolyte interphase (SEI) film, intact FECs play a role in suppressing the dissolution to form a compact and stable SEI film. However, the increase in FEC concentration suppressed the organic dimer formation by reducing the collision frequency between the monomer products during the SEI film formation processes. In addition, this review introduces the Red Moon (RM) methodology, recent computational battery technology, which has shown a high efficiency to bridge the gap between the conventional theoretical results and experimental ones through a number of successful applications in NIBs.
Collapse
Affiliation(s)
- Amine Bouibes
- Graduate School of Informatics, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
- ESICB, Kyoto University Nishikyo-ku Kyoto 615-8245 Japan
| | - Norio Takenaka
- ESICB, Kyoto University Nishikyo-ku Kyoto 615-8245 Japan
- Graduate School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kei Kubota
- ESICB, Kyoto University Nishikyo-ku Kyoto 615-8245 Japan
- Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka Shinjuku Tokyo 162-8601 Japan
| | - Shinichi Komaba
- ESICB, Kyoto University Nishikyo-ku Kyoto 615-8245 Japan
- Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka Shinjuku Tokyo 162-8601 Japan
| | - Masataka Nagaoka
- Graduate School of Informatics, Nagoya University Furo-cho, Chikusa-ku Nagoya 464-8601 Japan
- ESICB, Kyoto University Nishikyo-ku Kyoto 615-8245 Japan
| |
Collapse
|