1
|
Xu Y, Du Y, Chen H, Chen J, Ding T, Sun D, Kim DH, Lin Z, Zhou X. Recent advances in rational design for high-performance potassium-ion batteries. Chem Soc Rev 2024; 53:7202-7298. [PMID: 38855863 DOI: 10.1039/d3cs00601h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The growing global energy demand necessitates the development of renewable energy solutions to mitigate greenhouse gas emissions and air pollution. To efficiently utilize renewable yet intermittent energy sources such as solar and wind power, there is a critical need for large-scale energy storage systems (EES) with high electrochemical performance. While lithium-ion batteries (LIBs) have been successfully used for EES, the surging demand and price, coupled with limited supply of crucial metals like lithium and cobalt, raised concerns about future sustainability. In this context, potassium-ion batteries (PIBs) have emerged as promising alternatives to commercial LIBs. Leveraging the low cost of potassium resources, abundant natural reserves, and the similar chemical properties of lithium and potassium, PIBs exhibit excellent potassium ion transport kinetics in electrolytes. This review starts from the fundamental principles and structural regulation of PIBs, offering a comprehensive overview of their current research status. It covers cathode materials, anode materials, electrolytes, binders, and separators, combining insights from full battery performance, degradation mechanisms, in situ/ex situ characterization, and theoretical calculations. We anticipate that this review will inspire greater interest in the development of high-efficiency PIBs and pave the way for their future commercial applications.
Collapse
Affiliation(s)
- Yifan Xu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Yichen Du
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Han Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Jing Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Tangjing Ding
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Dongmei Sun
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Dong Ha Kim
- Department of Chemistry and Nano Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Xiaosi Zhou
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Yao SW, Ajour MN, Abu-Hamdeh NH, Elamin AEA. Freezing process of nanomaterial inside thermal storage tank with amelioration in geometry utilizing Galerkin modeling. JOURNAL OF ENERGY STORAGE 2023; 60:106653. [DOI: 10.1016/j.est.2023.106653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
3
|
Pramanik A, Manche AG, Sougrati MT, Chadwick AV, Lightfoot P, Armstrong AR. K 2Fe(C 2O 4) 2: An Oxalate Cathode for Li/Na-Ion Batteries Exhibiting a Combination of Multielectron Cation and Anion Redox. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:2600-2611. [PMID: 37008407 PMCID: PMC10061677 DOI: 10.1021/acs.chemmater.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/03/2023] [Indexed: 06/19/2023]
Abstract
The development of multielectron redox-active cathode materials is a top priority for achieving high energy density with long cycle life in the next-generation secondary battery applications. Triggering anion redox activity is regarded as a promising strategy to enhance the energy density of polyanionic cathodes for Li/Na-ion batteries. Herein, K2Fe(C2O4)2 is shown to be a promising new cathode material that combines metal redox activity with oxalate anion (C2O4 2-) redox. This compound reveals specific discharge capacities of 116 and 60 mAh g-1 for sodium-ion batterie (NIB) and lithium-ion batterie (LIB) cathode applications, respectively, at a rate of 10 mA g-1, with excellent cycling stability. The experimental results are complemented by density functional theory (DFT) calculations of the average atomic charges.
Collapse
Affiliation(s)
- Atin Pramanik
- School
of Chemistry, University of St. Andrews, Fife, St. Andrews KY16
9ST, United Kingdom
| | - Alexis G. Manche
- School
of Chemistry, University of St. Andrews, Fife, St. Andrews KY16
9ST, United Kingdom
- The
Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United
Kingdom
| | - Moulay Tahar Sougrati
- Université
de Montpellier, 2 Place Eugène Bataillon - CC 1502, 34095 Montpellier Cedex 5, France
- ALISTORE-ERI, 80039 Amiens Cedex, France
| | - Alan V. Chadwick
- ALISTORE-ERI, 80039 Amiens Cedex, France
- School
of Physical Sciences, University of Kent, Kent, Canterbury CT2 7NH, United Kingdom
| | - Philip Lightfoot
- School
of Chemistry, University of St. Andrews, Fife, St. Andrews KY16
9ST, United Kingdom
| | - A. Robert Armstrong
- School
of Chemistry, University of St. Andrews, Fife, St. Andrews KY16
9ST, United Kingdom
- ALISTORE-ERI, 80039 Amiens Cedex, France
- The
Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, United
Kingdom
| |
Collapse
|
4
|
Xu L, Li Y, Song Y, Mazavi M. Investigation of Potential of Adsorbed CuO, TiO, RuO2 and MnO2 on Silicon and Carbon Nanotubes as Anode Materials of Metal Ion Batteries. SILICON 2023; 15:1925-1932. [DOI: 10.1007/s12633-022-02140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 09/21/2022] [Indexed: 01/03/2025]
|
5
|
Shahzad MK, Hussain S, Farooq MU, Laghari RA, Bilal MH, Khan SA, Tahir MB, Khalil A, Rehman JU, Ali MM. First-principles calculations to investigate structural, electronic, elastic and optical properties of radium based cubic fluoro-perovskite materials. Heliyon 2023; 9:e13687. [PMID: 36873152 PMCID: PMC9975092 DOI: 10.1016/j.heliyon.2023.e13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Perovskite materials play a vital role in the field of material science via experimental as well as theoretical calculations. Radium semiconductor materials are considered the backbone of medical fields. These materials are considered in high technological fields to be used as controlling the decay ability. In this study, radium-based cubic fluoro-perovskite XRaF3 (where X = Rb and Na) are calculated using a DFT (density functional theory). These compounds are cubic nature with 221 space groups that construct on CASTEP (Cambridge-serial-total-energy-package) software with ultra-soft PPPW (pseudo-potential plane-wave) and GGA (Generalized-Gradient-approximation)-PBE (Perdew-Burke-Ernzerhof) exchange-correlation functional. The structural, optical, electronic, and mechanical properties of the compounds are calculated. According to the structural properties, NaRaF3 and RbRaF3 have a direct bandgap with 3.10eV and 4.187eV of NaRaF3 and RbRaF3, respectively. Total density of states (DOS) and partial density of states (PDOS) provide confirmation to the degree of electrons localized in distinct bands. NaRaF3 material is semiconductors and RbRaF3 is insulator, according to electronic results. The imaginary element dispersion of the dielectric function reveals its wide variety of energy transparency. In both compounds, the optical transitions are examined by fitting the damping ratio for the notional dielectric function scaling to the appropriate peaks. The absorption and the conductivity of NaRaF3 compound is better than the RbRaF3 compound which make it suitable for the solar cell applications increasing the efficiency and work function. We observed that both compounds are mechanically stable with cubic structure. The criteria for the mechanical stability of compounds are also met by the estimated elastic results. These compounds have potential application in field of solar cell and medical. Objectives The band gap, absorption and the conductivity are necessary conditions for potential applications. Here, literature was reviewed to check computational translational insight into the relationships between absorption and conductivity for solar cell and medical applications of novel RbRaF3 and NaRaF3 compounds.
Collapse
Affiliation(s)
- Muhammad Khuram Shahzad
- Institute of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan.,Center of Theoretical and Computational Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Shoukat Hussain
- Institute of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | | | - Rashid Ali Laghari
- Interdisciplinary Research Center for Intelligent Manufacturing and Robotics, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Hamza Bilal
- Research Center for Nanomaterials and Energy Technology, Sunway University Malaysia
| | - Sajjad Ahmad Khan
- Institute of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Bilal Tahir
- Institute of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan.,Center of Theoretical and Computational Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Adnan Khalil
- Institute of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Jalil Ur Rehman
- Institute of Physics, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan.,Center of Theoretical and Computational Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Mahmood Ali
- Department of Mechatronic Engineering, Atlantic Technological University Sligo, Ash Lane, F91 YW50 Sligo, Ireland.,Centre for Mathematical Modeling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| |
Collapse
|
6
|
Adnan Al-Sanjari H, Reaad S, Sabri Abbas Z, Rayid R, Abdullaha SA, Hachim SK, Kadhim MM, Mahdi Rheima A, Ismael Ibrahim A. Exploring the role of Stone-Wales defect in boron nitride nano-sheet as a anode Mg-ion batteries. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Guo Y, Ke FS. Combination of 3D conductive network and all-fluorinated electrolyte for high-performance microsized silicon anode. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Pan Q, Tong Z, Su Y, Zheng Y, Shang L, Tang Y. Flat-Zigzag Interface Design of Chalcogenide Heterostructure toward Ultralow Volume Expansion for High-Performance Potassium Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203485. [PMID: 35962631 DOI: 10.1002/adma.202203485] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Heterostructure construction of layered metal chalcogenides can boost their alkali-metal storage performance, where the charge transfer kinetics can be promoted by the built-in electric fields. However, these heterostructures usually undergo interface separation due to severe layer expansion, especially for large-size potassium accommodation, resulting in the deconstruction of heterostructures and battery performance fading. Herein, first a stable interface design strategy where two metal chalcogenides with totally different layer-morphologies are stacked to form large K+ transport channels, rendering ultralow interlayer expansion, is presented. As a proof of concept, the flat-zigzag MoS2 /Bi2 S3 heterostructures stacked with zigzag-morphology Bi2 S3 and flat-morphology MoS2 present an ultralow expansion ratio (1.98%) versus MoS2 (9.66%) and Bi2 S3 (9.61%), which deliver an ultrahigh potassium storage capacity of above 600 mAh g-1 and capacity retention of 76% after 500 cycles, together with the built-in electric field of heterostructures. Once the heterostructures are used as an anode for potassium-based dual-ion batteries (K-DIBs), it achieves a superior full-cell capacity of ≈166 mAh g-1 with a capacity retention of 71% after 400 cycles, which is an outstanding performance among the reported K-DIBs. This proposed interface stacking strategy may offer a new way toward stable heterostructure design for metal ions storage and transport applications.
Collapse
Affiliation(s)
- Qingguang Pan
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Zhaopeng Tong
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanqiang Su
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongping Zheng
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Lin Shang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Yongbing Tang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
9
|
Almarashi A, Hussin AM, Mirparizi M, Zhang C, Saad HA. Influence of nanoparticles on freezing inside container equipped with fins. Sci Rep 2022; 12:14792. [PMID: 36042360 PMCID: PMC9427983 DOI: 10.1038/s41598-022-18714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
With loading of different shapes of nanoparticles, the solidification speed can be changed which was scrutinized in current work. Although the nanoparticles dispersion can decline the heat capacity, the conduction mode can be improved with such technique and changing the styles of nano-powders can alter the strength of conduction. The velocity terms were neglected in freezing, thus, the main equations include two equations with unsteady form for scalars of solid fraction and temperature. Grid adaption with position of ice front has been considered in simulations utilizing FEM. The upper sinusoidal and inner rectangular walls maintain cold temperature and freezing starts from these regions. Adding nanomaterial can expedite the process around 15.75% (for m = 4.8) and 29.8% (for m = 8.6). Also, utilizing particles with shapes of blade form can augment the freezing rate around 16.69%. The efficacy of m on freezing process rises around 4% with elevate of concentration of nanoparticles.
Collapse
Affiliation(s)
- Adel Almarashi
- Department of Mathematics, College of Science, Jazan University, New Campus, Post Box 2097, Jazan, Kingdom of Saudi Arabia
| | - Amira M Hussin
- Department of Mathematics, Al-Aflaj College of Science and Humanities Studies, Prince Sattam Bin Abdulaziz University, Al-Aflaj, 710-11912, Kingdom of Saudi Arabia.
| | - M Mirparizi
- Department of Mechanical Engineering, University of Yazd, Yazd, Iran. .,Multidisciplinary Center for Infrastructure Engineering, Shenyang University of Technology, Shenyang, 110870, China.
| | - Chunwei Zhang
- Multidisciplinary Center for Infrastructure Engineering, Shenyang University of Technology, Shenyang, 110870, China
| | - Hosam A Saad
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Liao M, Cao Y, Li Z, Xu J, Qi Y, Xie Y, Peng Y, Wang Y, Wang F, Xia Y. VPO
4
F Fluorophosphates Polyanion Cathodes for High‐Voltage Proton Storage. Angew Chem Int Ed Engl 2022; 61:e202206635. [DOI: 10.1002/anie.202206635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Mochou Liao
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Yongjie Cao
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Ziyue Li
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Jie Xu
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Yae Qi
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Yihua Xie
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Yu Peng
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Yonggang Wang
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Fei Wang
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Yongyao Xia
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| |
Collapse
|
11
|
Solvent-assisted ligand exchange as a post-synthetic surface modification approach of Zn-based (ZIF-7, ZIF-8) and Co-based (ZIF-9, ZIF-67) zeolitic frameworks for energy storage application. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Akkurt N, Aghakhani S, Mahmoud MZ, Abdelrahman A. RETRACTED: Cooling of non-sloped, positively sloped, and negatively sloped arrangements of Li-ion batteries with a phase change material connected to a solar system. JOURNAL OF ENERGY STORAGE 2022; 52:104808. [DOI: 10.1016/j.est.2022.104808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
13
|
Investigation of performance and efficiency of donor-π-bridge-acceptor based material solar cell. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Liao M, Cao Y, Li Z, Xu J, Qi Y, Xie Y, Peng Y, Wang Y, Wang F, Xia Y. VPO
4
F Fluorophosphates Polyanion Cathodes for High‐Voltage Proton Storage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mochou Liao
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Yongjie Cao
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Ziyue Li
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Jie Xu
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Yae Qi
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Yihua Xie
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Yu Peng
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Yonggang Wang
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Fei Wang
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Yongyao Xia
- Department of Chemistry Department of Materials Science Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| |
Collapse
|
15
|
A Novel and Versatile Copper-Nanomagnetic Catalyst for Synthesis of Propargylamines and Diaryl Sulfides. Catal Letters 2022. [DOI: 10.1007/s10562-022-04029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Ibrahim M, Berrouk AS, Saeed T, Algehyne EA, Ali V. Lattice Boltzmann-based numerical analysis of nanofluid natural convection in an inclined cavity subject to multiphysics fields. Sci Rep 2022; 12:5514. [PMID: 35365719 PMCID: PMC8975933 DOI: 10.1038/s41598-022-09320-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Abstract
This research conducts a study of natural convection heat transfer (NCHT) in a nanofluid under a magnetic field (MF). The nanofluid is in a cavity inclined at an angle of 45°. The MF can take different angles between 0° and 90°. Radiative heat transfer is present in the cavity in volumetric form. There are two hot semicircles, similar to two half-pipes, on the bottom wall. The top wall is kept cold. The side walls and parts of the bottom wall, except the pipes, have been insulated. The lattice Boltzmann method has been used for the simulation. The studied parameters are the Rayleigh number (in the range 103–106), magnetic field angle, radiation parameter (in the range 0–2), and nanoparticle volume fraction (in the range 0–5%). The generated entropy has been studied as the NCHT. The results indicate that adding nanoparticles improves heat transfer rate (HTR). Moreover, the addition of volumetric radiation to the cavity enhances the Nusselt number by 54% and the generated entropy by 12.5%. With an augmentation in the MF angle from 0° to 90°, HTR decreases and this decrease is observed mostly at higher Rayleigh numbers. An augmentation in the Ra increases NCHT and entropy generation. Indeed, a rise in the Ra from 103 to 106 increases HTR by almost sixfold.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- Mechanical Engineering Department, Khalifa University of Science and Technology, SAN Campus, PO Box 127788, Abu Dhabi, United Arab Emirates.,Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Abdallah S Berrouk
- Mechanical Engineering Department, Khalifa University of Science and Technology, SAN Campus, PO Box 127788, Abu Dhabi, United Arab Emirates.,Center for Catalysis and Separation, Khalifa University of Science and Echnology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Tareq Saeed
- Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Ebrahem A Algehyne
- Department of Mathematics, Faculty of Science, University of Tabuk, P.O.Box741, Tabuk, 71491, Saudi Arabia.,Nanotechnology Research Unit (NRU), Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Vakkar Ali
- Department of Mechanical and Industrial Engineering, College of Engineering, Majmaah University, Al-Majmaah, 11952, Saudi Arabia.
| |
Collapse
|
17
|
A Review of High-Energy Density Lithium-Air Battery Technology: Investigating the Effect of Oxides and Nanocatalysts. J CHEM-NY 2022. [DOI: 10.1155/2022/2762647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In vehicles that require a lot of electricity, such as electric vehicles, it is necessary to use high-energy batteries. Among the developed batteries, the lithium-ion battery has shown better performance. This battery has an energy density of 10 equal to that of a lithium-ion battery and uses air oxygen as the active material of the cathode and anode like a lithium-ion battery made of lithium metal. The cathode used in these batteries must have special properties such as strong catalytic activity and high conductivity, and nanotechnology has greatly helped to improve the materials used in the cathode of lithium-air batteries. The importance of proper catalyst distribution and the relationship between the oxide product and the catalyst and the indirect effect of the ORR catalyst on the OER reaction is not present in the fuel cell. The maximum capacity of lithium-air battery theory using graphene under optimal electron conduction conditions and the experimental maximum obtained for graphene by optimizing the structure geometry, examples of structural engineering using carbon fiber and carbon nanotubes in cathode fabrication with the ability to perform the reaction properly while providing space for lithium oxide placement, are examined. This article describes the mechanism of this battery, and its components are examined. The challenges of using this battery and the application of nanotechnology to solve these challenges are also discussed.
Collapse
|
18
|
Ye C, Liu M. A computational study on the potential application of carbon nitride nanosheets in Na-ion batteries. J Mol Model 2022; 28:40. [DOI: 10.1007/s00894-021-05024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/29/2021] [Indexed: 12/07/2022]
|
19
|
Yuanlei S, Almohsen B, Sabershahraki M, Issakhov A, Raja MAZ. Nanomaterial migration due to magnetic field through a porous region utilizing numerical modeling. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Cao Y, Ahmai S, Ghaffar Ebadi A, Xu NY, Issakhov A, Derakhshandeh M. Boron carbide hexagonal monolayer as promising anode material for magnesium-ion batteries. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Theoretical study of the catalytic effect of TM-CmHm (TM = Cr, Mn, Sc, Ti, V, and m = 4, 5) on the activation of oxygen at the cathode and methane at the anode in the fuel cell reaction “CH4–O2”: a DFT study. Struct Chem 2021. [DOI: 10.1007/s11224-021-01831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Zhang G, Ou X, Yang J, Tang Y. Molecular Coupling and Self-Assembly Strategy toward WSe 2 /Carbon Micro-Nano Hierarchical Structure for Elevated Sodium-Ion Storage. SMALL METHODS 2021; 5:e2100374. [PMID: 34927868 DOI: 10.1002/smtd.202100374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Indexed: 06/14/2023]
Abstract
Sodium (Na) ion-based dual-ion batteries (Na-DIBs) have attracted great attention, owing to their benefits of low cost, high working voltage, and environmental friendliness. However, the limited capacity and low tap density of currently reported anode materials restrict the further improvement of Na-DIBs. Herein, a micro-nano structure with vertically aligned WSe2 nanoflakes anchored tightly on a micron-sized carbon sphere (WSe2 /CS) is successfully constructed via combining the molecular coupling and self-assembly strategy. Within this hierarchical structure, the WSe2 nanoflakes can shorten the diffusion path for Na+ ions and alleviate structural deformation during the charge/discharge process; meanwhile, the micron-sized carbon core provides conductive support and helps improve the total tap density of the anode electrode. As a result, this micron-sized WSe2 /CS displays a high specific capacity of ≈252.8 mAh g-1 and good cycling performance with ≈92% capacity retention after 1200 cycles. Moreover, by pairing this WSe2 /CS anode with environmental friendly graphite as cathode, a proof-of-concept Na-DIB shows 85.6% capacity retention after 1000 cycles, which is among the best performances of previously reported Na-DIBs.
Collapse
Affiliation(s)
- Ge Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, China
- Functional Thin Films Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuewu Ou
- Functional Thin Films Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, China
| | - Yongbing Tang
- Functional Thin Films Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Key Laboratory of Advanced Materials Processing & Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|