1
|
Juodėnas M, Khinevich N, Klyvis G, Henzie J, Tamulevičius T, Tamulevičius S. Lasing in an assembled array of silver nanocubes. NANOSCALE HORIZONS 2024. [PMID: 39470004 DOI: 10.1039/d4nh00263f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We demonstrate a surface lattice resonance (SLR)-based plasmonic nanolaser that leverages bulk production of colloidal nanoparticles and assembly on templates with single particle resolution. SLRs emerge from the hybridization of the plasmonic and photonic modes when nanoparticles are arranged into periodic arrays and this can provide feedback for stimulated emission. It has been shown that perfect arrays are not a strict prerequisite for producing lasing. Here, we propose using high-quality colloids instead. Silver colloidal nanocubes feature excellent plasmonic properties due to their single-crystal nature and low facet roughness. We use capillarity-assisted nanoparticle assembly to produce substrates featuring SLR and comprising single nanocubes. Combined with the laser dye pyrromethene-597, the nanocube array lases at 574 nm with <1.2 nm linewidth, <100 μJ cm-2 lasing threshold, and produces a beam with <1 mrad divergence, despite less-than-perfect arrangement. Such plasmonic nanolasers can be produced on a large-scale and integrated in point-of-care diagnostics, photonic integrated circuits, and optical communications applications.
Collapse
Affiliation(s)
- Mindaugas Juodėnas
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51432, Lithuania.
| | - Nadzeya Khinevich
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51432, Lithuania.
| | - Gvidas Klyvis
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51432, Lithuania.
| | - Joel Henzie
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tomas Tamulevičius
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51432, Lithuania.
| | - Sigitas Tamulevičius
- Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51432, Lithuania.
| |
Collapse
|
2
|
Mou N, Tang B, Han B, Yu J, Zhang D, Bai Z, Zhong M, Xie B, Zhang Z, Deng S, Rogach AL, Hu J, Guan J. Large-Area Perovskite Nanocrystal Metasurfaces for Direction-Tunable Lasing. NANO LETTERS 2024; 24:12676-12683. [PMID: 39321410 DOI: 10.1021/acs.nanolett.4c03921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Perovskite nanocrystals (PNCs) are attractive emissive materials for developing compact lasers. However, manipulation of PNC laser directionality has been difficult, which limits their usage in photonic devices that require on-demand tunability. Here we demonstrate PNC metasurface lasers with engineered emission angles. We fabricated millimeter-scale CsPbBr3 PNC metasurfaces using an all-solution-processing technique based on soft nanoimprinting lithography. By designing band-edge photonic modes at the high-symmetry X point of the reciprocal lattice, we achieved four linearly polarized lasing beams along a polar angle of ∼30° under optical pumping. The device architecture further allows tuning of the lasing emission angles to 0° and ∼50°, respectively, by adjusting the PNC thickness to shift other high-symmetry points (Γ and M) to the PNC emission wavelength range. Our laser design strategies offer prospects for applications in directional optical antennas and detectors, 3D laser projection displays, and multichannel visible light communication.
Collapse
Affiliation(s)
- Nanli Mou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Bing Tang
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, P. R. China
| | - Bowen Han
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Jingyue Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Delin Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Zichun Bai
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Mou Zhong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Biye Xie
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Zhaoyu Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Shikai Deng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, P. R. China
- International Research Center, Harbin Engineering University (Qingdao Branch), Qingdao 266555, P. R. China
| | - Jingtian Hu
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| | - Jun Guan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
3
|
Zou Y, Zhou S, Li J, Chen S, Chen Z. A Mid-Infrared Perfect Metasurface Absorber with Tri-Band Broadband Scalability. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1316. [PMID: 39120421 PMCID: PMC11314523 DOI: 10.3390/nano14151316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Metasurfaces have emerged as a unique group of two-dimensional ultra-compact subwavelength devices for perfect wave absorption due to their exceptional capabilities of light modulation. Nonetheless, achieving high absorption, particularly with multi-band broadband scalability for specialized scenarios, remains a challenge. As an example, the presence of atmospheric windows, as dictated by special gas molecules in different infrared regions, highly demands such scalable modulation abilities for multi-band absorption and filtration. Herein, by leveraging the hybrid effect of Fabry-Perot resonance, magnetic dipole resonance and electric dipole resonance, we achieved multi-broadband absorptivity in three prominent infrared atmospheric windows concurrently, with an average absorptivity of 87.6% in the short-wave infrared region (1.4-1.7 μm), 92.7% in the mid-wave infrared region (3.2-5 μm) and 92.4% in the long-wave infrared region (8-13 μm), respectively. The well-confirmed absorption spectra along with its adaptation to varied incident angles and polarization angles of radiations reveal great potential for fields like infrared imaging, photodetection and communication.
Collapse
Affiliation(s)
| | | | | | | | - Zhijian Chen
- The School of Microelectronics, South China University of Technology, Guangzhou 511442, China; (Y.Z.); (S.Z.); (J.L.); (S.C.)
| |
Collapse
|
4
|
Cecconello A, Cencini A, Rilievo G, Tonolo F, Litti L, Vianello F, Willner I, Magro M. Chiroplasmonic DNA Scaffolded "Fusilli" Structures. NANO LETTERS 2024; 24:5944-5951. [PMID: 38588536 DOI: 10.1021/acs.nanolett.3c04943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
DNA is an ideal template for the design of nanoarchitectures with molecular-like features. Here, we present an optimized assembly strategy for the concatenation of DNA quasi-rings into long scaffolds. Ionic strength, which played a major role during self-assembly, produced the expected high quality only at 15 mM MgCl2. Atomic force microscopy (AFM) characterization showed several micrometer long tubular structures that were used as templates for the positioning of plasmonic nanoparticles (NPs) along a three-dimensional helical path using DNA tethers. As imaged by high-resolution scanning transmission electron microscopy (HR-STEM) and modeled by theoretical calculations, the NPs distributed into a "fusilli" fashion (i.e., a helical pasta shape), displaying chiroptical activity as revealed by a bisignated CD absorption, centered at the plasmon resonance wavelength. The present structures contribute to enrich the ever-developing arena of chiroplasmonic DNA-based nanomaterials and demonstrate that large assemblies are attainable for their future application to develop metamaterials.
Collapse
Affiliation(s)
- Alessandro Cecconello
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Aura Cencini
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Graziano Rilievo
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Federica Tonolo
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Lucio Litti
- Department of Chemical Sciences, University of Padova, via marzolo 1, 35131 Padova, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| |
Collapse
|
5
|
Tan MJH, Patel SK, Chiu J, Zheng ZT, Odom TW. Liquid lasing from solutions of ligand-engineered semiconductor nanocrystals. J Chem Phys 2024; 160:154703. [PMID: 38624126 DOI: 10.1063/5.0201731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
Semiconductor nanocrystals (NCs) can function as efficient gain materials with chemical versatility because of their surface ligands. Because the properties of NCs in solution are sensitive to ligand-environment interactions, local chemical changes can result in changes in the optical response. However, amplification of the optical response is technically challenging because of colloidal instability at NC concentrations needed for sufficient gain to overcome losses. This paper demonstrates liquid lasing from plasmonic lattice cavities integrated with ligand-engineered CdZnS/ZnS NCs dispersed in toluene and water. By taking advantage of calcium ion-induced aggregation of NCs in aqueous solutions, we show how lasing threshold can be used as a transduction signal for ion detection. Our work highlights how NC solutions and plasmonic lattices with open cavity architectures can serve as a biosensing platform for lab-on-chip devices.
Collapse
Affiliation(s)
- Max J H Tan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Shreya K Patel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Jessica Chiu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
6
|
Zhao G, Gao X, Zhou Y, Song M, Du Y, Li Z, Guan J, Cai Y, Ao X. Unidirectional Lasing from Mirror-Coupled Dielectric Lattices. NANO LETTERS 2024; 24:3378-3385. [PMID: 38456747 DOI: 10.1021/acs.nanolett.3c05038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
This paper reports how a hybrid system composed of transparent dielectric lattices over a metal mirror can produce high-quality lattice resonances for unidirectional lasing. The enhanced electromagnetic fields are concentrated in the cladding of the periodic dielectric structures and away from the metal. Based on a mirror-image model, we reveal that such high-quality lattice resonances are governed by bound states in the continuum resulting from destructive interference. Using hexagonal arrays of titanium dioxide nanoparticles on a silica-coated silver mirror, we observed lattice resonances with quality factors of up to 2750 in the visible regime. With the lattice resonances as optical feedback and dye solution as the gain medium, we demonstrated unidirectional lasing under optical pumping, where the array size was down to 100 μm × 100 μm. Our scheme can be extended to other spectral regimes to simultaneously achieve strongly enhanced surface fields and high quality factors.
Collapse
Affiliation(s)
- Guanyue Zhao
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xinyu Gao
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yufeng Zhou
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Mengyuan Song
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Yixuan Du
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Zhuang Li
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jun Guan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yangjian Cai
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
- Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan 250358, China
- Joint Research Center of Light Manipulation Science and Photonic Integrated Chip of East China Normal University and Shandong Normal University, East China Normal University, Shanghai 200241, China
| | - Xianyu Ao
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
- Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan 250358, China
- Joint Research Center of Light Manipulation Science and Photonic Integrated Chip of East China Normal University and Shandong Normal University, East China Normal University, Shanghai 200241, China
| |
Collapse
|
7
|
Zhang H, Liu Y, Dong Y, Ashokan A, Widmer-Cooper A, Köhler J, Mulvaney P. Electrophoretic Deposition of Single Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38299884 DOI: 10.1021/acs.langmuir.3c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The controlled assembly of colloid particles on a solid substrate has always been a major challenge in colloid and surface science. Here we provide an overview of electrophoretic deposition (EPD) of single charge-stabilized nanoparticles. We demonstrate that surface templated EPD (STEPD) assembly, which combines EPD with top-down nanofabrication, allows a wide range of nanoparticles to be built up into arbitrary structures with high speed, scalability, and excellent fidelity. We will also discuss some of the current colloid chemical limitations and challenges in STEPD assembly for sub-10 nm nanoparticles and for the fabrication of densely packed single particle arrays.
Collapse
Affiliation(s)
- Heyou Zhang
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
- Spectroscopy of soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| | - Yawei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
| | - Yue Dong
- Leibniz-Institut für Polymerforschung, 01069, Dresden, Germany
| | - Arun Ashokan
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jürgen Köhler
- Spectroscopy of soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
- Bayreuther Institut für Makromolekülforschung (BIMF), 95440 Bayreuth, Germany
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
8
|
Qi X, Pérez LA, Alonso MI, Mihi A. High Q-Factor Plasmonic Surface Lattice Resonances in Colloidal Nanoparticle Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1259-1267. [PMID: 38011896 PMCID: PMC10788823 DOI: 10.1021/acsami.3c08617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Surface lattice resonances (SLRs) sustained by ordered metal arrays are characterized by their narrow spectral features, remarkable quality factors, and the ability to tune their spectral properties based on the periodicity of the array. However, the majority of these structures are fabricated using classical lithographic processes or require postannealing steps at high temperatures to enhance the quality of the metal. These limitations hinder the widespread utilization of these periodic metal arrays in various applications. In this work, we use the scalable technique of template-assisted assembly of metal colloids to produce plasmonic supercrystals over centimeter areas capable of sustaining SLRs with high Q factors reaching up to 270. Our approach obviates the need for any postprocessing, offering a streamlined and efficient fabrication route. Furthermore, our method enables extensive tunability across the entire visible and near-infrared spectral ranges, empowering the design of tailored plasmonic resonant structures for a wide range of applications.
Collapse
Affiliation(s)
| | | | - Maria Isabel Alonso
- Institute of Materials Science
of Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| | - Agustín Mihi
- Institute of Materials Science
of Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
9
|
Freire-Fernández F, Reese T, Rhee D, Guan J, Li R, Schaller RD, Schatz GC, Odom TW. Quasi-Random Multimetallic Nanoparticle Arrays. ACS NANO 2023; 17:21905-21911. [PMID: 37870944 DOI: 10.1021/acsnano.3c08247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This paper describes a nanofabrication procedure that can generate multiscale substrates with quasi-random microregions of nanoparticle arrays having different periodicities and metals. We combine cycles of large-area nanoparticle array fabrication with solvent-assisted wrinkle lithography to mask and etch quasi-random areas of prefabricated nanoparticles to control the fill factors of the arrays. The approach is highly flexible, and parameters, including nanoparticle size and material, array geometry, and fill factor, can be tailored independently. Multimetallic nanoparticle arrays can support surface lattice resonances at fill factors as low as 20% and can function as nanoscale cavities for lasing action with as few as 10% of the nanoparticles in an array. We demonstrated that multimetallic nanoparticle substrates that combine two or three arrays with different periodicities can exhibit lasing responses over visible and near-infrared wavelengths. Our work showcases the robust optical responses of multimetallic and periodic devices for broadband light manipulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States of America
| | | | | |
Collapse
|
10
|
Zheng H, Bai Y, Zhang Q, Yu Y, Liu S. Multiple surface lattice resonances of overlapping nanoparticle arrays with different lattice spacing. OPTICS EXPRESS 2023; 31:35937-35947. [PMID: 38017754 DOI: 10.1364/oe.503748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/29/2023] [Indexed: 11/30/2023]
Abstract
Multiple surface lattice resonances generated with nanoparticle arrays are promising to enhance light-matter interactions at different spectral positions simultaneously, and it is important to tailor these resonances to desired frequencies for practical applications such as multi-modal nanolasing. To this end, this study proposes to generate multiple surface lattice resonances using overlapping nanoparticle arrays with different lattice spacing. Both full-wave numerical simulations and analytical coupled dipole approximation calculations reveal that for the overlapping structures composed with two different gold nanosphere arrays, both surface lattice resonances for the element structures are effectively excited. Considering that the optical responses are governed by the dipole-dipole interactions between the nanoparticles, it is interesting to find that the multiple surface lattice resonances are almost invariant by adjusting the relative shifts between the two arrays, which can be useful to tailor the high-quality factor resonances to desired spectral positions. In addition, due to the same reason, it is also shown that the multiple surface lattice resonances can be further finely tuned by selectively removing specific nanoparticles in the array. We anticipate that the tolerance to generate multiple surface lattice resonances and the flexible tunability make the overlapping nanoparticle arrays useful to design high performance linear and nonlinear nanophotonic devices.
Collapse
|
11
|
Han JH, Kim D, Kim J, Kim G, Fischer P, Jeong HH. Plasmonic Nanostructure Engineering with Shadow Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107917. [PMID: 35332960 DOI: 10.1002/adma.202107917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Physical shadow growth is a vacuum deposition technique that permits a wide variety of 3D-shaped nanoparticles and structures to be fabricated from a large library of materials. Recent advances in the control of the shadow effect at the nanoscale expand the scope of nanomaterials from spherical nanoparticles to complex 3D shaped hybrid nanoparticles and structures. In particular, plasmonically active nanomaterials can be engineered in their shape and material composition so that they exhibit unique physical and chemical properties. Here, the recent progress in the development of shadow growth techniques to realize hybrid plasmonic nanomaterials is discussed. The review describes how fabrication permits the material response to be engineered and highlights novel functions. Potential fields of application with a focus on photonic devices, biomedical, and chiral spectroscopic applications are discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
12
|
Guan J, Hu J, Wang Y, Tan MJH, Schatz GC, Odom TW. Far-field coupling between moiré photonic lattices. NATURE NANOTECHNOLOGY 2023; 18:514-520. [PMID: 36781995 DOI: 10.1038/s41565-023-01320-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/09/2023] [Indexed: 05/21/2023]
Abstract
Superposing two or more periodic structures to form moiré patterns is emerging as a promising platform to confine and manipulate light. However, moiré-facilitated interactions and phenomena have been constrained to the vicinity of moiré lattices. Here we report on the observation of ultralong-range coupling between photonic lattices in bilayer and multilayer moiré architectures mediated by dark surface lattice resonances in the vertical direction. We show that two-dimensional plasmonic nanoparticle lattices enable twist-angle-controlled directional lasing emission, even when the lattices are spatially separated by distances exceeding three orders of magnitude of lattice periodicity. Our discovery of far-field interlattice coupling opens the possibility of using the out-of-plane dimension for optical manipulation on the nanoscale and microscale.
Collapse
Affiliation(s)
- Jun Guan
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Jingtian Hu
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Yi Wang
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL, USA
| | - Max J H Tan
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL, USA
| | - Teri W Odom
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Graduate Program in Applied Physics, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
13
|
Chen W, Wang L, Liu R, Shen H, Du J, Fan F. Self-Assembled and Wavelength-Tunable Quantum Dot Whispering-Gallery-Mode Lasers for Backlight Displays. NANO LETTERS 2023; 23:437-443. [PMID: 36630612 DOI: 10.1021/acs.nanolett.2c03409] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Thanks to the narrow line width and high brightness, colloidal quantum dot (CQD) lasers show promising applications in next-generation displays. However, CQD laser-based displays have yet to be demonstrated because of two challenges in integrating red, green, and blue (RGB) lasers: absorption from red CQDs deteriorates the optical gain of blue and green CQDs, and imbalanced white spectra lack blue lasing due to the high lasing threshold of blue CQDs. Herein, we introduce a facile surfactant-free self-assembly method to assemble RGB CQDs into high-quality whispering-gallery-mode (WGM) RGB lasers with close lasing thresholds among them. Moreover, these RGB lasers can lase nearly independently even when they are closely integrated, and they can construct an ultrawide color space whose color gamut is 105% of that of the BT.2020 standard. These combined strategies allow us to demonstrate the first full-color liquid crystal displays using CQD lasers as the backlight source.
Collapse
Affiliation(s)
- Weiguo Chen
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, Chinese Academy of Sciences Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Lei Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Ruixiang Liu
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, Chinese Academy of Sciences Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Huaibin Shen
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Jiangfeng Du
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, Chinese Academy of Sciences Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Fengjia Fan
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, Chinese Academy of Sciences Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Jang J, Jeong M, Lee J, Kim S, Yun H, Rho J. Planar Optical Cavities Hybridized with Low-Dimensional Light-Emitting Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203889. [PMID: 35861661 DOI: 10.1002/adma.202203889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Low-dimensional light-emitting materials have been actively investigated due to their unprecedented optical and optoelectronic properties that are not observed in their bulk forms. However, the emission from low-dimensional light-emitting materials is generally weak and difficult to use in nanophotonic devices without being amplified and engineered by optical cavities. Along with studies on various planar optical cavities over the last decade, the physics of cavity-emitter interactions as well as various integration methods are investigated deeply. These integrations not only enhance the light-matter interaction of the emitters, but also provide opportunities for realizing nanophotonic devices based on the new physics allowed by low-dimensional emitters. In this review, the fundamentals, strengths and weaknesses of various planar optical resonators are first provided. Then, commonly used low-dimensional light-emitting materials such as 0D emitters (quantum dots and upconversion nanoparticles) and 2D emitters (transition-metal dichalcogenide and hexagonal boron nitride) are discussed. The integration of these emitters and cavities and the expect interplay between them are explained in the following chapters. Finally, a comprehensive discussion and outlook of nanoscale cavity-emitter integrated systems is provided.
Collapse
Affiliation(s)
- Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Minsu Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seokwoo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Huichang Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
| |
Collapse
|
15
|
Gai B, Guo J, Jin Y. Lattice relaxation effects on the collective resonance spectra of a finite dipole array. Phys Chem Chem Phys 2023; 25:10054-10062. [PMID: 36970935 DOI: 10.1039/d3cp00195d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Applying lattice parameter relaxation on a finite photonic crystal can adjust the smoothness of its surface lattice resonance spectral peak.
Collapse
Affiliation(s)
- Baodong Gai
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jingwei Guo
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yuqi Jin
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
16
|
Tan MJH, Park JE, Freire-Fernández F, Guan J, Juarez XG, Odom TW. Lasing Action from Quasi-Propagating Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203999. [PMID: 35734937 DOI: 10.1002/adma.202203999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Band edges at the high symmetry points in reciprocal space of periodic structures hold special interest in materials engineering for their high density of states. In optical metamaterials, standing waves found at these points have facilitated lasing, bound-states-in-the-continuum, and Bose-Einstein condensation. However, because high symmetry points by definition are localized, properties associated with them are limited to specific energies and wavevectors. Conversely, quasi-propagating modes along the high symmetry directions are predicted to enable similar phenomena over a continuum of energies and wavevectors. Here, quasi-propagating modes in 2D nanoparticle lattices are shown to support lasing action over a continuous range of wavelengths and symmetry-determined directions from a single device. Using lead halide perovskite nanocrystal films as gain materials, lasing is achieved from waveguide-surface lattice resonance (W-SLR) modes that can be decomposed into propagating waves along high symmetry directions, and standing waves in the orthogonal direction that provide optical feedback. The characteristics of the lasing beams are analyzed using an analytical 3D model that describes diffracted light in 2D lattices. Demonstrations of lasing across different wavelengths and lattice designs highlight how quasi-propagating modes offer possibilities to engineer chromatic multibeam emission important in hyperspectral 3D sensing, high-bandwidth Li-Fi communication, and laser projection displays.
Collapse
Affiliation(s)
- Max J H Tan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Jeong-Eun Park
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | | | - Jun Guan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Xitlali G Juarez
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Teri W Odom
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| |
Collapse
|
17
|
Guan J, Park JE, Deng S, Tan MJH, Hu J, Odom TW. Light-Matter Interactions in Hybrid Material Metasurfaces. Chem Rev 2022; 122:15177-15203. [PMID: 35762982 DOI: 10.1021/acs.chemrev.2c00011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This Review focuses on the integration of plasmonic and dielectric metasurfaces with emissive or stimuli-responsive materials for manipulating light-matter interactions at the nanoscale. Metasurfaces, engineered planar structures with rationally designed building blocks, can change the local phase and intensity of electromagnetic waves at the subwavelength unit level and offers more degrees of freedom to control the flow of light. A combination of metasurfaces and nanoscale emitters facilitates access to weak and strong coupling regimes for enhanced photoluminescence, nanoscale lasing, controlled quantum emission, and formation of exciton-polaritons. In addition to emissive materials, functional materials that respond to external stimuli can be combined with metasurfaces to engineer tunable nanophotonic devices. Emerging metasurface designs including surface-functionalized, chemically tunable, and multilayer hybrid metasurfaces open prospects for diverse applications, including photocatalysis, sensing, displays, and quantum information.
Collapse
|