1
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Torres-Cavanillas R, Gavara-Edo M, Coronado E. Bistable Spin-Crossover Nanoparticles for Molecular Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307718. [PMID: 37725707 DOI: 10.1002/adma.202307718] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Indexed: 09/21/2023]
Abstract
The field of spin-crossover complexes is rapidly evolving from the study of the spin transition phenomenon to its exploitation in molecular electronics. Such spin transition is gradual in a single-molecule, while in bulk it can be abrupt, showing sometimes thermal hysteresis and thus a memory effect. A convenient way to keep this bistability while reducing the size of the spin-crossover material is to process it as nanoparticles (NPs). Here, the most recent advances in the chemical design of these NPs and their integration into electronic devices, paying particular attention to optimizing the switching ratio are reviewed. Then, integrating spin-crossover NPs over 2D materials is focused to improve the endurance, performance, and detection of the spin state in these hybrid devices.
Collapse
Affiliation(s)
- Ramón Torres-Cavanillas
- Instituto de Ciencia Molecular, Universitat de València, Valencia, 46980, Spain
- Department of Materials, Oxford University, Oxford, OX2 6NN, UK
| | - Miguel Gavara-Edo
- Instituto de Ciencia Molecular, Universitat de València, Valencia, 46980, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular, Universitat de València, Valencia, 46980, Spain
| |
Collapse
|
3
|
Mba H, Picher M, Daro N, Marchivie M, Guionneau P, Chastanet G, Banhart F. Lattice Defects in Sub-Micrometer Spin-Crossover Crystals Studied by Electron Diffraction. J Phys Chem Lett 2023; 14:8100-8106. [PMID: 37657083 DOI: 10.1021/acs.jpclett.3c01942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Spin-crossover particles of [Fe(Htrz)2trz](BF4) with sizes of some hundred nanometers are studied by in situ electron microscopy. Despite their high radiation sensitivity, it was possible to analyze the particles by imaging and diffraction so that a detailed analysis of crystallographic defects in individual particles became possible. The presence of one or several tilt boundaries, where the tilt axis is the direction of the polymer chains, is detected in each particle. An in situ exposure of the particles to temperature variations or short laser pulses to induce the spin crossover shows that the defect structure only changes after a high number of transformations between the low-spin and high-spin phases. The observations are explained by the anisotropy of the atomic architecture within the crystals, which facilitates defects between weakly linked crystallographic planes.
Collapse
Affiliation(s)
- Hilaire Mba
- Institut de Physique et Chimie des Matériaux, UMR 7504, Université de Strasbourg, CNRS, 67034 Strasbourg, France
| | - Matthieu Picher
- Institut de Physique et Chimie des Matériaux, UMR 7504, Université de Strasbourg, CNRS, 67034 Strasbourg, France
| | - Nathalie Daro
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Mathieu Marchivie
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Philippe Guionneau
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Guillaume Chastanet
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, 33600 Pessac, France
| | - Florian Banhart
- Institut de Physique et Chimie des Matériaux, UMR 7504, Université de Strasbourg, CNRS, 67034 Strasbourg, France
| |
Collapse
|
4
|
Hu Y, Picher M, Palluel M, Daro N, Freysz E, Stoleriu L, Enachescu C, Chastanet G, Banhart F. Laser-Driven Transient Phase Oscillations in Individual Spin Crossover Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303701. [PMID: 37246252 DOI: 10.1002/smll.202303701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Indexed: 05/30/2023]
Abstract
An unusual expansion dynamics of individual spin crossover nanoparticles is studied by ultrafast transmission electron microscopy. After exposure to nanosecond laser pulses, the particles exhibit considerable length oscillations during and after their expansion. The vibration period of 50-100 ns is of the same order of magnitude as the time that the particles need for a transition from the low-spin to the high-spin state. The observations are explained in Monte Carlo calculations using a model where elastic and thermal coupling between the molecules within a crystalline spin crossover particle govern the phase transition between the two spin states. The experimentally observed length oscillations are in agreement with the calculations, and it is shown that the system undergoes repeated transitions between the two spin states until relaxation in the high-spin state occurs due to energy dissipation. Spin crossover particles are therefore a unique system where a resonant transition between two phases occurs in a phase transformation of first order.
Collapse
Affiliation(s)
- Yaowei Hu
- Institut de Physique et Chimie des Matériaux UMR 7504, Université de Strasbourg & CNRS, Strasbourg, 67034, France
| | - Matthieu Picher
- Institut de Physique et Chimie des Matériaux UMR 7504, Université de Strasbourg & CNRS, Strasbourg, 67034, France
| | - Marlène Palluel
- Université de Bordeaux, CNRS, Bordeaux INP (ICMCB-UMR 5026), Pessac, 33600, France
| | - Nathalie Daro
- Université de Bordeaux, CNRS, Bordeaux INP (ICMCB-UMR 5026), Pessac, 33600, France
| | - Eric Freysz
- Université de Bordeaux, CNRS UMR 5798, LOMA, Talence cedex, 33405, France
| | - Laurentiu Stoleriu
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, 700506, Romania
| | - Cristian Enachescu
- Faculty of Physics, Alexandru Ioan Cuza University, Iasi, 700506, Romania
| | - Guillaume Chastanet
- Université de Bordeaux, CNRS, Bordeaux INP (ICMCB-UMR 5026), Pessac, 33600, France
| | - Florian Banhart
- Institut de Physique et Chimie des Matériaux UMR 7504, Université de Strasbourg & CNRS, Strasbourg, 67034, France
| |
Collapse
|
5
|
Yazdani S, Phillips J, Ekanayaka TK, Cheng R, Dowben PA. The Influence of the Substrate on the Functionality of Spin Crossover Molecular Materials. Molecules 2023; 28:3735. [PMID: 37175145 PMCID: PMC10180229 DOI: 10.3390/molecules28093735] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Spin crossover complexes are a route toward designing molecular devices with a facile readout due to the change in conductance that accompanies the change in spin state. Because substrate effects are important for any molecular device, there are increased efforts to characterize the influence of the substrate on the spin state transition. Several classes of spin crossover molecules deposited on different types of surface, including metallic and non-metallic substrates, are comprehensively reviewed here. While some non-metallic substrates like graphite seem to be promising from experimental measurements, theoretical and experimental studies indicate that 2D semiconductor surfaces will have minimum interaction with spin crossover molecules. Most metallic substrates, such as Au and Cu, tend to suppress changes in spin state and affect the spin state switching process due to the interaction at the molecule-substrate interface that lock spin crossover molecules in a particular spin state or mixed spin state. Of course, the influence of the substrate on a spin crossover thin film depends on the molecular film thickness and perhaps the method used to deposit the molecular film.
Collapse
Affiliation(s)
- Saeed Yazdani
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.Y.); (J.P.)
| | - Jared Phillips
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.Y.); (J.P.)
| | - Thilini K. Ekanayaka
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska, Lincoln, NE 68588-0299, USA;
| | - Ruihua Cheng
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA; (S.Y.); (J.P.)
| | - Peter A. Dowben
- Department of Physics and Astronomy, Jorgensen Hall, University of Nebraska, Lincoln, NE 68588-0299, USA;
| |
Collapse
|
6
|
Lamichhane S, McElveen KA, Erickson A, Fescenko I, Sun S, Timalsina R, Guo Y, Liou SH, Lai RY, Laraoui A. Nitrogen-Vacancy Magnetometry of Individual Fe-Triazole Spin Crossover Nanorods. ACS NANO 2023; 17:8694-8704. [PMID: 37093121 DOI: 10.1021/acsnano.3c01819] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
[Fe(Htrz)2(trz)](BF4) (Fe-triazole) spin crossover molecules show thermal, electrical, and optical switching between high spin (HS) and low spin (LS) states, making them promising candidates for molecular spintronics. The LS and HS transitions originate from the electronic configurations of Fe(II) and are considered to be diamagnetic and paramagnetic, respectively. The Fe(II) LS state has six paired electrons in the ground states with no interaction with the magnetic field and a diamagnetic behavior is usually observed. While the bulk magnetic properties of Fe-triazole compounds are widely studied by standard magnetometry techniques, their magnetic properties at the individual level are missing. Here we use nitrogen vacancy (NV) based magnetometry to study the magnetic properties of the Fe-triazole LS state of nanoparticle clusters and individual nanorods of size varying from 20 to 1000 nm. Scanning electron microscopy (SEM) and Raman spectroscopy are performed to determine the size of the nanoparticles/nanorods and to confirm their respective spin states. The magnetic field patterns produced by the nanoparticles/nanorods are imaged by NV magnetic microscopy as a function of applied magnetic field (up to 350 mT) and correlated with SEM and Raman. We found that in most of the nanorods the LS state is slightly paramagnetic, possibly originating from the surface oxidation and/or the greater Fe(III) presence along the nanorods' edges. NV measurements on the Fe-triazole LS state nanoparticle clusters revealed both diamagnetic and paramagnetic behavior. Our results highlight the potential of NV quantum sensors to study the magnetic properties of spin crossover molecules and molecular magnets.
Collapse
Affiliation(s)
- Suvechhya Lamichhane
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 North 16th Street, Lincoln, Nebraska 68588, United States
| | - Kayleigh A McElveen
- Department of Chemistry, University of Nebraska-Lincoln, 639 N 12 Street, 651 Hamilton Hall, Lincoln, Nebraska 68588, United States
| | - Adam Erickson
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 North 16th Street, West Nebraska Hall 342, Lincoln, Nebraska 68588, United States
| | - Ilja Fescenko
- Laser Center, University of Latvia, Jelgavas St 3, Riga LV-1004, Latvia
| | - Shuo Sun
- Department of Chemistry, University of Nebraska-Lincoln, 639 N 12 Street, 651 Hamilton Hall, Lincoln, Nebraska 68588, United States
| | - Rupak Timalsina
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 North 16th Street, West Nebraska Hall 342, Lincoln, Nebraska 68588, United States
| | - Yinsheng Guo
- Department of Chemistry, University of Nebraska-Lincoln, 639 N 12 Street, 651 Hamilton Hall, Lincoln, Nebraska 68588, United States
| | - Sy-Hwang Liou
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 North 16th Street, Lincoln, Nebraska 68588, United States
| | - Rebecca Y Lai
- Department of Chemistry, University of Nebraska-Lincoln, 639 N 12 Street, 651 Hamilton Hall, Lincoln, Nebraska 68588, United States
| | - Abdelghani Laraoui
- Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, 855 North 16th Street, Lincoln, Nebraska 68588, United States
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, 900 North 16th Street, West Nebraska Hall 342, Lincoln, Nebraska 68588, United States
| |
Collapse
|
7
|
Sanchis-Gual R, Coronado-Puchau M, Mallah T, Coronado E. Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Picher M, Sinha SK, LaGrange T, Banhart F. Analytics at the nanometer and nanosecond scales by short electron pulses in an electron microscope. CHEMTEXTS 2022. [DOI: 10.1007/s40828-022-00169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Molecular memory near room temperature in an iron polyanionic complex. Chem 2022. [DOI: 10.1016/j.chempr.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Dynamics of Spin Crossover Molecular Complexes. NANOMATERIALS 2022; 12:nano12101742. [PMID: 35630963 PMCID: PMC9144206 DOI: 10.3390/nano12101742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
We review the current understanding of the time scale and mechanisms associated with the change in spin state in transition metal-based spin crossover (SCO) molecular complexes. Most time resolved experiments, performed by optical techniques, rely on the intrinsic light-induced switching properties of this class of materials. The optically driven spin state transition can be mediated by a rich interplay of complexities including intermediate states in the spin state transition process, as well as intermolecular interactions, temperature, and strain. We emphasize here that the size reduction down to the nanoscale is essential for designing SCO systems that switch quickly as well as possibly retaining the memory of the light-driven state. We argue that SCO nano-sized systems are the key to device applications where the “write” speed is an important criterion.
Collapse
|
11
|
Thiet Vu T, Daro N, Marchivie M, Mornet S, Freysz E, Chastanet G. Rational Direct Synthesis of RbMnFe Nanoparticles (RbMnFe = Rb xMn[Fe(CN) 6] (2+x)/3· nH 2O Prussian Blue Analogue). Inorg Chem 2022; 61:2945-2953. [PMID: 35119281 DOI: 10.1021/acs.inorgchem.1c03826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we report the chemical strategy followed to obtain, in a direct way, nanoparticles of the RbxMn[Fe(CN)6](x+2)/3·nH2O (RbMnFe) Prussian blue analogue with the aim of keeping the switching ability of this compound at the nanoscale. The switching properties come from a reversible electron transfer between the iron and manganese ions and depends on the rubidium content in the structure that has to be higher than 0.6. Despite the multifunctionality of this family of compounds and its interest in various applications, no systematic studies were performed to obtain well-defined nanoparticles. This paper relates to such an investigation. To draw relationship between size reduction, composition, and switching properties, a special attention was brought to the determination of the composition through elemental analysis and structure refinement of powder X-ray diffraction patterns together with infrared spectroscopy and elemental analysis. Several chemical parameters were explored to control both the size reduction and the composition following a direct synthetic approach. The results show that the smaller the particles, the lower the rubidium content. This observation might prevent the observation of switching properties on very small particles. Despite this antagonist effect, we achieved switchable particles of around 200 nm without any use of surfactant. Moreover, the size reduction is associated with the observation of the electron transfer down to 52% of rubidium in the nanoparticles against 64% in microparticles. This work is of particular interest in processing such nanoparticles into devices.
Collapse
Affiliation(s)
- Thi Thiet Vu
- University of Bordeaux, CNRS, Bordeaux-INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Nathalie Daro
- University of Bordeaux, CNRS, Bordeaux-INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Mathieu Marchivie
- University of Bordeaux, CNRS, Bordeaux-INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Stéphane Mornet
- University of Bordeaux, CNRS, Bordeaux-INP, ICMCB, UMR 5026, F-33600 Pessac, France
| | - Eric Freysz
- University of Bordeaux, CNRS, UMR 5798, LOMA, F-33405 Talence Cedex, France
| | - Guillaume Chastanet
- University of Bordeaux, CNRS, Bordeaux-INP, ICMCB, UMR 5026, F-33600 Pessac, France
| |
Collapse
|
12
|
Ridier K, Nicolazzi W, Salmon L, Molnár G, Bousseksou A. Sequential Activation of Molecular and Macroscopic Spin-State Switching within the Hysteretic Region Following Pulsed Light Excitation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105468. [PMID: 34817094 DOI: 10.1002/adma.202105468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Molecular spin-crossover (SCO) compounds constitute a promising class of photoactive materials exhibiting efficient photoinduced phase transitions (PIPTs). Taking advantage of the unique, picture-perfect reproducibility of the spin-transition properties in the compound [Fe(HB(1,2,4-triazol-1-yl)3 )2 ], the spatiotemporal dynamics of the PIPT within the thermodynamic metastability (hysteretic) region of a single crystal is dissected, using pump-probe optical microscopy. Beyond a threshold laser-excitation density, complete PIPTs are evidenced, with conversion rates up to 200 switched molecules per absorbed photon. It is shown that the PIPT takes place through the sequential activation of two (molecular and macroscopic) switching mechanisms, occurring on sub-microsecond and millisecond timescales, governed by the intramolecular and free energy barriers of the system, respectively. The main finding here is that the thermodynamic metastability has strictly no influence on the sub-millisecond switching dynamics. Indeed, before this millisecond timescale, the response of the crystal to the laser excitation involves a gradual, molecular conversion process, as if there were no hysteresis loop. Consequently, in this regime, even a 100% photoinduced conversion may not give rise to a PIPT. These results provide new insight on the intrinsic dynamical limits of the PIPT, which is an important issue from a technological perspective.
Collapse
Affiliation(s)
- Karl Ridier
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| | - William Nicolazzi
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| | - Lionel Salmon
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| | - Gábor Molnár
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| | - Azzedine Bousseksou
- Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse, Toulouse, 31077, France
| |
Collapse
|