1
|
Ao X, Wang H, Zhang X, Wang C. Atomically Dispersed Metal-Nitrogen-Carbon Catalysts for Acidic Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39754738 DOI: 10.1021/acsami.4c16972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Designing efficient and cost-effective electrocatalysts toward oxygen reduction reaction (ORR) under demanding acidic environments plays a critical role in advancing proton exchange membrane fuel cells (PEMFCs). Metal-nitrogen-carbon (M-N-C) catalysts with atomically dispersed metals have gained attention for their affordability, excellent catalytic performance, and distinctive features including consistent active sites and high atomic utilization. Over the past decade, significant achievements have been made in this field. This review offers a comprehensive summary of the latest developments in atomically dispersed M-N-C catalysts for ORR in acidic environments along with their applications in PEMFCs. The ORR mechanisms, PEMFC configuration, and operational principles are presented first, followed by an in-depth discussion of strategies to improve the activity and stability of the PEMFC using atomically dispersed M-N-C catalysts at the cathode. Lastly, this review highlights the unresolved challenges and proposes future research pathways for advancing high-performance atomically dispersed M-N-C catalysts and PEMFCs.
Collapse
Affiliation(s)
- Xiang Ao
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Haoran Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xia Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
2
|
Li Z, Ding B, Li J, Chen H, Zhang J, Tan J, Ma X, Han D, Ma P, Lin J. Multi-Enzyme Mimetic MoCu Dual-Atom Nanozyme Triggering Oxidative Stress Cascade Amplification for High-Efficiency Synergistic Cancer Therapy. Angew Chem Int Ed Engl 2025; 64:e202413661. [PMID: 39166420 DOI: 10.1002/anie.202413661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/22/2024]
Abstract
Single-atom nanozymes (SAzymes) with ultrahigh atom utilization efficiency have been extensively applied in reactive oxygen species (ROS)-mediated cancer therapy. However, the high energy barriers of reaction intermediates on single-atom sites and the overexpressed antioxidants in the tumor microenvironment restrict the amplification of tumor oxidative stress, resulting in unsatisfactory therapeutic efficacy. Herein, we report a multi-enzyme mimetic MoCu dual-atom nanozyme (MoCu DAzyme) with various catalytic active sites, which exhibits peroxidase, oxidase, glutathione (GSH) oxidase, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase mimicking activities. Compared with Mo SAzyme, the introduction of Cu atoms, formation of dual-atom sites, and synergetic catalytic effects among various active sites enhance substrate adsorption and reduce the energy barrier, thereby endowing MoCu DAzyme with stronger catalytic activities. Benefiting from the above enzyme-like activities, MoCu DAzyme can not only generate multiple ROS, but also deplete GSH and block its regeneration to trigger the cascade amplification of oxidative stress. Additionally, the strong optical absorption in the near-infrared II bio-window endows MoCu DAzyme with remarkable photothermal conversion performance. Consequently, MoCu DAzyme achieves high-efficiency synergistic cancer treatment incorporating collaborative catalytic therapy and photothermal therapy. This work will advance the therapeutic applications of DAzymes and provide valuable insights for nanocatalytic cancer therapy.
Collapse
Affiliation(s)
- Ziyao Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiashi Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyu Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Di Han
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Ye C, Guo Z, Zhou Y, Shen Y. Nickel-based dual single atom electrocatalysts for the nitrate reduction reaction. J Colloid Interface Sci 2025; 677:933-941. [PMID: 39178672 DOI: 10.1016/j.jcis.2024.08.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Electrochemical nitrate (NO3-) reduction reaction (NO3-RR) to ammonium (NH4+) or nitrogen (N2) provides a green route for nitrate remediation. However, nitrite generation and hydrogen evolution reactions hinder the feasibility of the process. Herein, dual single atom catalysts were rationally designed by introducing Ag/Bi/Mo atoms to atomically dispersed NiNC moieties supported by nitrogen-doped carbon nanosheet (NCNS) for the NO3-RR. Ni single atoms loaded on NCNS (Ni/NCNS) tend to reduce NO3- to valuable NH4+ with a high selectivity of 77.8 %. In contrast, the main product of NO3-RR catalyzing by NiAg/NCNS, NiBi/NCNS, and NiMo/NCNS was changed to N2, giving rise to N2 selectivity of 48.4, 47.1 and 47.5 %, respectively. Encouragingly, Ni/NCNS, NiBi/NCNS, and NiAg/NCNS showed excellent durability in acidic electrolytes, leading to nitrate conversion rates of 70.3, 91.1, and 93.2 % after a 10-h reaction. Simulated wastewater experiments showed that NiAg/NCNS could remove NO3- up to 97.8 % at -0.62 V after 9-h electrolysis. This work afforded a new strategy to regulate the reaction pathway and improve the conversion efficiency of the NO3-RR via engineering the dual atomic sites of the catalysts.
Collapse
Affiliation(s)
- Cuizhu Ye
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, China
| | - Ziyi Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yongfang Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Shen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China.
| |
Collapse
|
4
|
Sun Q, Yue X, Yu L, Li FZ, Zheng Y, Liu MT, Peng JZ, Hu X, Chen HM, Li L, Gu J. Well-Defined Co 2 Dual-Atom Catalyst Breaks Scaling Relations of Oxygen Reduction Reaction. J Am Chem Soc 2024; 146:35295-35304. [PMID: 39660442 DOI: 10.1021/jacs.4c12705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The 4-electron oxygen reduction reaction (ORR) under alkaline conditions is central to the development of non-noble metal-based hydrogen fuel cell technologies. However, the kinetics of ORR are constrained by scaling relations, where the adsorption free energy of *OOH is intrinsically linked to that of *OH with a nearly constant difference larger than the optimal value. In this study, a well-defined binuclear Co2 complex was synthesized and adsorbed onto carbon black, serving as a model dual-atom catalyst. This catalyst achieved a record half-wave potential of 0.972 V versus the reversible hydrogen electrode in an alkaline electrolyte. Density functional theory simulations and in situ infrared spectroscopy revealed that the dual-atom site stabilizes the *OOH intermediate through bidentate coordination, thereby reducing the free energy gap between *OOH and *OH. By altering the adsorption configuration of *OOH on the dual-atom site, the scaling relations are effectively disrupted, leading to a significant enhancement in ORR activity.
Collapse
Affiliation(s)
- Qidi Sun
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong
- Petroleum Engineering and Technology Research Institute, Sinopec Shengli Oilfield, Dongying 257001, China
| | - Xian Yue
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Linke Yu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fu-Zhi Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiwei Zheng
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Meng-Ting Liu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Jian-Zhao Peng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Lei Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Gu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Yang G, Fan M, Liang Q, He X, Zhang W, Asefa T. Atomically Dispersed Fe 2 and Ni Sites for Efficient and Durable Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2024:e202421168. [PMID: 39676057 DOI: 10.1002/anie.202421168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Developing highly efficient, cost-effective, and robust electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is paramount for the large-scale commercialization of renewable fuel cells and rechargeable metal-air batteries. Herein, a new ternary-atom catalyst that is composed of paired Fe sites and single Ni sites (as Fe2-N6 and Ni-N4) coordinated onto hollow nitrogen-doped carbon microspheres is developed. The as-synthesized catalyst exhibits remarkable activities toward both the ORR and OER in alkaline media, with superior performances to those of the control materials that contain only Fe2-N6 or Ni-N4 sites. Density functional theory calculations and in situ infrared (IR) spectroscopic studies clearly reveal that the Fe2-N6 centers are the active sites for both ORR and OER, and their electrocatalytic activities are synergistically enhanced through optimization of their d-band centers by the Ni-N4 sites. This ternary-atom catalyst can potentially be a promising, alternative, sustainable catalyst to commercially used Pt- and Ru-based catalysts to drive both the ORR and the OER in rechargeable zinc-air batteries and other related applications.
Collapse
Affiliation(s)
- Guiyuan Yang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130022, P. R. China
| | - Meihong Fan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130022, P. R. China
| | - Qing Liang
- School of Materials Science and Engineering & Electron Microscopy Center, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xingquan He
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, 7089 Weixing Road, Changchun, 130022, P. R. China
| | - Wei Zhang
- School of Materials Science and Engineering & Electron Microscopy Center, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Tewodros Asefa
- Department of Chemistry and Chemical Biology & Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
6
|
Zeng T, Chen J, Yu ZH, Tse ECM. CuFe Cooperativity at the Membrane-Electrode Interface Elicits a Tandem 2e -+2e - Mechanism for Exclusive O 2-To-H 2O Electroreduction. J Am Chem Soc 2024; 146:31757-31767. [PMID: 39405398 PMCID: PMC11583977 DOI: 10.1021/jacs.4c10625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
High O2 reduction reaction (ORR) kinetics and exclusive 4e- pathway selectivity are keys to realizing a sustainable society. However, nonprecious electrocatalysts at present cannot enhance the ORR turnover frequency and H2O Faradaic efficiency (FE) concurrently. To address these two challenges, hybrid bilayer membrane (HBM) electrodes with earth-abundant metal centers are developed to control proton-coupled electron transfer (PCET) in ORR. Here, an oxidase-inspired CuFe active site is supported on a tris(2-pyridylmethyl)amine HBM and explored as a unique interface for efficient ORR. This bimetallic HBM displayed an ORR activity 1.4 times higher than the monometallic systems and exhibited the highest FE for H2O (∼94%) among Cu-, Fe-, Ni-, and Co-based HBMs. Contrary to previous studies where the ORR current decreases upon embedding the metal center in a hydrophobic lipid environment, here, the incorporation of a nitrile-terminated proton carrier at the HBM interface boosts the ORR current by 1.7 folds relative to the case where the catalytic site is directly exposed to protons in solution. This intriguing dual improvement is supported by density function theory calculations where an additional 2e-+2e- mechanism occurs in parallel to the direct 4e- pathway, highlighting the synergistic effect of the CuFe HBM for facilitating high-performance ORR. A Zn-air battery is constructed using this CuFe HBM for the first time, further demonstrating that the knowledge gained from this HBM technology holds practical values in real-life applications. These findings on interfacial PCET are envisioned to spark new design principles for future catalysts with optimal electrochemical properties for advanced energy conversion schemes.
Collapse
Affiliation(s)
- Tian Zeng
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Jiu Chen
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Zuo Hang Yu
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Edmund C M Tse
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR, Hong Kong
| |
Collapse
|
7
|
Liu Y, Qing Y, Jiang W, Zhou L, Chen C, Shen L, Li B, Zhou M, Lin H. Strategies for Achieving Carbon Neutrality: Dual-Atom Catalysts in Focus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407313. [PMID: 39558720 DOI: 10.1002/smll.202407313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Carbon neutrality is a fundamental strategy for achieving the sustainable development of human society. Catalyzing CO2 reduction into various high-value-added fuels serves as an effective pathway to achieve this strategic objective. Atom-dispersed catalysts have received extensive attention due to their maximum atomic utilization, high catalytic selectivity, and exceptional catalytic performance. Dual-atom catalysts (DACs), as an extension of single-atom catalysts (SACs), not only retain the advantages of SACs, but also produce many new properties. This review initiates its exploration by elucidating the mechanism of CO2 reduction reaction (CO2RR) from CO2 adsorption and CO2 activation. Then, a comprehensive summary of recently developed preparation methods of DACs is presented. Importantly, the mechanisms underlying the promoted catalytic performance of DACs in comparison to SACs are subjected to a comprehensive analysis from adjustable adsorption capacity, tunable electronic structure, strong synergistic effect, and enhanced spacing effect, elucidating their respective superiorities in CO2RR. Subsequently, the application of DACs in CO2RR is discussed in detail. Conclusively, the prospective trajectories and inherent challenges of CO2RR are expounded upon concerning the continued advancement of DACs. This thorough review not only enhances the comprehension of DACs within CO2RR but also accentuates the prospective developments in the design of sophisticated catalytic materials.
Collapse
Affiliation(s)
- Yuting Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yurui Qing
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Wenhai Jiang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lili Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
8
|
Yin ZH, Liu H, Hu JS, Wang JJ. The breakthrough of oxide pathway mechanism in stability and scaling relationship for water oxidation. Natl Sci Rev 2024; 11:nwae362. [PMID: 39588208 PMCID: PMC11587812 DOI: 10.1093/nsr/nwae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 11/27/2024] Open
Abstract
An in-depth understanding of electrocatalytic mechanisms is essential for advancing electrocatalysts for the oxygen evolution reaction (OER). The emerging oxide pathway mechanism (OPM) streamlines direct O-O radical coupling, circumventing the formation of oxygen vacancy defects featured in the lattice oxygen mechanism (LOM) and bypassing additional reaction intermediates (*OOH) inherent to the adsorbate evolution mechanism (AEM). With only *O and *OH as intermediates, OPM-driven electrocatalysts stand out for their ability to disrupt traditional scaling relationships while ensuring stability. This review compiles the latest significant advances in OPM-based electrocatalysis, detailing design principles, synthetic methods, and sophisticated techniques to identify active sites and pathways. We conclude with prospective challenges and opportunities for OPM-driven electrocatalysts, aiming to advance the field into a new era by overcoming traditional constraints.
Collapse
Affiliation(s)
- Zhao-Hua Yin
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
9
|
Jia X, Yang B, Cheng Q, Li X, Xiang Z. Chemical Vapor Deposition Toward Efficient Bimetallic Atomically Dispersed Oxygen Reduction Catalysts. Macromol Rapid Commun 2024; 45:e2400442. [PMID: 39108052 DOI: 10.1002/marc.202400442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/13/2024] [Indexed: 11/09/2024]
Abstract
Non-precious metal-based nitrogen-doped carbon (M-Nx/C) shows great potential as a substitute for precious metal Pt-based catalysts. However, the conventional pyrolytic methods for forming M-Nx/C active sites are prone to issues such as the lack of synergistic interactions among bimetallic atoms and the potential encasement of active sites, leading to compromised catalytic efficiency and hindered mass transfer. In this work, a highly active FeCo-N-C@U-AC electrocatalyst is developed with a high density of active sites, adequate exposure of catalytic sites, and robust mass transfer capability using the chemical vapor-phase deposition (CVD) technique. The resulting catalyst demonstrates impressive oxygen reduction reaction (ORR) catalytic performance and stability, with half-wave potentials of 0.820 V (0.1 M HClO4) and 0.911 V (0.1 M KOH), respectively. It also exhibits significantly enhanced stability, retaining 93.25% and 98.38% of current after continuous 50 000 s of durability testing, surpassing the retention rates of Pt/C (80.31% in HClO4 and 84.96% in KOH electrolytes). Notably, when employed as a cathode catalyst in proton exchange membrane fuel cells (PEMFCs) and zinc-air flow batteries (ZAFBs), the FeCo-N-C@U-AC catalyst delivers peak power densities of 859 and 162 mW·cm-2, respectively, showcasing competitive performance comparable to benchmark Pt/C.
Collapse
Affiliation(s)
- Xudong Jia
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bolong Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qian Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xueli Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
10
|
Suh J, Choi H, Kong Y, Oh J. Tandem Electroreduction of Nitrate to Ammonia Using a Cobalt-Copper Mixed Single-Atom/Cluster Catalyst with Synergistic Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407250. [PMID: 39297330 PMCID: PMC11558078 DOI: 10.1002/advs.202407250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Indexed: 11/14/2024]
Abstract
Electrochemical conversion of waste nitrate (NO3 -) to ammonia (NH3) for environmental applications, such as carbon-neutral energy sources and hydrogen carriers, is a promising alternative to the energy-intensive Haber-Bosch process. However, increasing the energy efficiency is limited by the high overpotential and selectivity. Herein, a Co─Cu mixed single-atom/cluster catalyst (Co─Cu SCC) is demonstrated-with well-dispersed Co and Cu active sites anchored on a carbon support-that delivers high NH3 Faradaic efficiency of 91.2% at low potential (-0.3 V vs. RHE) due to synergism between the heterogenous active sites. Electrochemical analyses reveal that Cu in Co─Cu SCC preferentially catalyzes the NO3 --to-NO2 - pathway, whereupon Co catalyzes the NO2 --to-NH3 pathway. This tandem electroreduction bypasses the rate-determining steps (RDSs) for Co and Cu to lower the reaction energy barrier and surpass scaling relationship limitations. The electrocatalytic performance is amplified by the subnanoscale catalyst to increase the partial current density of NH3 by 2.3 and 5.4 times compared to those of individual Co, Cu single-atom/cluster catalysts (Co SCC, Cu SCC), respectively. This Co─Cu SCC is operated stably for 32 h in a long-term bipolar membrane (BPM)-based membrane electrode assembly (MEA) system for high-concentration NH3 synthesis to produce over 1 m NH3 for conversion into high-purity NH4Cl at 2.1 g day-1.
Collapse
Affiliation(s)
- Jungwon Suh
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Hyeonuk Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Yujin Kong
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jihun Oh
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
11
|
Huang M, Zhou SH, Yang CJ, Dong CL, He Y, Wei W, Li X, Zhu QL, Huang Z. Selenic Acid Etching Assisted Atomic Engineering for Designing Metal-Semimetal Dual Single-Atom Catalysts for Enhanced CO 2 Electroreduction. ACS NANO 2024. [PMID: 39484823 DOI: 10.1021/acsnano.4c12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Single-atom catalysts are promising for electrocatalytic CO2 conversion but face challenges in controllable syntheses. Herein, a facile selenic acid etching-assisted strategy has been developed to fabricate a hybrid metal-semimetal dual single-atom catalyst for electrocatalytic CO2 reduction. This strategy enables the simultaneous generation of monodisperse active sites and hierarchical morphologies with hollow nanostructures. The as-obtained catalyst with Fe-Se dual single-atom sites supported by porous nitrogen-doped carbon (FeSe-NC) shows exceptional catalytic activity and CO selectivity, delivering a Faradaic efficiency (FE) of >97% with industrially comparable jCO, superior to the Fe single-atom catalyst. Moreover, the FeSe-NC-based rechargeable Zn-CO2 battery delivers a high power density (2.01 mW cm-2) and outstanding FECO (>90%), as well as excellent cycling stability. Experimental results together with theoretical calculations reveal that the etching-induced defects and the Se-modulated Fe centers with asymmetrical polarized charge distributions synergistically facilitate the key intermediate *CO desorption and thus accelerate the CO2-to-CO conversion.
Collapse
Affiliation(s)
- Minghong Huang
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002, China
| | - Sheng-Hua Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002, China
| | - Cheng-Jie Yang
- Department of Physics, Tamkang University, Tamsui 25137, Taiwan
| | - Chung-Li Dong
- Department of Physics, Tamkang University, Tamsui 25137, Taiwan
| | - Yingchun He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002, China
| | - Wenbo Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002, China
| | - Xiaofang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhenguo Huang
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
12
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
13
|
Wu Y, Bo T, Tu H, Wang L, Shi W. U and Co Dual Single-Atom Doped MXene for Accelerating Electrocatalytic Hydrogen Evolution Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402847. [PMID: 38845471 DOI: 10.1002/smll.202402847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/24/2024] [Indexed: 10/19/2024]
Abstract
A large amount of radioactive waste is accumulated in the process of nuclear fuel preparation, causing serious pollution to the environment and abundant depleted uranium resources to be abandoned. One of the key issues affecting the development of nuclear energy is how to make full use of depleted uranium resources efficiently. Here, U element with unique coordination mode of 5f electron is spacer bonded to transition metal with 3d orbit through the adsorption and anchoring effect of MXene, thus U and Co dual doped MXene catalyst is constructed along with the comprehensive utilization of depleted uranium resources. The as-prepared U-Co/MXene catalyst demonstrates excellent overpotential of only 184 mV at -10 mA cm-2 and excellent stability up to 150 h, significantly surpassing the bare MXene substrate. Theoretical calculations indicate that the U and Co dual doping optimizes the electronic structure of MXene catalyst by forming the U-O-Co network, thereby improving the thermodynamics of H* adsorption during the catalytic transition state. This research opens up a new path for the recovery of depleted uranium resources and the development of functional actinide catalysts.
Collapse
Affiliation(s)
- Yanze Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Tao Bo
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haowei Tu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Zhang T, Wang D, Liu J. Periodic Single-Metal Site Catalysts: Creating Homogeneous and Ordered Atomic-Precision Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408259. [PMID: 39149786 DOI: 10.1002/adma.202408259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Heterogeneous single-metal-site catalysts (SMSCs), often referred to as single-atom catalysts (SACs), demonstrate promising catalytic activity, selectivity, and stability across a wide spectrum of reactions due to their rationally designed microenvironments encompassing coordination geometry, binding ligands, and electronic configurations. However, the inherent disorderliness of SMSCs at both atomic scale and nanoscale poses challenges in deciphering working principles and establishing the correlations between microenvironments and the catalytic performances of SMSCs. The rearrangement of randomly dispersed single metals into homogeneous and atomic-precisely structured periodic single-metal site catalysts (PSMSCs) not only simplifies the chaos in SMSCs systems but also unveils new opportunities for manipulating catalytic performance and gaining profound insights into reaction mechanisms. Moreover, the synergistic effects of adjacent single metals and the integration effects of periodic single-metal arrangement further broaden the industrial application scope of SMSCs. This perspective offers a comprehensive overview of recent advancements and outlines prospective avenues for research in the design and characterizations of PSMSCs, while also acknowledging the formidable challenges encountered and the promising prospects that lie ahead.
Collapse
Affiliation(s)
- Tianyu Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
15
|
Zhao S, Liu M, Qu Z, Yan Y, Zhang Z, Yang J, He S, Xu Z, Zhu Y, Luo L, Hui KN, Liu M, Zeng J. Cascade Synthesis of Fe-N 2-Fe Dual-Atom Catalysts for Superior Oxygen Catalysis. Angew Chem Int Ed Engl 2024; 63:e202408914. [PMID: 38957932 DOI: 10.1002/anie.202408914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Dual-atom catalysts (DACs) have been proposed to break the limitation of single-atom catalysts (SACs) in the synergistic activation of multiple molecules and intermediates, offering an additional degree of freedom for catalytic regulation. However, it remains a challenge to synthesize DACs with high uniformity, atomic accuracy, and satisfactory loadings. Herein, we report a facile cascade synthetic strategy for DAC via precise electrostatic interaction control and neighboring vacancy construction. We synthesized well-defined, uniformly dispersed dual Fe sites which were connected by two nitrogen bonds (denoted as Fe-N2-Fe). The as-synthesized DAC exhibited superior catalytic performances towards oxygen reduction reaction, including good half-wave potential (0.91 V), high kinetic current density (21.66 mA cm-2), and perfect durability. Theoretical calculation revealed that the DAC structure effectively tunes the oxygen adsorption configuration and decreases the cleavage barrier, thereby improving the catalytic kinetics. The DAC-based zinc-air batteries exhibited impressive power densities of 169.8 and 52.18 mW cm-2 at 25 °C and -40 °C, which is 1.7 and 2.0 times higher than those based on Pt/C+Ir/C, respectively. We also demonstrated the universality of our strategy in synthesizing other M-N2-M DACs (M=Co, Cu, Ru, Pd, Pt, and Au), facilitating the construction of a DAC library for different catalytic applications.
Collapse
Affiliation(s)
- Shuang Zhao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, China
| | - Minjie Liu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zehua Qu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Yan Yan
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Zhirong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jifeng Yang
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Siyuan He
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Zhou Xu
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Yiquan Zhu
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Laihao Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Kwun Nam Hui
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China
| | - Mingkai Liu
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| | - Jie Zeng
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
16
|
Wang Q, Cheng Y, Yang HB, Su C, Liu B. Integrative catalytic pairs for efficient multi-intermediate catalysis. NATURE NANOTECHNOLOGY 2024; 19:1442-1451. [PMID: 39103451 DOI: 10.1038/s41565-024-01716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 08/07/2024]
Abstract
Single-atom catalysts (SACs) have attracted considerable research interest owing to their combined merits of homogeneous and heterogeneous catalysts. However, the uniform and isolated active sites of SACs fall short in catalysing complex chemical processes that simultaneously involve multiple intermediates. In this Review, we highlight an emerging class of catalysts with adjacent binary active centres, which is called integrative catalytic pairs (ICPs), showing not only atomic-scale site-to-site electronic interactions but also synergistic catalytic effects. Compared with SACs or their derivative dual-atom catalysts (DACs), multi-interactive intermediates on ICPs can overcome kinetic barriers, adjust reaction pathways and break the universal linear scaling relations as the smallest active units. Starting from this active-site design principle, each single active atom can be considered as a brick to further build integrative catalytic clusters (ICCs) with desirable configurations, towards trimer or even larger multi-atom units depending on the requirement of a given reaction.
Collapse
Affiliation(s)
- Qilun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yaqi Cheng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China.
| | - Chenliang Su
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
17
|
Deshmukh MA, Bakandritsos A, Zbořil R. Bimetallic Single-Atom Catalysts for Water Splitting. NANO-MICRO LETTERS 2024; 17:1. [PMID: 39317789 PMCID: PMC11422407 DOI: 10.1007/s40820-024-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/10/2024] [Indexed: 09/26/2024]
Abstract
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society. The field of catalysis has been revolutionized by single-atom catalysts (SACs), which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports. Recently, bimetallic SACs (bimSACs) have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports. BimSACs offer an avenue for rich metal-metal and metal-support cooperativity, potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton-electron exchanges, substrate activation with reversible redox cycles, simultaneous multi-electron transfer, regulation of spin states, tuning of electronic properties, and cyclic transition states with low activation energies. This review aims to encapsulate the growing advancements in bimSACs, with an emphasis on their pivotal role in hydrogen generation via water splitting. We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs, elucidate their electronic properties, and discuss their local coordination environment. Overall, we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction, the two half-reactions of the water electrolysis process.
Collapse
Affiliation(s)
- Megha A Deshmukh
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| |
Collapse
|
18
|
Zhang Y, Guo Z, Fang Y, Tang C, Meng F, Miao N, Sa B, Zhou J, Sun Z. Rational design of bimetallic MBene for efficient electrocatalytic nitrogen reduction. J Colloid Interface Sci 2024; 670:687-697. [PMID: 38788436 DOI: 10.1016/j.jcis.2024.05.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) is one of the most promising approaches to achieving green and efficient NH3 production. However, the designs of efficient NRR catalysts with high activity and selectivity still are severely hampered by inherent linear scaling relations among the adsorption energies of NRR intermediates. Herein, the properties of ten M3B4 type MBenes have been initially investigated for efficient N2 activation and reduction to NH3via first-principles calculations. We highlight that Cr3B4 MBene possesses remarkable NRR activity with a record-low limiting potential (-0.13 V). Then, this work proposes descriptor-based design principles that can effectively evaluate the catalytic activity of MBenes, which have been further employed to design bimetallic M2M'B4 MBenes. As a result, 5 promising candidates including Ti2YB4, V2YB4, V2MoB4, Nb2YB4, and Nb2CrB4 with excellent NRR performance have been extracted from 20 bimetallic MBenes. Further analysis illuminates that constructing bimetallic MBenes can selectively tune the adsorption strength of NHNH2** and NH2NH2**, and break the linear scaling relations between their adsorption energies, rendering them ideal for NRR. This work not only pioneers the application of MBenes as efficient NRR catalysts but also proposes rational design principles for boosting their catalytic performance.
Collapse
Affiliation(s)
- Yaoyu Zhang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zhonglu Guo
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Yi Fang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chengchun Tang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Fanbin Meng
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Naihua Miao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Baisheng Sa
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Jian Zhou
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhimei Sun
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
19
|
Wang B, Yang X, Xie C, Liu H, Ma C, Zhang Z, Zhuang Z, Han A, Zhuang Z, Li L, Wang D, Liu J. A General Metal Ion Recognition Strategy to Mediate Dual-Atomic-Site Catalysts. J Am Chem Soc 2024; 146:24945-24955. [PMID: 39214615 DOI: 10.1021/jacs.4c06173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Heterogeneous dual-atomic-site catalysts (DACs) hold great potential for diverse applications. However, to date, the synthesis of DACs primarily relies on different atoms freely colliding on the support during synthesis, principally leading to low yields. Herein, we report a general metal ion recognition (MIR) strategy for constructing a series of DACs, including but not limited to Fe1Sn1, Fe1Co1, Fe1Ni1, Fe1Cu1, Fe1Mn1, Co1Ni1, Co1Cu1, Co2, and Cu2. This strategy is achieved by coupling target inorganometallic cations and anions as ion pairs, which are sequentially adsorbed onto a nitrogen-doped carbon substrate as the precursor. Taking the oxygen reduction reaction as an example, we demonstrated that the Fe1Sn1-DAC synthesized through this strategy delivers a record peak power density of 1.218 W cm-2 under 2.0 bar H2-O2 conditions and enhanced stability compared to the single-atom-site FeN4. Further study revealed that the superior performance arises from the synergistic effect of Fe1Sn1 dual vicinal sites, which effectively optimizes the adsorption of *OH and alleviates the troublesome Fenton-like reaction.
Collapse
Affiliation(s)
- Bingqing Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiang Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chongbao Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Zedong Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Zechao Zhuang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Aijuan Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Libo Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Prod Technology, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Junfeng Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
20
|
Yang Q, Liu H, Lin Y, Su D, Tang Y, Chen L. Atomically Dispersed Metal Catalysts for the Conversion of CO 2 into High-Value C 2+ Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310912. [PMID: 38762777 DOI: 10.1002/adma.202310912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The conversion of carbon dioxide (CO2) into value-added chemicals with two or more carbons (C2+) is a promising strategy that cannot only mitigate anthropogenic CO2 emissions but also reduce the excessive dependence on fossil feedstocks. In recent years, atomically dispersed metal catalysts (ADCs), including single-atom catalysts (SACs), dual-atom catalysts (DACs), and single-cluster catalysts (SCCs), emerged as attractive candidates for CO2 fixation reactions due to their unique properties, such as the maximum utilization of active sites, tunable electronic structure, the efficient elucidation of catalytic mechanism, etc. This review provides an overview of significant progress in the synthesis and characterization of ADCs utilized in photocatalytic, electrocatalytic, and thermocatalytic conversion of CO2 toward high-value C2+ compounds. To provide insights for designing efficient ADCs toward the C2+ chemical synthesis originating from CO2, the key factors that influence the catalytic activity and selectivity are highlighted. Finally, the relevant challenges and opportunities are discussed to inspire new ideas for the generation of CO2-based C2+ products over ADCs.
Collapse
Affiliation(s)
- Qihao Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Desheng Su
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Yulong Tang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Jia G, Zhang Y, Yu JC, Guo Z. Asymmetric Atomic Dual-Sites for Photocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403153. [PMID: 39039977 DOI: 10.1002/adma.202403153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Indexed: 07/24/2024]
Abstract
Atomically dispersed active sites in a photocatalyst offer unique advantages such as locally tuned electronic structures, quantum size effects, and maximum utilization of atomic species. Among these, asymmetric atomic dual-sites are of particular interest because their asymmetric charge distribution generates a local built-in electric potential to enhance charge separation and transfer. Moreover, the dual sites provide flexibility for tuning complex multielectron and multireaction pathways, such as CO2 reduction reactions. The coordination of dual sites opens new possibilities for engineering the structure-activity-selectivity relationship. This comprehensive overview discusses efficient and sustainable photocatalysis processes in photocatalytic CO2 reduction, focusing on strategic active-site design and future challenges. It serves as a timely reference for the design and development of photocatalytic conversion processes, specifically exploring the utilization of asymmetric atomic dual-sites for complex photocatalytic conversion pathways, here exemplified by the conversion of CO2 into valuable chemicals.
Collapse
Affiliation(s)
- Guangri Jia
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yingchuan Zhang
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Zhengxiao Guo
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
22
|
Li L, Han M, Zhang P, Yang D, Zhang M. Recent Advances in Engineering Fe-N-C Catalysts for Oxygen Electrocatalysis in Zn-Air Batteries. CHEMSUSCHEM 2024:e202401186. [PMID: 39215381 DOI: 10.1002/cssc.202401186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Fe-N-C single-atom catalysts (SACs) have emerged as one of the most promising candidates for oxygen electrocatalysis due to their maximized atom utilization efficiency, high intrinsic activity, and strong metal-support interaction. Significant progress has been made in engineering Fe-N-C SACs for oxygen electrocatalysis in Zn-air batteries (ZABs). This review provides a comprehensive overview of the recent advancements in Fe-N-C SACs, with a special focus on effective engineering strategies, their performance in oxygen electrocatalysis, and their potential applications in ZABs. The review also discusses the key challenges and future directions in the development of Fe-N-C SACs for efficient and durable oxygen electrocatalysis in ZABs. This review aims to offer valuable insights into the current state of research in this field and to guide future efforts in the development of advanced oxygen electrocatalysts for ZABs.
Collapse
Affiliation(s)
- Le Li
- Jiangsu Urban and Rural Construction Vocational College, Changzhou, 213147, China
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Jiangsu Province, Changzhou, 213164, China
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou, 213147, China
| | | | - Donglei Yang
- PetroChina Tarim Oilfield Company, Korla, 841000, China
| | - Meng Zhang
- Jiangsu Urban and Rural Construction Vocational College, Changzhou, 213147, China
| |
Collapse
|
23
|
Xu X, Guan J. Spin effect in dual-atom catalysts for electrocatalysis. Chem Sci 2024:d4sc04370g. [PMID: 39246370 PMCID: PMC11376133 DOI: 10.1039/d4sc04370g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
The development of high-efficiency atomic-level catalysts for energy-conversion and -storage technologies is crucial to address energy shortages. The spin states of diatomic catalysts (DACs) are closely tied to their catalytic activity. Adjusting the spin states of DACs' active centers can directly modify the occupancy of d-orbitals, thereby influencing the bonding strength between metal sites and intermediates as well as the energy transfer during electro reactions. Herein, we discuss various techniques for characterizing the spin states of atomic catalysts and strategies for modulating their active center spin states. Next, we outline recent progress in the study of spin effects in DACs for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), electrocatalytic nitrogen/nitrate reduction reaction (eNRR/NO3RR), and electrocatalytic carbon dioxide reduction reaction (eCO2RR) and provide a detailed explanation of the catalytic mechanisms influenced by the spin regulation of DACs. Finally, we offer insights into the future research directions in this critical field.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
24
|
Cui W, Wang F, Wang X, Li Y, Wang X, Shi Y, Song S, Zhang H. Designing Dual-Site Catalysts for Selectively Converting CO 2 into Methanol. Angew Chem Int Ed Engl 2024; 63:e202407733. [PMID: 38735859 DOI: 10.1002/anie.202407733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
The variability of CO2 hydrogenation reaction demands new potential strategies to regulate the fine structure of the catalysts for optimizing the reaction pathways. Herein, we report a dual-site strategy to boost the catalytic efficiency of CO2-to-methanol conversion. A new descriptor, τ, was initially established for screening the promising candidates with low-temperature activation capability of CO2, and sequentially a high-performance catalyst was fabricated centred with oxophilic Mo single atoms, who was further decorated with Pt nanoparticles. In CO2 hydrogenation, the obtained dual-site catalysts possess a remarkably-improved methanol generation rate (0.27 mmol gcat. -1 h-1). For comparison, the singe-site Mo and Pt-based catalysts can only produce ethanol and formate acid at a relatively low reaction rate (0.11 mmol gcat. -1 h-1 for ethanol and 0.034 mmol gcat. -1 h-1 for formate acid), respectively. Mechanism studies indicate that the introduction of Pt species could create an active hydrogen-rich environment, leading to the alterations of the adsorption configuration and conversion pathways of the *OCH2 intermediates on Mo sites. As a result, the catalytic selectivity was successfully switched.
Collapse
Affiliation(s)
- Wenjie Cui
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Fei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuou Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaomei Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Shi
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
25
|
Chu YJ, Zhu CY, Liu CG, Geng Y, Su ZM, Zhang M. Carbon-metal versus metal-metal synergistic mechanism of ethylene electro-oxidation via electrolysis of water on TM 2N 6 sites in graphene. Chem Sci 2024:d4sc03944k. [PMID: 39144461 PMCID: PMC11320337 DOI: 10.1039/d4sc03944k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
Acetaldehyde (AA) and ethylene oxide (EO) are important fine chemicals, and are also substrates with wide applications for high-value chemical products. Direct electrocatalytic oxidation of ethylene to AA and EO can avoid the untoward effects from harmful byproducts and high energy emissions. The most central intermediate state is the co-adsorption and coupling of ethylene and active oxygen intermediates (*O) at the active site(s), which is restricted by two factors: the stability of the *O intermediate generated during the electrolysis of water on the active site at a certain applied potential and pH range; and the lower kinetic energy barriers of the oxidation process based on the thermo-migration barrier from the *O intermediate to produce AA/EO. The benefit of two adjacent active atoms is more promising, since diverse adsorption and flexible catalytic sites may be provided for elementary reaction steps. Motivated by this strategy, we explored the feasibility of various homonuclear TM2N6@graphenes with dual-atomic-site catalysts (DASCs) for ethylene electro-oxidation through first-principles calculations via thermodynamic evaluation, analysis of the surface Pourbaix diagram, and kinetic evaluation. Two reaction mechanisms through C-TM versus TM-TM synergism were determined. Between them, a TM-TM mechanism on 4 TM2N6@graphenes and a C-TM mechanism on 5 TM2N6@graphenes are built. All 5 TM2N6@graphenes through the C-TM mechanism exhibit lower kinetic energy barriers for AA and EO generation than the 4 TM2N6@graphenes through the TM-TM mechanism. In particular, Pd2N6@graphene exhibits the most excellent catalytic activity, with energy barriers for generating AA and EO of only 0.02 and 0.65 eV at an applied potential of 1.77 V vs. RHE for the generation of an active oxygen intermediate. Electronic structure analysis indicates that the intrinsic C-TM mechanism is more advantageous than the TM-TM mechanism for ethylene electro-oxidation, and this study also provides valuable clues for further experimental exploration.
Collapse
Affiliation(s)
- Yun-Jie Chu
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University Changchun 130024 China
| | - Chang-Yan Zhu
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University Changchun 130024 China
| | - Chun-Guang Liu
- Department of Chemistry, Faculty of Science, Beihua University Jilin City 132013 P. R. China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University Changchun 130024 China
| | - Zhong-Min Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University Changchun 130021 P. R. China
| | - Min Zhang
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University Changchun 130024 China
| |
Collapse
|
26
|
Wang N, Mei R, Chen L, Yang T, Chen Z, Lin X, Liu Q. P-Bridging Asymmetry Diatomic Catalysts Sites Drive Efficient Bifunctional Oxygen Electrocatalysis for Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400327. [PMID: 38516947 DOI: 10.1002/smll.202400327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Rechargeable zinc-air batteries (ZABs) rely on the development of high-performance bifunctional oxygen electrocatalysts to facilitate efficient oxygen reduction/evolution reactions (ORR/OER). Single-atom catalysts (SACs), characterized by their precisely defined active sites, have great potential for applications in ZABs. However, the design and architecture of atomic site electrocatalysts with both high activity and durability present significant challenges, owing to their spatial confinement and electronic states. In this study, a strategy is proposed to fabricate structurally uniform dual single-atom electrocatalyst (denoted as P-FeCo/NC) consisting of P-bridging Fe and Co bimetal atom (i.e., Fe-P-Co) decorated on N, P-co-doped carbon framework as an efficient and durable bifunctional electrocatalyst for ZABs. Experimental investigations and theoretical calculations reveal that the Fe-P-Co bridge-coupling structure enables a facile adsorption/desorption of oxygen intermediates and low activation barrier. The resultant P-FeCo/NC exhibits ultralow overpotential of 340 mV at 10 mA cm-2 for OER and high half-wave potential of 0.95 V for ORR. In addition, the application of P-FeCo/NC in rechargeable ZABs demonstrates enhanced performance with maximum power density of 115 mW cm-2 and long cyclic stability, which surpass Pt/C and RuO2 catalysts. This study provides valuable insights into the design and mechanism of atomically dispersed catalysts for energy conversion applications.
Collapse
Affiliation(s)
- Nan Wang
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Riguo Mei
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Liqiong Chen
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Tao Yang
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Zhongwei Chen
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L3G1, Canada
| | - Xidong Lin
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Qingxia Liu
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
- Department of Chemical and Materials Engineering, University of Alberta, Waterloo, T6R1H9, Canada
| |
Collapse
|
27
|
Qiao J, You Y, Kong L, Feng W, Zhang H, Huang H, Li C, He W, Sun Z. Precisely Constructing Orbital-Coupled Fe─Co Dual-atom Sites for High-Energy-Efficiency Zn-Air/Iodide Hybrid Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405533. [PMID: 38814659 DOI: 10.1002/adma.202405533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Rechargeable Zn-air batteries (ZABs) are promising for energy storage and conversion. However, the high charging voltage and low energy efficiency hinder their commercialization. Herein, these challenges are addressed by employing precisely constructed multifunctional Fe-Co diatomic site catalysts (FeCo-DACs) and integrating iodide/iodate redox into ZABs to create Zinc-air/iodide hybrid batteries (ZAIHBs) with highly efficient multifunctional catalyst. The strong coupling between the 3d orbitals of Fe and Co weakens the excessively strong binding strength between active sites and intermediates, enhancing the catalytic activities for oxygen reduction/evolution reaction and iodide/iodate redox. Consequently, FeCo-DACs exhibit outstanding bifunctional oxygen catalytic activity with a small potential gap (ΔE = 0.66 V) and outstanding stability. Moreover, an outstanding catalytic performance toward iodide/iodate redox is obtained. Therefore, FeCo-DAC-based ZAIHBs exhibit high energy efficiency of up to 75% at 10 mA cm-2 and excellent cycling stability (72% after 500 h). This research offers critical insights into the rational design of DACs and paves the way for high-energy efficiency energy storage devices.
Collapse
Affiliation(s)
- Jingyuan Qiao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yurong You
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Lingqiao Kong
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Weihang Feng
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Heshuang Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Haibin Huang
- Jiangxi HAC GENERAL SEMITECH CO., LTD, Science and Technology Innovation Park, Gongqingcheng High-tech Zone, Jiujiang, Jiangxi, 332020, P. R. China
| | - Caifang Li
- Jiangxi HAC GENERAL SEMITECH CO., LTD, Science and Technology Innovation Park, Gongqingcheng High-tech Zone, Jiujiang, Jiangxi, 332020, P. R. China
| | - Wei He
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - ZhengMing Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
28
|
Jiang J, Zhou W, Jiang Y, Zhang X, An Q, Hu F, Wang H, Zheng K, Soldatov MA, Wei S, Liu Q. In situ Activation of Molecular Oxygen at Intermetallic Spacing-Optimized Iron Network-Like Sites for Boosting Electrocatalytic Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310163. [PMID: 38389176 DOI: 10.1002/smll.202310163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/06/2024] [Indexed: 02/24/2024]
Abstract
The oxygen reduction reaction (ORR) catalyzed by transition-metal single-atom catalysts (SACs) is promising for practical applications in energy-conversion devices, but great challenges still remain due to the sluggish kinetics of O═O cleavage. Herein, a kind of high-density iron network-like sites catalysts are constructed with optimized intermetallic distances on an amino-functionalized carbon matrix (Fe-HDNSs). Quasi-in situ soft X-ray absorption spectroscopy and in situ synchrotron infrared characterizations demonstrate that the optimized intermetallic distances in Fe-HDNSs can in situ activate the molecular oxygen by fast electron compensation through the hybridized Fe 3d‒O 2p, which efficiently facilitates the cleavage of the O═O bond to *O species and highly suppresses the side reactions for an accelerated kinetics of the 4e- ORR. As a result, the well-designed Fe-HDNSs catalysts exhibit superior performances with a half-wave potential of 0.89 V versus reversible hydrogen electrode (RHE) and a kinetic current density of 72 mA cm-2@0.80 V versus RHE, exceeding most of the noble-metal-free ORR catalysts. This work offers some new insights into the understanding of 4e- ORR kinetics and reaction pathways to boost electrochemical performances of SACs.
Collapse
Affiliation(s)
- Jingjing Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Wanlin Zhou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Yaling Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Xu Zhang
- Beijing Key Lab of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Qizheng An
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Fengchun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Huijuan Wang
- Experimental Center of Engineering and Material Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kun Zheng
- Beijing Key Lab of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Mikhail A Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, Rostov-on-Don, 344090, Russia
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| |
Collapse
|
29
|
Ding X, Liu D, Zhao P, Chen X, Wang H, Oropeza FE, Gorni G, Barawi M, García-Tecedor M, de la Peña O'Shea VA, Hofmann JP, Li J, Kim J, Cho S, Wu R, Zhang KHL. Dynamic restructuring of nickel sulfides for electrocatalytic hydrogen evolution reaction. Nat Commun 2024; 15:5336. [PMID: 38914549 PMCID: PMC11196257 DOI: 10.1038/s41467-024-49015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Transition metal chalcogenides have been identified as low-cost and efficient electrocatalysts to promote the hydrogen evolution reaction in alkaline media. However, the identification of active sites and the underlying catalytic mechanism remain elusive. In this work, we employ operando X-ray absorption spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy to elucidate that NiS undergoes an in-situ phase transition to an intimately mixed phase of Ni3S2 and NiO, generating highly active synergistic dual sites at the Ni3S2/NiO interface. The interfacial Ni is the active site for water dissociation and OH* adsorption while the interfacial S acts as the active site for H* adsorption and H2 evolution. Accordingly, the in-situ formation of Ni3S2/NiO interfaces enables NiS electrocatalysts to achieve an overpotential of only 95 ± 8 mV at a current density of 10 mA cm-2. Our work highlighted that the chemistry of transition metal chalcogenides is highly dynamic, and a careful control of the working conditions may lead to the in-situ formation of catalytic species that boost their catalytic performance.
Collapse
Affiliation(s)
- Xingyu Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Da Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Pengju Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xing Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hongxia Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Freddy E Oropeza
- Photoactivated Processes Unit, IMDEA Energy Institute, Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain.
| | - Giulio Gorni
- Laser Processing Group, Institute of Optics (CSIC), C/Serrano 121, 28006, Madrid, Spain
- CELLS-ALBASynchrotron, Carrer de la Llum 2-26, 08290, Cerdanyola del Vallès, Spain
| | - Mariam Barawi
- Photoactivated Processes Unit, IMDEA Energy Institute, Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Miguel García-Tecedor
- Photoactivated Processes Unit, IMDEA Energy Institute, Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Víctor A de la Peña O'Shea
- Photoactivated Processes Unit, IMDEA Energy Institute, Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt, Otto-Berndt-Strasse 3, 64287, Darmstadt, Germany
| | - Jianfeng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jongkyoung Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seungho Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Renbing Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, China.
| | - Kelvin H L Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
30
|
Yu Z, Xia G, Diaconescu VM, Simonelli L, LaGrow AP, Tai Z, Xiang X, Xiong D, Liu L. Atomically dispersed dinuclear iridium active sites for efficient and stable electrocatalytic chlorine evolution reaction. Chem Sci 2024; 15:9216-9223. [PMID: 38903208 PMCID: PMC11186302 DOI: 10.1039/d4sc01220h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
The electrochemical chlorine evolution reaction (CER) is a critical anode reaction in chlor-alkali electrolysis. Although precious metal-based mixed metal oxides (MMOs) have long been used as CER catalysts, they suffer from high cost and poor selectivity due to the competing oxygen evolution reaction (OER). Single-atom catalysts (SACs), featuring high atom utilization efficiency, have captured widespread interest in diverse applications. However, the single-atom sites in SACs are generally recognized as independent motifs and the interplay of adjacent sites is largely overlooked. Herein, we report a "precursor-preselected" cage-encapsulated strategy to synthesize atomically dispersed dinuclear iridium active sites bridged by oxygen that are supported on nitrogen-doped carbon (Ir2-ONC). The dinuclear Ir2-ONC catalyst exhibits a CER onset potential of 1.375 V vs. normal hydrogen electrode, a high faradaic efficiency of >95%, and a high mass activity of 14321.6 A gIr -1, much better than the Ir SACs, which demonstrates the significance of coordination and electronic structure regulation for atomically dispersed catalysts. Density functional theory calculations and ab initio molecular dynamics simulations confirm that the unique dinuclear structure facilitates Cl- adsorption, resulting in improved catalytic CER performance.
Collapse
Affiliation(s)
- Zhipeng Yu
- Songshan Lake Materials Laboratory Dongguan 523808 P. R. China
- International Iberian Nanotechnology Laboratory (INL) Avenida Mestre Jose Veiga 4715-330 Braga Portugal
| | - Guangjie Xia
- School of Physical Sciences, Great Bay University Dongguan 523808 P. R. China
- Great Bay Institute for Advanced Study Dongguan 523000 P. R. China
| | | | - Laura Simonelli
- ALBA Synchrotron, Carrer Llum 2-26 Cerdanyola del Valles Barcelona 08290 Spain
| | - Alec P LaGrow
- International Iberian Nanotechnology Laboratory (INL) Avenida Mestre Jose Veiga 4715-330 Braga Portugal
- Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University Kunigami-gun Okinawa 904-0412 Japan
| | - Zhixin Tai
- International Iberian Nanotechnology Laboratory (INL) Avenida Mestre Jose Veiga 4715-330 Braga Portugal
| | - Xinyi Xiang
- Songshan Lake Materials Laboratory Dongguan 523808 P. R. China
| | - Dehua Xiong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Lifeng Liu
- Songshan Lake Materials Laboratory Dongguan 523808 P. R. China
- International Iberian Nanotechnology Laboratory (INL) Avenida Mestre Jose Veiga 4715-330 Braga Portugal
| |
Collapse
|
31
|
Zhao H, Wang J. Supported nano-sized precious metal catalysts for oxidation of catalytic volatile organic compounds. Phys Chem Chem Phys 2024; 26:15804-15817. [PMID: 38775810 DOI: 10.1039/d3cp05812c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Volatile organic compounds (VOCs) are common contaminants found as indoor as well as outdoor pollutants, which can induce acute or chronic health hazards to the human physiological system. The catalytic oxidation method is widely considered as one of the effective methods for removing VOCs, and the development of highly effective catalysts is highly urgent for booming this interesting field. This review focuses on the recent progress of VOC oxidation catalyzed by supported nano-sized precious metal catalysts, and discusses the effects of metal composition, supports, size, and morphology on the catalytic activity. In addition, the roles played by both nano-sized precious metals and supports in enhancing the performance of catalytic VOCs are also systematically discussed, which will guide the further development of more advanced VOC catalysts.
Collapse
Affiliation(s)
- Hui Zhao
- Capital Construction Office, Changzhou University, Changzhou 213164, China
| | - Jipeng Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
32
|
Cai L, Bai H, Kao CW, Jiang K, Pan H, Lu YR, Tan Y. Platinum-Ruthenium Dual-Atomic Sites Dispersed in Nanoporous Ni 0.85Se Enabling Ampere-Level Current Density Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311178. [PMID: 38224219 DOI: 10.1002/smll.202311178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Alkaline anion-exchange-membrane water electrolyzers (AEMWEs) using earth-abundant catalysts is a promising approach for the generation of green H2. However, the AEMWEs with alkaline electrolytes suffer from poor performance at high current density compared to proton exchange membrane electrolyzers. Here, atomically dispersed Pt-Ru dual sites co-embedded in nanoporous nickel selenides (np/Pt1Ru1-Ni0.85Se) are developed by a rapid melt-quenching approach to achieve highly-efficient alkaline hydrogen evolution reaction. The np/Pt1Ru1-Ni0.85Se catalyst shows ampere-level current density with a low overpotential (46 mV at 10 mA cm-2 and 225 mV at 1000 mA cm-2), low Tafel slope (32.4 mV dec-1), and excellent long-term durability, significantly outperforming the benchmark Pt/C catalyst and other advanced large-current catalysts. The remarkable HER performance of nanoporous Pt1Ru1-Ni0.85Se is attributed to the strong intracrystal electronic metal-support interaction (IEMSI) between Pt-Se-Ru sites and Ni0.85Se support which can greatly enlarge the charge redistribution density, reduce the energy barrier of water dissociation, and optimize the potential determining step. Furthermore, the assembled alkaline AEMWE with an ultralow Pt and Ru loading realizes an industrial-level current density of 1 A cm-2 at 1.84 volts with high durability.
Collapse
Affiliation(s)
- Lebin Cai
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., 999078, China
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Kang Jiang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., 999078, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yongwen Tan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
33
|
Wong KY, Wong MS, Liu J. Nanozymes for Treating Ocular Diseases. Adv Healthc Mater 2024:e2401309. [PMID: 38738646 DOI: 10.1002/adhm.202401309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Nanozymes, characterized by their nanoscale size and enzyme-like catalytic activities, exhibit diverse therapeutic potentials, including anti-oxidative, anti-inflammatory, anti-microbial, and anti-angiogenic effects. These properties make them highly valuable in nanomedicine, particularly ocular therapy, bypassing the need for systemic delivery. Nanozymes show significant promise in tackling multi-factored ocular diseases, particularly those influenced by oxidation and inflammation, like dry eye disease, and age-related macular degeneration. Their small size, coupled with their ease of modification and integration into soft materials, facilitates the effective penetration of ocular barriers, thereby enabling targeted or prolonged therapy within the eye. This review is dedicated to exploring ocular diseases that are intricately linked to oxidation and inflammation, shedding light on the role of nanozymes in managing these conditions. Additionally, recent studies elucidating advanced applications of nanozymes in ocular therapeutics, along with their integration with soft materials for disease management, are discussed. Finally, this review outlines directions for future investigations aimed at bridging the gap between nanozyme research and clinical applications.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17 W Hong Kong Science Park, Hong Kong
| | - Man-Sau Wong
- Centre for Eye and Vision Research (CEVR), 17 W Hong Kong Science Park, Hong Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17 W Hong Kong Science Park, Hong Kong
| |
Collapse
|
34
|
Ding C, Zhao Y, Qiao Z. Modification of carbon nanofibers for boosting oxygen electrocatalysis. Phys Chem Chem Phys 2024; 26:13606-13621. [PMID: 38682278 DOI: 10.1039/d3cp05904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Oxygen electrocatalysis is a key process for many effective energy conversion techniques, which requires the development of high-performance electrocatalysts. Carbon nanofibers featuring good electronic conductivity, large specific surface area, high axial strength and modulus, and good resistance toward harsh environments have thus been recognized as reinforcements in oxygen electrocatalysis. This review summarizes the recent progress on carbon nanofibers as electrocatalysts for oxygen electrocatalysis, with special focus on the modulation of carbon nanofibers for further elevating their electrocatalytic performance, which includes morphological and structural engineering, surface and pore size distribution, defect engineering, and coupling with other electroactive materials. Additionally, the correlation between the geometrical/electronic structure of their active centers and electrocatalytic activity is systematically discussed. Finally, conclusions and perspectives of this interesting research field are presented, which we hope will provide guidance for the future fabrication of more advanced carbon-fiber-based electrocatalysts.
Collapse
Affiliation(s)
- Changming Ding
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Jiangsu Ruilante New Materials Co., Ltd, Yangzhou, 211400, China
| | - Yitao Zhao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province, 213164, China
- Jiangsu Key Laboratory of High-Performance Fiber Composites, JITRI-PGTEX Joint Innovation Center, PGTEX CHINA Co., Ltd., Changzhou, Jiangsu Province, 213164, China
| | - Zhiyong Qiao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Jiangsu Ruilante New Materials Co., Ltd, Yangzhou, 211400, China
| |
Collapse
|
35
|
Zhao X, Sun Y, Wang J, Nie A, Zou G, Ren L, Wang J, Wang Y, Fernandez C, Peng Q. Regulating d-Orbital Hybridization of Subgroup-IVB Single Atoms for Efficient Oxygen Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312117. [PMID: 38377528 DOI: 10.1002/adma.202312117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/04/2024] [Indexed: 02/22/2024]
Abstract
Highly active single-atom electrocatalysts for the oxygen reduction reaction are crucial for improving the energy conversion efficiency, but they suffer from a limited choice of metal centers and unsatisfactory stabilities. Here, this work reports that optimization of the binding energies for reaction intermediates by tuning the d-orbital hybridization with axial groups converts inactive subgroup-IVB (Ti, Zr, Hf) moieties (MN4) into active motifs (MN4O), as confirmed with theoretical calculations. The competition between metal-ligand covalency and metal-intermediate covalency affects the d-p orbital hybridization between the metal site and the intermediates, converting the metal centers into active sites. Subsequently, dispersed single-atom M sites coordinated by nitrogen/oxygen groups have been prepared on graphene (s-M-N/O-C) catalysts on a large-scale with high-energy milling and pyrolysis. Impressively, the s-Hf-N/O-C catalyst with 5.08 wt% Hf exhibits a half-wave potential of 0.920 V and encouraging performance in a zinc-air battery with an extraordinary cycling life of over 1600 h and a large peak power-density of 256.9 mW cm-2. This work provides promising single-atom electrocatalysts and principles for preparing other catalysts for the oxygen reduction reaction.
Collapse
Affiliation(s)
- Xue Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yong Sun
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Jinming Wang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Anmin Nie
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Guodong Zou
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Liqun Ren
- Laboratory of Spinal Cord Injury and Rehabilitation, Chengde Medical University, Chengde, 067000, P. R. China
| | - Jing Wang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, P. R. China
| | - Carlos Fernandez
- School of Pharmacy and life sciences, Robert Gordon University, Aberdeen, AB107GJ, UK
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, P. R. China
| |
Collapse
|
36
|
Li H, Li R, Liu G, Zhai M, Yu J. Noble-Metal-Free Single- and Dual-Atom Catalysts for Artificial Photosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301307. [PMID: 37178457 DOI: 10.1002/adma.202301307] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Artificial photosynthesis enables direct solar-to-chemical energy conversion aimed at mitigating environmental pollution and producing solar fuels and chemicals in a green and sustainable approach, and efficient, robust, and low-cost photocatalysts are the heart of artificial photosynthesis systems. As an emerging new class of cocatalytic materials, single-atom catalysts (SACs) and dual-atom catalysts (DACs) have received a great deal of current attention due to their maximal atom utilization and unique photocatalytic properties, whereas noble-metal-free ones impart abundance, availability, and cost-effectiveness allowing for scalable implementation. This review outlines the fundamental principles and synthetic methods of SACs and DACs and summarizes the most recent advances in SACs (Co, Fe, Cu, Ni, Bi, Al, Sn, Er, La, Ba, etc.) and DACs (CuNi, FeCo, InCu, KNa, CoCo, CuCu, etc.) based on non-noble metals, confined on an arsenal of organic or inorganic substrates (polymeric carbon nitride, metal oxides, metal sulfides, metal-organic frameworks, carbon, etc.) acting as versatile scaffolds in solar-light-driven photocatalytic reactions, including hydrogen evolution, carbon dioxide reduction, methane conversion, organic synthesis, nitrogen fixation, hydrogen peroxide production, and environmental remediation. The review concludes with the challenges, opportunities, and future prospects of noble-metal-free SACs and DACs for artificial photosynthesis.
Collapse
Affiliation(s)
- Huaxing Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rongjie Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
37
|
Hou Z, Fan F, Wang Z, Du Y. A stable N-doped NiMoO 4/NiO 2 electrocatalyst for efficient oxygen evolution reaction. Dalton Trans 2024; 53:7430-7435. [PMID: 38591122 DOI: 10.1039/d3dt04034h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Recently, there has been a significant interest in the study of highly active and stable transition metal-based electrocatalysts for the oxygen evolution reaction (OER). Non-noble metal nanocatalysts with excellent inherent activity, many exposed active centers, rapid electron transfer, and excellent structural stability are especially promising for the displacement of precious-metal catalysts for the production of sustainable and "clean" hydrogen gas through water-splitting. Herein, efficient electrocatalyst N-doped nickel molybdate nanorods were synthesized on Ni foam by a hydrothermal process and effortless chemical vapor deposition. The heterostructure interface of N-NiMoO4/NiO2 led to strong electronic interactions, which were beneficial for enhancing the OER activity of the catalyst. Excellent OER catalytic activity in 1.0 M KOH was shown, which offered a small overpotential of 185.6 mV to acquire a current density of 10 mA cm-2 (superior to the commercial benchmark material RuO2 under the same condition). This excellent electrocatalyst was stable for 90 h at a constant current density of 10 mA cm-2. We created an extremely reliable and effective OER electrocatalyst without the use of noble metals by doping a nonmetal element with nanostructured heterojunctions of various active components.
Collapse
Affiliation(s)
- Zhengfang Hou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Fangyuan Fan
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Zhe Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Yeshuang Du
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
38
|
Wu J, Zhong H, Huang ZF, Zou JJ, Zhang X, Zhang YC, Pan L. Research progress of dual-atom site catalysts for photocatalysis. NANOSCALE 2024. [PMID: 38639199 DOI: 10.1039/d3nr06386k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Dual-atom site catalysts (DASCs) have sparked considerable interest in heterogeneous photocatalysis as they possess the advantages of excellent photoelectronic activity, photostability, and high carrier separation efficiency and mobility. The DASCs involved in these important photocatalytic processes, especially in the photocatalytic hydrogen evolution reaction (HER), CO2 reduction reaction (CO2RR), N2/nitrate reduction, etc., have been extensively investigated in the past few years. In this review, we highlight the recent progress in DASCs that provides fundamental insights into the photocatalytic conversion of small molecules. The controllable preparation and characterization methods of various DASCs are discussed. Subsequently, the reaction mechanisms of the formation of several important molecules (hydrogen, hydrocarbons and ammonia) on DASCs are introduced in detail, in order to probe the relationship between DASCs's structure and photocatalytic activity. Finally, some challenges and outlooks of DASCs in the photocatalytic conversion of small molecules are summarized and prospected. We hope that this review can provide guidance for in-depth understanding and aid in the design of efficient DASCs for photocatalysis.
Collapse
Affiliation(s)
- Jinting Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Haoming Zhong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Yong-Chao Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
39
|
Xiao C, Guo X, Li J. From nano- to macroarchitectures: designing and constructing MOF-derived porous materials for persulfate-based advanced oxidation processes. Chem Commun (Camb) 2024; 60:4395-4418. [PMID: 38587500 DOI: 10.1039/d4cc00433g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) have gained significant attention as an effective approach for the elimination of emerging organic contaminants (EOCs) in water treatment. Metal-organic frameworks (MOFs) and their derivatives are regarded as promising catalysts for activating peroxydisulfate (PDS) and peroxymonosulfate (PMS) due to their tunable and diverse structure and composition. By the rational nanoarchitectured design of MOF-derived nanomaterials, the excellent performance and customized functions can be achieved. However, the intrinsic fine powder form and agglomeration ability of MOF-derived nanomaterials have limited their practical engineering application. Recently, a great deal of effort has been put into shaping MOFs into macroscopic objects without sacrificing the performance. This review presents recent advances in the design and synthetic strategies of MOF-derived nano- and macroarchitectures for PS-AOPs to degrade EOCs. Firstly, the strategies of preparing MOF-derived diverse nanoarchitectures including hierarchically porous, hollow, yolk-shell, and multi-shell structures are comprehensively summarized. Subsequently, the approaches of manufacturing MOF-based macroarchitectures are introduced in detail. Moreover, the PS-AOP application and mechanisms of MOF-derived nano- and macromaterials as catalysts to eliminate EOCs are discussed. Finally, the prospects and challenges of MOF-derived materials in PS-AOPs are discussed. This work will hopefully guide the design and development of MOF-derived porous materials in SR-AOPs.
Collapse
Affiliation(s)
- Chengming Xiao
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Xin Guo
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|
40
|
Ma Y, Yang Q, Qi J, Zhang Y, Gao Y, Zeng Y, Jiang N, Sun Y, Qu K, Fang W, Li Y, Lu X, Zhi C, Qiu J. Surface atom knockout for the active site exposure of alloy catalyst. Proc Natl Acad Sci U S A 2024; 121:e2319525121. [PMID: 38564637 PMCID: PMC11009663 DOI: 10.1073/pnas.2319525121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
The fine regulation of catalysts by the atomic-level removal of inactive atoms can promote the active site exposure for performance enhancement, whereas suffering from the difficulty in controllably removing atoms using current micro/nano-scale material fabrication technologies. Here, we developed a surface atom knockout method to promote the active site exposure in an alloy catalyst. Taking Cu3Pd alloy as an example, it refers to assemble a battery using Cu3Pd and Zn as cathode and anode, the charge process of which proceeds at about 1.1 V, equal to the theoretical potential difference between Cu2+/Cu and Zn2+/Zn, suggesting the electricity-driven dissolution of Cu atoms. The precise knockout of Cu atoms is confirmed by the linear relationship between the amount of the removed Cu atoms and the battery cumulative specific capacity, which is attributed to the inherent atom-electron-capacity correspondence. We observed the surface atom knockout process at different stages and studied the evolution of the chemical environment. The alloy catalyst achieves a higher current density for oxygen reduction reaction compared to the original alloy and Pt/C. This work provides an atomic fabrication method for material synthesis and regulation toward the wide applications in catalysis, energy, and others.
Collapse
Affiliation(s)
- Yi Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Qi Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Jun Qi
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yong Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yuliang Gao
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - You Zeng
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Na Jiang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Ying Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang110036, China
| | - Keqi Qu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Wenhui Fang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Ying Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Xuejun Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong999077, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
41
|
You XM, Xu B, Zhou H, Qiao H, Lv X, Huang Z, Pang J, Yang L, Liu PF, Guan X, Yang HG, Wang X, Yao YF. Ultrahigh Bifunctional Photocatalytic CO 2 Reduction and H 2 Evolution by Synergistic Interaction of Heteroatomic Pt-Ru Dimerization Sites. ACS NANO 2024; 18:9403-9412. [PMID: 38488193 DOI: 10.1021/acsnano.3c10807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Diatomic-site catalysts (DASCs) inherit the excellent performance of single-atom catalysts (SACs) by utilizing two adjacent atomic metal species to achieve functional complementarity and synergistic effects that improve the carbon dioxide reduction reaction (CO2RR) and H2 evolution reaction (HER) kinetics. Herein, we report a method to further improve the catalytic efficiency of Pt by using Pt and Ru single atoms randomly anchored on a g-C3N4 surface, yielding partial Pt-Ru dimers. The synthesized catalyst exhibits extraordinary photocatalytic activity and stability in both the CO2RR and HER processes. In-depth experimentation, the pH-dependent chemical exchange saturation transfer (CEST) imaging nuclear magnetic resonance (NMR) method, and theoretical analyses reveal that the excellent performance is attributed to orbital coupling between the Pt atoms and the neighboring Ru atoms (mainly dxy and dxz), which decreases the orbital energy levels and weakens the bond strength with intermediates, resulting in improved CO2RR and HER performance. This study successfully applies the pH-dependent CEST imaging NMR method to catalytic reactions, and CO2 adsorption is directly observed using CEST 2D imaging maps. This work presents significant potential for a variety of catalytic reaction applications by systematically designing bimetallic dimers with higher activity and stability.
Collapse
Affiliation(s)
- Xiao-Meng You
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241 China
| | - Beibei Xu
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241 China
| | - Hang Zhou
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241 China
| | - Hongwei Qiao
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241 China
| | - Xingxi Lv
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241 China
| | - Zejiang Huang
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241 China
| | - Jingyi Pang
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241 China
| | - Lingyun Yang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai, Engineering Research Center of Hierarchical Nanomaterials, School of Materials, Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai 200241, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai, Engineering Research Center of Hierarchical Nanomaterials, School of Materials, Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xuelu Wang
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241 China
| | - Ye-Feng Yao
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241 China
| |
Collapse
|
42
|
Liang C, Zhao R, Chen T, Luo Y, Hu J, Qi P, Ding W. Recent Approaches for Cleaving the C─C Bond During Ethanol Electro-Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308958. [PMID: 38342625 PMCID: PMC11022732 DOI: 10.1002/advs.202308958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Indexed: 02/13/2024]
Abstract
Direct ethanol fuel cells (DEFCs) play an indispensable role in the cyclic utilization of carbon resources due to its high volumetric energy density, high efficiency, and environmental benign character. However, owing to the chemically stable carbon-carbon (C─C) bond of ethanol, its incomplete electrooxidation at the anode severely inhibits the energy and power density output of DEFCs. The efficiency of C─C bond cleaving on the state-of-the-art Pt or Pd catalysts is reported as low as 7.5%. Recently, tremendous efforts are devoted to this field, and some effective strategies are put forward to facilitate the cleavage of the C─C bond. It is the right time to summarize the major breakthroughs in ethanol electrooxidation reaction. In this review, some optimization strategies including constructing core-shell nanostructure with alloying effect, doping other metal atoms in Pt and Pd catalysts, engineering composite catalyst with interface synergism, introducing cascade catalytic sites, and so on, are systematically summarized. In addition, the catalytic mechanism as well as the correlations between the catalyst structure and catalytic efficiency are further discussed. Finally, the prevailing limitations and feasible improvement directions for ethanol electrooxidation are proposed.
Collapse
Affiliation(s)
- Chenjia Liang
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Ruiyao Zhao
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Teng Chen
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Yi Luo
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Jianqiang Hu
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Ping Qi
- Department of Aviation Oil and MaterialAir Force Logistics AcademyXuzhouJiangsu221000China
| | - Weiping Ding
- School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
43
|
Chen J, Zhang D, Liu B, Zheng K, Li Y, Xu Y, Li Z, Liu X. Photoinduced Precise Synthesis of Diatomic Ir 1 Pd 1 -In 2 O 3 for CO 2 Hydrogenation to Methanol via Angstrom-Scale-Distance Dependent Synergistic Catalysis. Angew Chem Int Ed Engl 2024; 63:e202401168. [PMID: 38336924 DOI: 10.1002/anie.202401168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
The atomically dispersed metal catalysts with full atomic utilization and well-defined site structure hold great promise for various catalytic reactions. However, the single metallic site limits the comprehensive reaction performance in most reactions. Here, we demonstrated a photo-induced neighbour-deposition strategy for the precise synthesis of diatomic Ir1 Pd1 on In2 O3 applied for CO2 hydrogenation to methanol. The proximity synergism between diatomic sites enabled a striking promotion in both CO2 conversion (10.5 %) and methanol selectivity (97 %) with good stability of 100 h run. It resulted in record-breaking space-time yield to methanol (187.1 gMeOH gmetal -1 hour-1 ). The promotional effect mainly originated from stronger CO2 adsorption on Ir site with assistance of H-spillover from Pd site, thus leading to a lower energy barrier for *HCOO pathway. It was confirmed that this synergistic effect strongly depended on the dual-site distance in an angstrom scale, which was attributed to weaker *H spillover and less electron transfer from Pd to Ir site as the Pd-to-Ir distance increased. The average dual-site distance was evaluated by our firstly proposed photoelectric model. Thus, this study introduced a pioneering strategy to precisely synthesize homonuclear/heteronuclear diatomic catalysts for facilitating the desired reaction route via diatomic synergistic catalysis.
Collapse
Affiliation(s)
- Jie Chen
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Dongjian Zhang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ke Zheng
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yufeng Li
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zaijun Li
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
44
|
Li Y, Wang H, Yang X, O'Carroll T, Wu G. Designing and Engineering Atomically Dispersed Metal Catalysts for CO 2 to CO Conversion: From Single to Dual Metal Sites. Angew Chem Int Ed Engl 2024; 63:e202317884. [PMID: 38150410 DOI: 10.1002/anie.202317884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2 RR) is a promising approach to achieving sustainable electrical-to-chemical energy conversion and storage while decarbonizing the emission-heavy industry. The carbon-supported, nitrogen-coordinated, and atomically dispersed metal sites are effective catalysts for CO generation due to their high activity, selectivity, and earth abundance. Here, we discuss progress, challenges, and opportunities for designing and engineering atomic metal catalysts from single to dual metal sites. Engineering single metal sites using a nitrogen-doped carbon model was highlighted to exclusively study the effect of carbon particle sizes, metal contents, and M-N bond structures in the form of MN4 moieties on catalytic activity and selectivity. The structure-property correlation was analyzed by combining experimental results with theoretical calculations to uncover the CO2 to CO conversion mechanisms. Furthermore, dual-metal site catalysts, inheriting the merits of single-metal sites, have emerged as a new frontier due to their potentially enhanced catalytic properties. Designing optimal dual metal site catalysts could offer additional sites to alter the surface adsorption to CO2 and various intermediates, thus breaking the scaling relationship limitation and activity-stability trade-off. The CO2 RR electrolysis in flow reactors was discussed to provide insights into the electrolyzer design with improved CO2 utilization, reaction kinetics, and mass transport.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Huanhuan Wang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Xiaoxuan Yang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Thomas O'Carroll
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
45
|
Wang Y, Katyal N, Tang Y, Li H, Shin K, Liu W, He R, Xu M, Henkelman G, Bao SJ. One-Step Pyrolysis Construction of Bimetallic Atom-Cluster Sites for Boosting Bifunctional Catalytic Activity in Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306504. [PMID: 37926769 DOI: 10.1002/smll.202306504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Indexed: 11/07/2023]
Abstract
Due to their unique advantages, single atoms and clusters of transition metals are expected to achieve a breakthrough in catalytic activity, but large-scale production of active materials remains a challenge. In this work, a simple solvent-free one-step annealing method is developed and applied to construct diatomic and cluster active sites in activated carbon by utilizing the strong anchoring ability of phenanthroline to metal ions, which can be scaled for mass productions. Benefiting from the synergy between the different metals, the obtained sub-nano-bimetallic atom-cluster catalysts (FeNiAC -NC) exhibit high oxygen reduction reactions (ORR) activity (E1/2 = 0.936 V vs. RHE) and a small ORR/oxygen evolution reaction (OER) potential gap of only 0.594 V. An in-house pouch Zn-air battery is assembled using an FeNiAC -NC catalyst, which demonstrates a stability of 1000 h, outperforming previous reports. The existence of clusters and their effects on catalytic activity is analyzed by density functional theory calculations to reveal the chemistry of nano-bimetallic atom-cluster catalysts.
Collapse
Affiliation(s)
- Youpeng Wang
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Naman Katyal
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yang Tang
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Hua Li
- School of Materials and Energy, Electron Microscopy Centre, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Kihyun Shin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Materials Science and Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Wenqian Liu
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Ruilin He
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Maowen Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Graeme Henkelman
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Shu-Juan Bao
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
46
|
Jiang X, Chen C, Chen J, Yu S, Yu W, Shen L, Li B, Zhou M, Lin H. Atomically dispersed dual-atom catalysts: A new rising star in environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169142. [PMID: 38070550 DOI: 10.1016/j.scitotenv.2023.169142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Single-atom catalysts, characterized by individual metal atoms as active centers, have emerged as promising candidates owing to their remarkable catalytic efficiency, maximum atomic utilization efficiency, and robust stability. However, the limitation of single-atom catalysts lies in their inability to cater to multistep reactions using a solitary active site. Introducing an additional metal atom can amplify the number of active sites, modulate the electronic structure, bolster adsorption ability, and enable a gamut of core reactions, thus augmenting their catalytic prowess. As such, dual-atom catalysts have risen to prominence. However, a comprehensive review elucidating the realm of dual-atom catalysts in environmental remediation is currently lacking. This review endeavors to bridge this gap, starting with a discourse on immobilization techniques for dual-atom catalysts, which includes configurations such as adjacent atoms, bridged atoms, and co-facially separated atoms. The review then delves into the intrinsic activity mechanisms of these catalysts, elucidating aspects like adsorption dynamics, electronic regulation, and synergistic effects. Following this, a comprehensive summarization of dual-atom catalysts for environmental applications is provided, spanning electrocatalysis, photocatalysis, and Fenton-like reactions. Finally, the existing challenges and opportunities in the field of dual-atom catalysts are extensively discussed. This work aims to be a beacon, illuminating the path towards the evolution and adoption of dual-atom catalysts in environmental remediation.
Collapse
Affiliation(s)
- Xialiang Jiang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Junjie Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shuning Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wei Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
47
|
Shi WJ, Wang YC, Tao WX, Zhong DC, Lu TB. Electronic Modulation in Homonuclear Dual-Atomic Catalysts for Enhanced CO 2 Electroreduction. Chemistry 2024; 30:e202303345. [PMID: 37964711 DOI: 10.1002/chem.202303345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
Homonuclear dual-atomic catalysts showcase unique electronic modulation due to their dual metal centres, providing new direction in development of efficient catalysts for CO2 electroreduction. This article highlights a few cutting-edge homonuclear dual-atomic catalysts, focusing on their inherent advantages in efficient and selective CO2 electroreduction, to spotlight the potential application of dual-atomic catalysts in CO2 electroreduction.
Collapse
Affiliation(s)
- Wen-Jie Shi
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yu-Chen Wang
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Wei-Xue Tao
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Di-Chang Zhong
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
48
|
Wang C, Fei Z, Wang Y, Ren F, Du Y. Recent progress of Ni-based nanomaterials for the electrocatalytic oxygen evolution reaction at large current density. Dalton Trans 2024; 53:851-861. [PMID: 38054822 DOI: 10.1039/d3dt03636g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The precise design and development of high-performing oxygen evolution reaction (OER) for the production of industrial hydrogen gas through water electrolysis has been a widely studied topic. A profound understanding of the nature of electrocatalytic processes reveals that Ni-based catalysts are highly active toward OER that can stably operate at a high current density for a long period of time. Given the current gap between research and applications in industrial water electrolysis, we have completed a systematic review by constructively discussing the recent progress of Ni-based catalysts for electrocatalytic OER at a large current density, with special focus on the morphology and composition regulation of Ni-based electrocatalysts for achieving extraordinary OER performance. This review will facilitate future research toward rationally designing next-generation OER electrocatalysts that can meet industrial demands, thereby promoting new sustainable solutions for energy shortage and environment issues.
Collapse
Affiliation(s)
- Cheng Wang
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, P. R. China.
| | - Zhenghao Fei
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, P. R. China.
| | - Yanqing Wang
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, P. R. China.
| | - Fangfang Ren
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, P. R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
49
|
Chai Y, Chen S, Chen Y, Wei F, Cao L, Lin J, Li L, Liu X, Lin S, Wang X, Zhang T. Dual-Atom Catalyst with N-Colligated Zn 1Co 1 Species as Dominant Active Sites for Propane Dehydrogenation. J Am Chem Soc 2024; 146:263-273. [PMID: 38109718 DOI: 10.1021/jacs.3c08616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Dual-atom catalysts (DACs) with paired active sites can provide unique intrinsic properties for heterogeneous catalysis, but the synergy of the active centers remains to be elucidated. Here, we develop a high-performance DAC with Zn1Co1 species anchored on nitrogen-doped carbon (Zn1Co1/NC) as the dominant active site for the propane dehydrogenation (PDH) reaction. It exhibits several times higher turnover frequency (TOF) of C3H8 conversion and enhanced C3H6 selectivity compared to Zn1/NC or Co1/NC with only a single-atom site. Various experimental and theoretical studies suggest that the enhanced PDH performance stems from the promoted activation of the C-H bond of C3H8 triggered by the electronic interaction between Zn1 and Co1 colligated by N species. Moreover, the dynamic sinking of the Zn1 site and rising of the Co1 site, together with the steric effect of the dissociated H species at the bridged N during the PDH reaction, provides a feasible channel for C3H6 desorption through the more exposed Co1 site, thereby boosting the selectivity. This work provides a promising strategy for designing robust hetero DACs to simultaneously increase activity and selectivity in the PDH reaction.
Collapse
Affiliation(s)
- Yicong Chai
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunhua Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yang Chen
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fenfei Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Liru Cao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
50
|
Liang M, Shao X, Lee H. Recent Developments of Dual Single-Atom Catalysts for Nitrogen Reduction Reaction. Chemistry 2024; 30:e202302843. [PMID: 37768323 DOI: 10.1002/chem.202302843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Ammonia is vital for fertilizer production, hydrogen storage, and alternative fuels. The conventional Haber-Bosch process for ammonia production is energy-intensive and environmentally harmful. Designing environmentally friendly and low-energy consumption strategies for electrocatalytic N2 reduction reaction (ENRR) in mild conditions is meaningful. Single-atom catalysts (SACs) have been studied extensively for NRR due to their high atomic utilization and unique electronic structure but are limited by their poor faradic efficiency and low ammonia formation yield. Dual single-atom catalysts (DSACs) have recently emerged as a promising solution for the effective activation of molecular N2 , providing diverse active sites and synergistic interactions between adjacent atoms. In this review, we summarize the latest advances in metal DSACs for electrochemical ENRR based on both theoretical calculations and experimental studies, including aspects such as their variety, coordination, support, N2 adsorption and activity mechanisms, the characterization of NRR and electrochemical cell Configuration. We also address challenges and prospects in this rapidly evolving field, providing a comprehensive overview of DSACs for ENRR.
Collapse
Affiliation(s)
- Mengfang Liang
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Korea
| | - Xiaodong Shao
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Korea
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Korea
- Creative Research Institute, Sungkyunkwan University, 16419, Suwon, Korea
- Institute for Quantum Biophysics (IQB), Sungkyunkwan University, 16419, Suwon, Korea
| |
Collapse
|