1
|
Quah T, Modica KJ, Rawlings JB, Takatori SC. Model predictive control of non-interacting active Brownian particles. SOFT MATTER 2024; 20:8581-8588. [PMID: 39417392 DOI: 10.1039/d4sm00902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Active matter systems are strongly driven to assume non-equilibrium distributions owing to their self-propulsion, e.g., flocking and clustering. Controlling the active matter systems' spatiotemporal distributions offers exciting applications such as directed assembly, programmable materials, and microfluidic actuation. However, these applications involve environments with coupled dynamics and complex tasks, making intuitive control strategies insufficient. This necessitates the development of an automatic feedback control framework, where an algorithm determines appropriate actions based on the system's current state. In this work, we control the distribution of active Brownian particles by applying model predictive control (MPC), a model-based control algorithm that predicts future states and optimizes the control inputs to drive the system along a user-defined objective. The MPC model is based on the Smoluchowski equation with a self-propulsive convective term and an actuated spatiotemporal-varying external field that aligns particles with the applied direction, similar to a magnetic field. We apply the MPC framework to control a Brownian dynamics simulation of non-interacting active particles and illustrate the controller capabilities with two objectives: splitting and juggling sub-populations, and polar order flocking control.
Collapse
Affiliation(s)
- Titus Quah
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Kevin J Modica
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - James B Rawlings
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Sho C Takatori
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
2
|
Laghrissi A, Juodėnas M, Tamulevičius T, Kunstmann C, Rubahn HG, Fiutowski J. Magnetic-assisted sequential templated self-assembly of hybrid colloid nanoparticle systems. NANOSCALE 2024. [PMID: 39431523 DOI: 10.1039/d4nr03665d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The assembly of hybrid nanoparticles is a pioneering route for developing nanoscale functional devices, enabling breakthroughs in various fields, including electronics, photonics, energy, sensing, and biomedical applications. Here, we focus on the templated assembly of nano-sized colloidal systems using a combination of silica-coated superparamagnetic beads (MBs) and polymer-coated gold nanoparticles (AuNPs) or silver nanoparticles (AgNPs). These hybrid nanoparticles introduce new functionalities that allow them to be used as nanomachines with numerous possible applications. Using sequential capillarity-assisted particle assembly (sCAPA), we deposit MBs with activating nano-transducers made of PNIPAm@AuNPs, which respond to specific external stimuli such as temperature variations. We deposit MBs with surface-enhanced Raman scattering (SERS) AgNPs, which have the ability to detect molecules at low concentrations. A key achievement of our study is demonstrating the successful CAPA assembly of nanoparticles with ingenious surface chemistry and retrieving these assembled structures from nanotraps in a liquid medium. This ability highlights the potential of hybrid colloids in precisely targeted drug delivery systems and highly effective mobile sensors. It represents a significant leap forward in using nanotechnology to create more complex and responsive nanoscale assemblies.
Collapse
Affiliation(s)
- Ayoub Laghrissi
- Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark.
| | - Mindaugas Juodėnas
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas, Lietuva, Lithuania
| | - Tomas Tamulevičius
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas, Lietuva, Lithuania
| | - Casper Kunstmann
- Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark.
| | - Horst-Günter Rubahn
- Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark.
| | - Jacek Fiutowski
- Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark.
| |
Collapse
|
3
|
Zhou C, Liang S, Qi B, Liu C, Cho NJ. One-pot microfluidic fabrication of micro ceramic particles. Nat Commun 2024; 15:8862. [PMID: 39406710 PMCID: PMC11480503 DOI: 10.1038/s41467-024-53016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
In the quest for miniaturization across technical disciplines, microscale ceramic blocks emerge as pivotal components, with performance critically dependent on precise scales and intricate shapes. Sharp-edged ceramic microparticles, applied from micromachining to microelectronics, require innovative fabrication techniques for high-throughput production while maintaining structural complexity and mechanical integrity. This study introduces a "one-pot microfluidic fabrication" system incorporating two device fabrication strategies, "groove & tongue" and sliding assembling, achieving an unprecedented array of microparticles with diverse, complex shapes and refined precision, outperforming traditional methods in production rate and quality. Optimally designed sintering profiles based on derivative thermogravimetry enhance microparticles' shape retention and structural strength. Compression and scratch tests validate the superiority of microparticles, suggesting their practicability for diverse applications, such as precise micromachining, sophisticated microrobotics and delicate microsurgical tools. This advancement marks a shift in microscale manufacturing, offering a scalable solution to meet the demanding specifications of miniaturized technology components.
Collapse
Affiliation(s)
- Chenchen Zhou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Centre for Cross Economy, Nanyang Technological University, Singapore, 637551, Singapore
| | - Shuaishuai Liang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R. China
| | - Bin Qi
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R. China
| | - Chenxu Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P.R. China
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
- Centre for Cross Economy, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
4
|
Shi R, Chen KL, Fern J, Deng S, Liu Y, Scalise D, Huang Q, Cowan NJ, Gracias DH, Schulman R. Programming gel automata shapes using DNA instructions. Nat Commun 2024; 15:7773. [PMID: 39237499 PMCID: PMC11377784 DOI: 10.1038/s41467-024-51198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
The ability to transform matter between numerous physical states or shapes without wires or external devices is a major challenge for robotics and materials design. Organisms can transform their shapes using biomolecules carrying specific information and localize at sites where transitions occur. Here, we introduce gel automata, which likewise can transform between a large number of prescribed shapes in response to a combinatorial library of biomolecular instructions. Gel automata are centimeter-scale materials consisting of multiple micro-segments. A library of DNA activator sequences can each reversibly grow or shrink different micro-segments by polymerizing or depolymerizing within them. We develop DNA activator designs that maximize the extent of growth and shrinking, and a photolithography process for precisely fabricating gel automata with elaborate segmentation patterns. Guided by simulations of shape change and neural networks that evaluate gel automata designs, we create gel automata that reversibly transform between multiple, wholly distinct shapes: four different letters and every even or every odd numeral. The sequential and repeated metamorphosis of gel automata demonstrates how soft materials and robots can be digitally programmed and reprogrammed with information-bearing chemical signals.
Collapse
Affiliation(s)
- Ruohong Shi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kuan-Lin Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua Fern
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Siming Deng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA
| | - Yixin Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dominic Scalise
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Qi Huang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Noah J Cowan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Center for MicroPhysiological Systems (MPS), Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA.
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA.
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Yibibulla T, Hou L, Mead JL, Huang H, Fatikow S, Wang S. Frictional behavior of one-dimensional materials: an experimental perspective. NANOSCALE ADVANCES 2024; 6:3251-3284. [PMID: 38933866 PMCID: PMC11197433 DOI: 10.1039/d4na00039k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
The frictional behavior of one-dimensional (1D) materials, including nanotubes, nanowires, and nanofibers, significantly influences the efficient fabrication, functionality, and reliability of innovative devices integrating 1D components. Such devices comprise piezoelectric and triboelectric nanogenerators, biosensing and implantable devices, along with biomimetic adhesives based on 1D arrays. This review compiles and critically assesses recent experimental techniques for exploring the frictional behavior of 1D materials. Specifically, it underscores various measurement methods and technologies employing atomic force microscopy, electron microscopy, and optical microscopy nanomanipulation. The emphasis is on their primary applications and challenges in measuring and characterizing the frictional behavior of 1D materials. Additionally, we discuss key accomplishments over the past two decades in comprehending the frictional behaviors of 1D materials, with a focus on factors such as materials combination, interface roughness, environmental humidity, and non-uniformity. Finally, we offer a brief perspective on ongoing challenges and future directions, encompassing the systematic investigation of the testing environment and conditions, as well as the modification of surface friction through surface alterations.
Collapse
Affiliation(s)
- Tursunay Yibibulla
- School of Physics, Central South University Changsha 410083 P. R. China
- School of Physics and Electronics, Nanning Normal University Nanning 530001 P. R. China
| | - Lizhen Hou
- School of Physics and Electronics, Hunan Normal University Changsha 410083 P. R. China
| | - James L Mead
- Division Microrobotics and Control Engineering, Department of Computing Science, University of Oldenburg D-26129 Oldenburg Germany
| | - Han Huang
- School of Advanced Manufacturing, Sun-Yat-sen University Shenzhen 518107 P. R. China
| | - Sergej Fatikow
- Division Microrobotics and Control Engineering, Department of Computing Science, University of Oldenburg D-26129 Oldenburg Germany
| | - Shiliang Wang
- School of Physics, Central South University Changsha 410083 P. R. China
| |
Collapse
|
6
|
Wang Q, Wang Q, Ning Z, Chan KF, Jiang J, Wang Y, Su L, Jiang S, Wang B, Ip BYM, Ko H, Leung TWH, Chiu PWY, Yu SCH, Zhang L. Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted delivery. Sci Robot 2024; 9:eadh1978. [PMID: 38381838 DOI: 10.1126/scirobotics.adh1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Micro/nanorobotic swarms consisting of numerous tiny building blocks show great potential in biomedical applications because of their collective active delivery ability, enhanced imaging contrast, and environment-adaptive capability. However, in vivo real-time imaging and tracking of micro/nanorobotic swarms remain a challenge, considering the limited imaging size and spatial-temporal resolution of current imaging modalities. Here, we propose a strategy that enables real-time tracking and navigation of a microswarm in stagnant and flowing blood environments by using laser speckle contrast imaging (LSCI), featuring full-field imaging, high temporal-spatial resolution, and noninvasiveness. The change in dynamic convection induced by the microswarm can be quantitatively investigated by analyzing the perfusion unit (PU) distribution, offering an alternative approach to investigate the swarm behavior and its interaction with various blood environments. Both the microswarm and surrounding environment were monitored and imaged by LSCI in real time, and the images were further analyzed for simultaneous swarm tracking and navigation in the complex vascular system. Moreover, our strategy realized real-time tracking and delivery of a microswarm in vivo, showing promising potential for LSCI-guided active delivery of microswarm in the vascular system.
Collapse
Affiliation(s)
- Qinglong Wang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Zhipeng Ning
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Kai Fung Chan
- Chow Yuk Ho Technology Centre for Innovative Medicine, CUHK, Shatin, N.T., Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China
| | - Jialin Jiang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Yuqiong Wang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Lin Su
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Shuai Jiang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Bonaventure Yiu Ming Ip
- Division of Neurology, Department of Medicine and Therapeutics, CUHK, Shatin, N.T., Hong Kong, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics, CUHK, Shatin, N.T., Hong Kong, China
| | - Thomas Wai Hong Leung
- Division of Neurology, Department of Medicine and Therapeutics, CUHK, Shatin, N.T., Hong Kong, China
| | - Philip Wai Yan Chiu
- Chow Yuk Ho Technology Centre for Innovative Medicine, CUHK, Shatin, N.T., Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China
- Department of Surgery, CUHK, Shatin, N.T., Hong Kong, China
| | - Simon Chun Ho Yu
- Department of Imaging and Interventional Radiology, CUHK, Shatin, N.T., Hong Kong, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, CUHK, Shatin, N.T., Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin, N.T., Hong Kong SAR, China
- Department of Surgery, CUHK, Shatin, N.T., Hong Kong, China
- CUHK T Stone Robotics Institute, CUHK, Shatin, N.T., Hong Kong, China
| |
Collapse
|
7
|
Abstract
Magnetic control has gained popularity recently due to its ability to enhance soft robots with reconfigurability and untethered maneuverability, among other capabilities. Several advancements in the fabrication and application of reconfigurable magnetic soft robots have been reported. This review summarizes novel fabrication techniques for designing magnetic soft robots, including chemical and physical methods. Mechanisms of reconfigurability and deformation properties are discussed in detail. The maneuverability of magnetic soft robots is then briefly discussed. Finally, the present challenges and possible future work in designing reconfigurable magnetic soft robots for biomedical applications are identified.
Collapse
Affiliation(s)
- Linxiaohai Ning
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Chayabhan Limpabandhu
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Zion Tsz Ho Tse
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
8
|
Liu X, Wu H, Wu S, Qin H, Zhang T, Lin Y, Zheng X, Li B. Optically Programmable Living Microrouter in Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304103. [PMID: 37749869 PMCID: PMC10646234 DOI: 10.1002/advs.202304103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/13/2023] [Indexed: 09/27/2023]
Abstract
With high reconfigurability and swarming intelligence, programmable medical micromachines (PMMs) represent a revolution in microrobots for executing complex coordinated tasks, especially for dynamic routing of various targets along their respective routes. However, it is difficult to achieve a biocompatible implantation into the body due to their exogenous building blocks. Herein, a living microrouter based on an organic integration of endogenous red blood cells (RBCs), programmable scanning optical tweezers and flexible optofluidic strategy is reported. By harvesting energy from a designed optical force landscape, five RBCs are optically rotated in a controlled velocity and direction, under which, a specific actuation flow is achieved to exert the well-defined hydrodynamic forces on various biological targets, thus enabling a selective routing by integrating three successive functions, i.e., dynamic input, inner processing, and controlled output. Benefited from the optofluidic manipulation, various blood cells, such as the platelets and white blood cells, are transported toward the damaged vessel and cell debris for the dynamic hemostasis and targeted clearance, respectively. Moreover, the microrouter enables a precise transport of nanodrugs for active and targeted delivery in a large quantity. The proposed RBC microrouter might provide a biocompatible medical platform for cell separation, drug delivery, and immunotherapy.
Collapse
Affiliation(s)
- Xiaoshuai Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Huaying Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Shuai Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Haifeng Qin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Tiange Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Yufeng Lin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Xianchuang Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| |
Collapse
|
9
|
Li H, Teal D, Liang Z, Kwon H, Huo D, Jin A, Fischer P, Fan DE. Precise electrokinetic position and three-dimensional orientation control of a nanowire bioprobe in solution. NATURE NANOTECHNOLOGY 2023; 18:1213-1221. [PMID: 37500771 DOI: 10.1038/s41565-023-01439-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/01/2023] [Indexed: 07/29/2023]
Abstract
Owing to Brownian-motion effects, the precise manipulation of individual micro- and nanoparticles in solution is challenging. Therefore, scanning-probe-based techniques, such as atomic force microscopy, attach particles to cantilevers to enable their use as nanoprobes. Here we demonstrate a versatile electrokinetic trap that simultaneously controls the two-dimensional position with a precision of 20 nm and 0.5° in the three-dimensional orientation of an untethered nanowire, as small as 300 nm in length, under an optical microscope. The method permits the active transport of nanowires with a speed-dependent accuracy reaching 90 nm at 2.7 μm s-1. It also allows for their synchronous three-dimensional alignment and rotation during translocation along complex trajectories. We use the electrokinetic trap to accurately move a nanoprobe and stably position it on the surface of a single bacterial cell for sensing secreted metabolites for extended periods. The precision-controlled manipulation underpins developing nanorobotic tools for assembly, micromanipulation and biological measurements with subcellular resolution.
Collapse
Affiliation(s)
- Huaizhi Li
- Materials Science and Engineering Program, Texas Materials Institute, University of Texas at Austin, Austin, TX, USA
| | - Daniel Teal
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Zexi Liang
- Materials Science and Engineering Program, Texas Materials Institute, University of Texas at Austin, Austin, TX, USA
| | - Hyunah Kwon
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, Germany
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - David Huo
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Alison Jin
- Chandra Family Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, USA
| | - Peer Fischer
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, Germany
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Donglei Emma Fan
- Materials Science and Engineering Program, Texas Materials Institute, University of Texas at Austin, Austin, TX, USA.
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Wang F, Gu Z, Yin Z, Zhang W, Bai L, Su J. Cell unit-inspired natural nano-based biomaterials as versatile building blocks for bone/cartilage regeneration. J Nanobiotechnology 2023; 21:293. [PMID: 37620914 PMCID: PMC10463900 DOI: 10.1186/s12951-023-02003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
The regeneration of weight-bearing bone defects and critical-sized cartilage defects remains a significant challenge. A wide range of nano-biomaterials are available for the treatment of bone/cartilage defects. However, their poor compatibility and biodegradability pose challenges to the practical applications of these nano-based biomaterials. Natural biomaterials inspired by the cell units (e.g., nucleic acids and proteins), have gained increasing attention in recent decades due to their versatile functionality, compatibility, biodegradability, and great potential for modification, combination, and hybridization. In the field of bone/cartilage regeneration, natural nano-based biomaterials have presented an unparalleled role in providing optimal cues and microenvironments for cell growth and differentiation. In this review, we systematically summarize the versatile building blocks inspired by the cell unit used as natural nano-based biomaterials in bone/cartilage regeneration, including nucleic acids, proteins, carbohydrates, lipids, and membranes. In addition, the opportunities and challenges of natural nano-based biomaterials for the future use of bone/cartilage regeneration are discussed.
Collapse
Affiliation(s)
- Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhengrong Gu
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Baoshan District, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Wencai Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (TCM), Guangzhou, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
11
|
Han JH, Kim D, Kim J, Kim G, Fischer P, Jeong HH. Plasmonic Nanostructure Engineering with Shadow Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107917. [PMID: 35332960 DOI: 10.1002/adma.202107917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Physical shadow growth is a vacuum deposition technique that permits a wide variety of 3D-shaped nanoparticles and structures to be fabricated from a large library of materials. Recent advances in the control of the shadow effect at the nanoscale expand the scope of nanomaterials from spherical nanoparticles to complex 3D shaped hybrid nanoparticles and structures. In particular, plasmonically active nanomaterials can be engineered in their shape and material composition so that they exhibit unique physical and chemical properties. Here, the recent progress in the development of shadow growth techniques to realize hybrid plasmonic nanomaterials is discussed. The review describes how fabrication permits the material response to be engineered and highlights novel functions. Potential fields of application with a focus on photonic devices, biomedical, and chiral spectroscopic applications are discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
12
|
Xu M, Wang J, Harley WS, Lee PVS, Collins DJ. Programmable Acoustic Holography using Medium-Sound-Speed Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301489. [PMID: 37283454 PMCID: PMC10427405 DOI: 10.1002/advs.202301489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Acoustic holography offers the ability to generate designed acoustic fields to manipulate microscale objects. However, the static nature or large aperture sizes of 3D printed acoustic holographic phase plates limits the ability to rapidly alter generated fields. In this work, a programmable acoustic holography approach is demonstrated by which multiple discrete or continuously variable acoustic targets can be created. Here, the holographic phase plate encodes multiple images, where the desired field is produced by modifying the sound speed of an intervening fluid media. Its flexibility is demonstrated in generating various acoustic patterns, including continuous line segments, discrete letters and numbers, using this method as a sound speed indicator and fluid identification tool. This programmable acoustic holography approach has the advantages of generating reconfigurable and designed acoustic fields, with broad potential in microfluidics, cell/tissue engineering, real-time sensing, and medical ultrasound.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Jizhen Wang
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - William S. Harley
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Peter V. S. Lee
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
- Graeme Clarke InstituteUniversity of MelbourneParkvilleVictoria3052Australia
| | - David J. Collins
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
- Graeme Clarke InstituteUniversity of MelbourneParkvilleVictoria3052Australia
| |
Collapse
|
13
|
Li L, Yu Z, Liu J, Yang M, Shi G, Feng Z, Luo W, Ma H, Guan J, Mou F. Swarming Responsive Photonic Nanorobots for Motile-Targeting Microenvironmental Mapping and Mapping-Guided Photothermal Treatment. NANO-MICRO LETTERS 2023; 15:141. [PMID: 37247162 PMCID: PMC10226971 DOI: 10.1007/s40820-023-01095-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 05/30/2023]
Abstract
Micro/nanorobots can propel and navigate in many hard-to-reach biological environments, and thus may bring revolutionary changes to biomedical research and applications. However, current MNRs lack the capability to collectively perceive and report physicochemical changes in unknown microenvironments. Here we propose to develop swarming responsive photonic nanorobots that can map local physicochemical conditions on the fly and further guide localized photothermal treatment. The RPNRs consist of a photonic nanochain of periodically-assembled magnetic Fe3O4 nanoparticles encapsulated in a responsive hydrogel shell, and show multiple integrated functions, including energetic magnetically-driven swarming motions, bright stimuli-responsive structural colors, and photothermal conversion. Thus, they can actively navigate in complex environments utilizing their controllable swarming motions, then visualize unknown targets (e.g., tumor lesion) by collectively mapping out local abnormal physicochemical conditions (e.g., pH, temperature, or glucose concentration) via their responsive structural colors, and further guide external light irradiation to initiate localized photothermal treatment. This work facilitates the development of intelligent motile nanosensors and versatile multifunctional nanotheranostics for cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Luolin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zheng Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Gongpu Shi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Ziqi Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| | - Huiru Ma
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
14
|
Wang Q, Jin D. Active Micro/Nanoparticles in Colloidal Microswarms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1687. [PMID: 37242103 PMCID: PMC10220621 DOI: 10.3390/nano13101687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Colloidal microswarms have attracted increasing attention in the last decade due to their unique capabilities in various complex tasks. Thousands or even millions of tiny active agents are gathered with distinctive features and emerging behaviors, demonstrating fascinating equilibrium and non-equilibrium collective states. In recent studies, with the development of materials design, remote control strategies, and the understanding of pair interactions between building blocks, microswarms have shown advantages in manipulation and targeted delivery tasks with high adaptability and on-demand pattern transformation. This review focuses on the recent progress in active micro/nanoparticles (MNPs) in colloidal microswarms under the input of an external field, including the response of MNPs to external fields, MNP-MNP interactions, and MNP-environment interactions. A fundamental understanding of how building blocks behave in a collective system provides the foundation for designing microswarm systems with autonomy and intelligence, aiming for practical application in diverse environments. It is envisioned that colloidal microswarms will significantly impact active delivery and manipulation applications on small scales.
Collapse
Affiliation(s)
- Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211000, China
| | - Dongdong Jin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518000, China
| |
Collapse
|
15
|
Wang B, Handschuh-Wang S, Shen J, Zhou X, Guo Z, Liu W, Pumera M, Zhang L. Small-Scale Robotics with Tailored Wettability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205732. [PMID: 36113864 DOI: 10.1002/adma.202205732] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Indexed: 05/05/2023]
Abstract
Small-scale robots (SSRs) have emerged as promising and versatile tools in various biomedical, sensing, decontamination, and manipulation applications, as they are uniquely capable of performing tasks at small length scales. With the miniaturization of robots from the macroscale to millimeter-, micrometer-, and nanometer-scales, the viscous and surface forces, namely adhesive forces and surface tension have become dominant. These forces significantly impact motion efficiency. Surface engineering of robots with both hydrophilic and hydrophobic functionalization presents a brand-new pathway to overcome motion resistance and enhance the ability to target and regulate robots for various tasks. This review focuses on the current progress and future perspectives of SSRs with hydrophilic and hydrophobic modifications (including both tethered and untethered robots). The study emphasizes the distinct advantages of SSRs, such as improved maneuverability and reduced drag forces, and outlines their potential applications. With continued innovation, rational surface engineering is expected to endow SSRs with exceptional mobility and functionality, which can broaden their applications, enhance their penetration depth, reduce surface fouling, and inhibit bacterial adhesion.
Collapse
Affiliation(s)
- Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730000, China
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno, 61200, Czech Republic
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, South Korea
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, 999077, China
- Department of Surgery, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, 999077, China
| |
Collapse
|
16
|
Zhu Y, Song Y, Cao Z, Dong L, Shen S, Lu Y, Yang X. A Magnetically Driven Amoeba-Like Nanorobot for Whole-Process Active Drug Transport. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204793. [PMID: 36698293 PMCID: PMC9982561 DOI: 10.1002/advs.202204793] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/24/2022] [Indexed: 05/20/2023]
Abstract
The passive diffusion performance of nanocarriers results in inefficient drug transport across multiple biological barriers and consequently cancer therapy failure. Here, a magnetically driven amoeba-like nanorobot (amNR) is presented for whole-process active drug transport. The amNR is actively extravasated from blood vessels and penetrated into deep tumor tissue through a magnetically driven deformation effect. Moreover, the acidic microenvironment of deep tumor tissue uncovers the masked targeting ligand of amNR to achieve active tumor cell uptake. Furthermore, the amNR rapidly releases the encapsulated doxorubicin (DOX) after alternating magnetic field application. The amNRs eventually deliver DOX into ≈92.3% of tumor cells and completely delay tumor growth with an inhibition rate of 96.1%. The deformable amNRs, with the assistance of magnetic field application, provide a facile strategy for whole-process active drug transport.
Collapse
Affiliation(s)
- Yueqiang Zhu
- Guangzhou First People's HospitalSchool of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhou511442P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstructionand Guangdong Province Key Laboratory of Biomedical EngineeringSouth China University of TechnologyGuangzhouGuangdong510006P. R. China
| | - Yonghong Song
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringSchool of Chemistry and Chemical EngineeringIntelligent Interconnected Systems Laboratory of Anhui ProvinceHefei University of TechnologyHefei230009P.R. China
| | - Ziyang Cao
- Guangzhou First People's HospitalSchool of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhou511442P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of EducationSouth China University of TechnologyGuangzhou510006P. R. China
| | - Liang Dong
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringSchool of Chemistry and Chemical EngineeringIntelligent Interconnected Systems Laboratory of Anhui ProvinceHefei University of TechnologyHefei230009P.R. China
| | - Song Shen
- Guangzhou First People's HospitalSchool of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhou511442P.R. China
| | - Yang Lu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringSchool of Chemistry and Chemical EngineeringIntelligent Interconnected Systems Laboratory of Anhui ProvinceHefei University of TechnologyHefei230009P.R. China
| | - Xianzhu Yang
- Guangzhou First People's HospitalSchool of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhou International CampusGuangzhou511442P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstructionand Guangdong Province Key Laboratory of Biomedical EngineeringSouth China University of TechnologyGuangzhouGuangdong510006P. R. China
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction EngineeringSchool of Chemistry and Chemical EngineeringIntelligent Interconnected Systems Laboratory of Anhui ProvinceHefei University of TechnologyHefei230009P.R. China
| |
Collapse
|
17
|
Zhang J, Laskar A, Song J, Shklyaev OE, Mou F, Guan J, Balazs AC, Sen A. Light-Powered, Fuel-Free Oscillation, Migration, and Reversible Manipulation of Multiple Cargo Types by Micromotor Swarms. ACS NANO 2023; 17:251-262. [PMID: 36321936 DOI: 10.1021/acsnano.2c07266] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Through experiments and simulations, we show that fuel-free photoactive TiO2 microparticles can form mobile, coherent swarms in the presence of UV light, which track the subsequent movement of an irradiated spot in a fluid-filled microchamber. Multiple concurrent propulsion mechanisms (electrolyte diffusioosmotic swarming, photocatalytic expansion, and photothermal migration) control the rich collective behavior of the swarms, which provide a strategy to reversely manipulate cargo. The active swarms can autonomously pick up groups of inert particles, sort them by size, and sequentially release the sorted particles at particular locations in the microchamber. Hence, these swarms overcome three obstacles, limiting the utility of self-propelled particles. Namely, they can (1) undergo directed, long-range migration without the addition of a chemical fuel, (2) perform diverse collective behavior not possible with a single active particle, and (3) repeatedly and controllably isolate and deliver specific components of a multiparticle "cargo". Since light sources are easily fabricated, transported, and controlled, the results can facilitate the development of portable devices, providing broader access to the diagnostic and manufacturing advances enabled by microfluidics.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Abhrajit Laskar
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jiaqi Song
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Oleg E Shklyaev
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Anna C Balazs
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
18
|
Wang Y, Shen J, Handschuh-Wang S, Qiu M, Du S, Wang B. Microrobots for Targeted Delivery and Therapy in Digestive System. ACS NANO 2023; 17:27-50. [PMID: 36534488 DOI: 10.1021/acsnano.2c04716] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Untethered miniature robots enable targeted delivery and therapy deep inside the gastrointestinal tract in a minimally invasive manner. By combining actuation systems and imaging tools, significant progress has been made toward the development of functional microrobots. These robots can be actuated by external fields and fuels while featuring real-time tracking feedback toward certain regions and can perform the therapeutic process by rational exertion of the local environment of the gastrointestinal tract (e.g., pH, enzyme). Compared with conventional surgical tools, such as endoscopic devices and catheters, miniature robots feature minimally invasive diagnosis and treatment, multifunctionality, high safety and adaptivity, embodied intelligence, and easy access to tortuous and narrow lumens. In addition, the active motion of microrobots enhances local penetration and retention of drugs in tissues compared to common passive oral drug delivery. Based on the dissimilar microenvironments in the various sections of the gastrointestinal tract, this review introduces the advances of miniature robots for minimally invasive targeted delivery and therapy of diseases along the gastrointestinal tract. The imaging modalities for the tracking and their application scenarios are also discussed. We finally evaluate the challenges and barriers that retard their applications and hint on future research directions in this field.
Collapse
Affiliation(s)
- Yun Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen518036, P.R. China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| | - Ming Qiu
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen518111, P.R. China
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen518111, P.R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| |
Collapse
|
19
|
Mao D, Paluzzi VE, Zhang C, Mao C. DNA conformational equilibrium enables continuous changing of curvatures. NANOSCALE 2023; 15:470-475. [PMID: 36515101 DOI: 10.1039/d2nr05404c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Assembly of complex structures from a small set of tiles is a common theme in biology. For example, many copies of identical proteins make up polyhedron-shaped, viral capsids and tubulin can make long microtubules. This inspired the development of tile-based DNA self-assembly for nanoconstruction, particularly for structures with high symmetries. In the final structure, each type of motif will adopt the same conformation, either rigid or with defined flexibility. For structures that have no symmetry, their assembly remains a challenge from a small set of tiles. To meet this challenge, algorithmic self-assembly has been explored driven by computational science, but it is not clear how to implement this approach to one-dimensional (1D) structures. Here, we have demonstrated that a constant shift of a conformational equilibrium could allow 1D structures to evolve. As shown by atomic force microscopy imaging, one type of DNA tile successfully assembled into DNA spirals and concentric circles, which became less and less curved from the structure's center outward. This work points to a new direction for tile-based DNA assembly.
Collapse
Affiliation(s)
- Dake Mao
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA.
| | - Victoria E Paluzzi
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA.
| | - Cuizheng Zhang
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA.
| | - Chengde Mao
- Purdue University, Department of Chemistry, West Lafayette, IN 47907, USA.
| |
Collapse
|
20
|
Wang J, Dong Y, Ma P, Wang Y, Zhang F, Cai B, Chen P, Liu BF. Intelligent Micro-/Nanorobots for Cancer Theragnostic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201051. [PMID: 35385160 DOI: 10.1002/adma.202201051] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most intractable diseases owing to its high mortality rate and lack of effective diagnostic and treatment tools. Advancements in micro-/nanorobot (MNR)-assisted sensing, imaging, and therapeutics offer unprecedented opportunities to develop MNR-based cancer theragnostic platforms. Unlike ordinary nanoparticles, which exhibit Brownian motion in biofluids, MNRs overcome viscous resistance in an ultralow Reynolds number (Re << 1) environment by effective self-propulsion. This unique locomotion property has motivated the advanced design and functionalization of MNRs as a basis for next-generation cancer-therapy platforms, which offer the potential for precise distribution and improved permeation of therapeutic agents. Enhanced barrier penetration, imaging-guided operation, and biosensing are additionally studied to enable the promising cancer-related applications of MNRs. Herein, the recent advances in MNR-based cancer therapy are comprehensively addresses, including actuation engines, diagnostics, medical imaging, and targeted drug delivery; promising research opportunities that can have a profound impact on cancer therapy over the next decade is highlighted.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yue Dong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yu Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fangyu Zhang
- Department of Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bocheng Cai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
21
|
Liu X, Gao Q, Wu S, Qin H, Zhang T, Zheng X, Li B. Optically Manipulated Neutrophils as Native Microcrafts In Vivo. ACS CENTRAL SCIENCE 2022; 8:1017-1027. [PMID: 35912340 PMCID: PMC9336151 DOI: 10.1021/acscentsci.2c00468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
As the first line of host defense against invading pathogens, neutrophils have an inherent phagocytosis capability for the elimination of foreign agents and target loading upon activation, as well as the ability to transmigrate across blood vessels to the infected tissue, making them natural candidates to execute various medical tasks in vivo. However, most of the existing neutrophil-based strategies rely on their spontaneous chemotactic motion, lacking in effective activation, rapid migration, and high navigation precision. Here, we report an optically manipulated neutrophil microcraft in vivo through the organic integration of endogenous neutrophils and scanning optical tweezers, functioning as a native biological material and wireless remote controller, respectively. The neutrophil microcrafts can be remotely activated by light and then navigated to the target position along a designated route, followed by the fulfillment of its task in vivo, such as active intercellular connection, targeted delivery of nanomedicine, and precise elimination of cell debris, free from the extra construction or modification of the native neutrophils. On the basis of the innate immunologic function of neutrophils and intelligent optical manipulation, the proposed neutrophil microcraft might provide new insight for the construction of native medical microdevices for drug delivery and precise treatment of inflammatory diseases.
Collapse
|
22
|
Huang Y, Guo J, Li Y, Li H, Fan DE. 2D-Material-Integrated Micromachines: Competing Propulsion Strategy and Enhanced Bacterial Disinfection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203082. [PMID: 35656917 DOI: 10.1002/adma.202203082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/27/2022] [Indexed: 06/15/2023]
Abstract
2D transition-metal-dichalcogenide materials, such as molybdenum disulfide (MoS2 ) have received immense interest owing to their remarkable structure-endowed electronic, catalytic, and mechanical properties for applications in optoelectronics, energy storage, and wearable devices. However, 2D materials have been rarely explored in the field of micro/nanomachines, motors, and robots. Here, MoS2 with anatase TiO2 is successfully integrated into an original one-side-open hollow micromachine, which demonstrates increased light absorption of TiO2 -based micromachines to the visible region and the first observed motion acceleration in response to ionic media. Both experimentation and theoretical analysis suggest the unique type-II bandgap alignment of MoS2 /TiO2 heterojunction that accounts for the observed unique locomotion owing to a competing propulsion mechanism. Furthermore, by leveraging the chemical properties of MoS2 /TiO2 , the micromachines achieve sunlight-powered water disinfection with 99.999% Escherichia coli lysed in an hour. This research suggests abundant opportunities offered by 2D materials in the creation of a new class of micro/nanomachines and robots.
Collapse
Affiliation(s)
- Yun Huang
- Materials Science and Engineering Program, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jianhe Guo
- Materials Science and Engineering Program, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yufan Li
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Huaizhi Li
- Materials Science and Engineering Program, University of Texas at Austin, Austin, TX, 78712, USA
| | - Donglei Emma Fan
- Materials Science and Engineering Program, University of Texas at Austin, Austin, TX, 78712, USA
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
23
|
Chi Y, Li Y, Zhao Y, Hong Y, Tang Y, Yin J. Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110384. [PMID: 35172026 DOI: 10.1002/adma.202110384] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Snap-through bistability is often observed in nature (e.g., fast snapping to closure of Venus flytrap) and the life (e.g., bottle caps and hair clippers). Recently, harnessing bistability and multistability in different structures and soft materials has attracted growing interest for high-performance soft actuators and soft robots. They have demonstrated broad and unique applications in high-speed locomotion on land and under water, adaptive sensing and fast grasping, shape reconfiguration, electronics-free controls with a single input, and logic computation. Here, an overview of integrating bistable and multistable structures with soft actuating materials for diverse soft actuators and soft/flexible robots is given. The mechanics-guided structural design principles for five categories of basic bistable elements from 1D to 3D (i.e., constrained beams, curved plates, dome shells, compliant mechanisms of linkages with flexible hinges and deformable origami, and balloon structures) are first presented, alongside brief discussions of typical soft actuating materials (i.e., fluidic elastomers and stimuli-responsive materials such as electro-, photo-, thermo-, magnetic-, and hydro-responsive polymers). Following that, integrating these soft materials with each category of bistable elements for soft bistable and multistable actuators and their diverse robotic applications are discussed. To conclude, perspectives on the challenges and opportunities in this emerging field are considered.
Collapse
Affiliation(s)
- Yinding Chi
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yanbin Li
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yao Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yaoye Hong
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yichao Tang
- School of Mechanical Engineering, Tongji University, Shanghai, 200092, China
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
24
|
Li M, Zhang T, Zhang X, Mu J, Zhang W. Vector-Controlled Wheel-Like Magnetic Swarms With Multimodal Locomotion and Reconfigurable Capabilities. Front Bioeng Biotechnol 2022; 10:877964. [PMID: 35547169 PMCID: PMC9081439 DOI: 10.3389/fbioe.2022.877964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Inspired by the biological collective behaviors of nature, artificial microrobotic swarms have exhibited environmental adaptability and tasking capabilities for biomedicine and micromanipulation. Complex environments are extremely relevant to the applications of microswarms, which are expected to travel in blood vessels, reproductive and digestive tracts, and microfluidic chips. Here we present a strategy that reconfigures paramagnetic nanoparticles into a vector-controlled microswarm with 3D collective motions by programming sawtooth magnetic fields. Horizontal swarms can be manipulated to stand vertically and swim like a wheel by adjusting the direction of magnetic-field plane. Compared with horizontal swarms, vertical wheel-like swarms were evaluated to be of approximately 15-fold speed increase and enhanced maneuverability, which was exhibited by striding across complex 3D confinements. Based on analysis of collective behavior of magnetic particles in flow field using molecular dynamics methods, a rotary stepping mechanism was proposed to address the formation and locomotion mechanisms of wheel-like swarm. we present a strategy that actuates swarms to stand and hover in situ under a programming swing magnetic fields, which provides suitable solutions to travel across confined space with unexpected changes, such as stepped pipes. By biomimetic design from fin motion of fish, wheel-like swarms were endowed with multi-modal locomotion and load-carrying capabilities. This design of intelligent microswarms that adapt to complicated biological environments can promote the applications ranging from the construction of smart and multifunctional materials to biomedical engineering.
Collapse
Affiliation(s)
- Mu Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Zhang
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou, China
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou, China
| | - Xiang Zhang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, China
- National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China
| | - Jinjiang Mu
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Jinjiang Mu, ; Weiwei Zhang,
| | - Weiwei Zhang
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou, China
- Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou, China
- *Correspondence: Jinjiang Mu, ; Weiwei Zhang,
| |
Collapse
|
25
|
Zhang Y, Zhang Y, Han Y, Gong X. Micro/Nanorobots for Medical Diagnosis and Disease Treatment. MICROMACHINES 2022; 13:mi13050648. [PMID: 35630115 PMCID: PMC9146405 DOI: 10.3390/mi13050648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 02/01/2023]
Abstract
Micro/nanorobots are functional devices in microns, at nanoscale, which enable efficient propulsion through chemical reactions or external physical field, including ultrasonic, optical, magnetic, and other external fields, as well as microorganisms. Compared with traditional robots, micro/nanorobots can perform various tasks on the micro/nanoscale, which has the advantages of high precision, strong flexibility, and wide adaptability. In addition, such robots can also perform tasks in a cluster manner. The design and development of micro/nanorobots and the integration of surface functionalization, remote drive system, and imaging tracking technology will become a key step for their medical applications in organisms. Thus, micro/nanorobots are expected to achieve more efficient and accurate local diagnosis and treatment, and they have broad application prospects in the biomedical field. This paper aims to introduce relevant driving methods of micro/nanorobots preparation in detail, summarizes the progress of research in medical applications, and discusses the challenges it faces in clinical applications and the future direction of development.
Collapse
Affiliation(s)
- Yinglei Zhang
- College of Light Industry, Harbin University of Commerce, Harbin 150028, China;
- Correspondence:
| | - Yuepeng Zhang
- Clinical Medical College, Harbin Medical University, Harbin 150081, China;
| | - Yaqian Han
- School of Instumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
| | - Xue Gong
- College of Light Industry, Harbin University of Commerce, Harbin 150028, China;
| |
Collapse
|
26
|
Yuan S, Lin X, He Q. Reconfigurable assembly of colloidal motors towards interactive soft materials and systems. J Colloid Interface Sci 2022; 612:43-56. [PMID: 34974257 DOI: 10.1016/j.jcis.2021.12.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Due to the highly flexible reconfiguration of swarms, collective behaviors have provided various natural organisms with a powerful adaptivity to the complex environment. To mimic these natural systems and construct artificial intelligent soft materials, self-propelled colloidal motors that can convert diverse forms of energy into swimming-like movement in fluids afford an ideal model system at the micro-/nanoscales. Through the coupling of local gradient fields, colloidal motors driven by chemical reactions or externally physical fields can assembly into swarms with adaptivity. Here, we summarize the progress on reconfigurable assembly of colloidal motors which is driven and modulated by chemical reactions and external fields (e.g., light, ultrasonic, electric, and magnetic fields). The adaptive reconfiguration behaviors and the corresponding mechanisms are discussed in detail. The future directions and challenges are also addressed for developing colloidal motor-based interactive soft matter materials and systems with adaptation and interactive functions comparable to that of natural systems.
Collapse
Affiliation(s)
- Shurui Yuan
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, YiKuangJie 2, Harbin 150080, China
| | - Xiankun Lin
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, YiKuangJie 2, Harbin 150080, China.
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, YiKuangJie 2, Harbin 150080, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China; Oujiang Laboratory, Wenzhou 325000, China.
| |
Collapse
|
27
|
Shen MJ, Wang CY, Hao DX, Hao JX, Zhu YF, Han XX, Tonggu L, Chen JH, Jiao K, Tay FR, Niu LN. Multifunctional Nanomachinery for Enhancement of Bone Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107924. [PMID: 34850469 DOI: 10.1002/adma.202107924] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/05/2021] [Indexed: 06/13/2023]
Abstract
The visionary idea that RNA adopts nonbiological roles in today's nanomaterial world has been nothing short of phenomenal. These RNA molecules have ample chemical functionality and self-assemble to form distinct nanostructures in response to external stimuli. They may be combined with inorganic materials to produce nanomachines that carry cargo to a target site in a controlled manner and respond dynamically to environmental changes. Comparable to biological cells, programmed RNA nanomachines have the potential to replicate bone healing in vitro. Here, an RNA-biomineral nanomachine is developed, which accomplishes intrafibrillar and extrafibrillar mineralization of collagen scaffolds to mimic bone formation in vitro. Molecular dynamics simulation indicates that noncovalent hydrogen bonding provides the energy source that initiates self-assembly of these nanomachines. Incorporation of the RNA-biomineral nanomachines into collagen scaffolds in vivo creates an osteoinductive microenvironment within a bone defect that is conducive to rapid biomineralization and osteogenesis. Addition of RNA-degrading enzymes into RNA-biomineral nanomachines further creates a stop signal that inhibits unwarranted bone formation in tissues. The potential of RNA in building functional nanostructures has been underestimated in the past. The concept of RNA-biomineral nanomachines participating in physiological processes may transform the nanoscopic world of life science.
Collapse
Affiliation(s)
- Min-Juan Shen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chen-Yu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Dong-Xiao Hao
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Jia-Xin Hao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yi-Fei Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-Xiao Han
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Lige Tonggu
- School of Medicine, University of Washington, Seattle, Washington, 98195, USA
| | - Ji-Hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
28
|
Zhang T, Deng Y, Zhou B, Liu J, Su Y, Li M, Zhang W. Reconfigurable Disk-like Microswarm under a Sawtooth Magnetic Field. MICROMACHINES 2021; 12:mi12121529. [PMID: 34945379 PMCID: PMC8708609 DOI: 10.3390/mi12121529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Swarming robotic systems, which stem from insect swarms in nature, exhibit a high level of environmental adaptability and enhanced tasking capabilities for targeted delivery and micromanipulation. Here, we present a strategy that reconfigures paramagnetic nanoparticles into microswarms energized by a sawtooth magnetic field. A rotary-stepping magnetic-chain mechanism is proposed to address the forming principle of disk-like swarms. Based on programming the sawtooth field, the microswarm can perform reversible transformations between a disk, an ellipse and a ribbon, as well as splitting and merging. In addition, the swarms can be steered in any direction with excellent maneuverability and a high level of pattern stability. Under accurate manipulation of a magnetic microswarm, multiple microparts with complicated shapes were successfully combined into a complete assembly. This reconfigurable swarming microrobot may shed light on the understanding of complex morphological transformations in living systems and provide future practical applications of microfabrication and micromanipulation.
Collapse
Affiliation(s)
- Tao Zhang
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
| | - Yuguo Deng
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
| | - Bo Zhou
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
| | - Jiayu Liu
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
| | - Yufeng Su
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
| | - Mu Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Correspondence: (M.L.); (W.Z.)
| | - Weiwei Zhang
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
- Correspondence: (M.L.); (W.Z.)
| |
Collapse
|