1
|
Li J, Liu C, Han X, Tian M, Jiang B, Li W, Ou C, Dou N, Han Z, Ji T, Cao X, Zhong X, Zhang L. Supramolecular Electronics: Monolayer Assembly of Nonamphiphilic Molecules via Water Surface-Assisted Molecular Deposition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48438-48447. [PMID: 39109880 DOI: 10.1021/acsami.4c05552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Utilizing softly confined self-assembly at the water surface represents a promising approach for the fabrication of two-dimensional molecular monolayers (2D MMs), which have predominantly been concentrated on amphiphilic organic compounds before. Herein, we introduce a straightforward method termed "water surface-assisted molecular deposition (WSAMD)" to organize nonamphiphilic molecules into dense monolayers with high reproducibility. To underscore the versatility and merit of this methodology in the field of supramolecular electronics, we have successfully fabricated a range of defect-free, uniform semiconducting polymer monolayers, featuring a thickness reflective of molecular architectures. The charge carrier mobility could reach 0.05 cm2 V-1 s-1 for holes and 3.5 × 10-4 cm2 V-1 s-1 for electrons, respectively, in p-type and n-type polymeric monolayers when tested as the active layer in field-effect transistors. Furthermore, in situ polymerization reactions can be exploited to generate conductive monolayers of macromolecules such as polybenzylaniline (PBnANI) and polypyrrole (PPy), where PBnANI monolayers exhibit channel length-dependent conductivity, up to 0.37 S cm-1. The advent of the WSAMD method heralds a significant leap forward in the advancement of molecular 2D materials, catalyzing new avenues of exploration within material chemistry.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chuanhui Liu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiao Han
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Menghan Tian
- School of Physics, Beihang University, Beijing 100191, China
| | - Baichuan Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wenbin Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Cailing Ou
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Nannan Dou
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zixiao Han
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tingyu Ji
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaoru Cao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaolan Zhong
- School of Physics, Beihang University, Beijing 100191, China
| | - Lei Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
2
|
Sheng Q, Peng B, Ji C, Li H. Enhancing the Uniformity of Organic Field-Effect Transistors by a Single-Crystalline Layer-Controlled Active Channel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304736. [PMID: 37494287 DOI: 10.1002/adma.202304736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Despite remarkable improvement in the mobility of the organic field-effect transistors (OFETs) being achieved in past decades, the uniformity in electrical performance remains ambiguous, impeding their implantation in organic integrated circuits. The coefficient of variance (CV) in mobility of reported OFETs is typically larger than 8%, which is not adequate for building medium-to-large scale integrated circuits. In this work, it is shown that utilizing single-domain molecular monolayer crystals as the active channel can largely enhance the uniformity of OFETs. Benefiting from the sole molecular layer with long-range ordering, the OFETs exhibit uniformities in both channel transport and charge injection, thereby giving rise to a high average mobility of 11.64 cm2 V-1 s-1 and CV of only 2.57%. Statistical transmission length method evaluation is conducted, covering channel length from 3 to 21 µm, channel width from 90 to 170 µm, and a total OFET number of 370. The low contact resistance of 79.00 ± 7.00 Ω cm and high intrinsic mobility of 12.36 ± 0.45 cm2 V-1 s-1 are acquired with very high accuracy and reliability. As such, this work provides a practical way to enhance the uniformity of OFETs by a single-crystalline layer-controlled active channel toward their applications in integrated circuits.
Collapse
Affiliation(s)
- Qiuyue Sheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Boyu Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chong Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
3
|
Gong H, Lin J, Sun H. Nanocrystal Array Engineering and Optoelectronic Applications of Organic Small-Molecule Semiconductors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2087. [PMID: 37513098 PMCID: PMC10386679 DOI: 10.3390/nano13142087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Organic small-molecule semiconductor materials have attracted extensive attention because of their excellent properties. Due to the randomness of crystal orientation and growth location, however, the preparation of continuous and highly ordered organic small-molecule semiconductor nanocrystal arrays still face more challenges. Compared to organic macromolecules, organic small molecules exhibit better crystallinity, and therefore, they exhibit better semiconductor performance. The formation of organic small-molecule crystals relies heavily on weak interactions such as hydrogen bonds, van der Waals forces, and π-π interactions, which are very sensitive to external stimuli such as mechanical forces, high temperatures, and organic solvents. Therefore, nanocrystal array engineering is more flexible than that of the inorganic materials. In addition, nanocrystal array engineering is a key step towards practical application. To resolve this problem, many conventional nanocrystal array preparation methods have been developed, such as spin coating, etc. In this review, the typical and recent progress of nanocrystal array engineering are summarized. It is the typical and recent innovations that the array of nanocrystal array engineering can be patterned on the substrate through top-down, bottom-up, self-assembly, and crystallization methods, and it can also be patterned by constructing a series of microscopic structures. Finally, various multifunctional and emerging applications based on organic small-molecule semiconductor nanocrystal arrays are introduced.
Collapse
Affiliation(s)
- Haoyu Gong
- Key Laboratory of Flexible Electronics (KLoFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLoFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Huibin Sun
- Key Laboratory of Flexible Electronics (KLoFE), Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
4
|
Affiliation(s)
- Jie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, Tianjin 300072, China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Zhao X, Zhang H, Zhang J, Liu J, Lei M, Jiang L. Organic Semiconductor Single Crystal Arrays: Preparation and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300483. [PMID: 36967565 DOI: 10.1002/advs.202300483] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Indexed: 05/27/2023]
Abstract
The study of organic semiconductor single crystal (OSSC) arrays has recently attracted considerable interest given their potential applications in flexible displays, smart wearable devices, biochemical sensors, etc. Patterning of OSSCs is the prerequisite for the realization of organic integrated circuits. Patterned OSSCs can not only decrease the crosstalk between adjacent organic field-effect transistors (OFETs), but also can be conveniently integrated with other device elements which facilitate circuits application. Tremendous efforts have been devoted in the controllable preparation of OSSC arrays, and great progress has been achieved. In this review, the general strategies for patterning OSSCs are summarized, along with the discussion of the advantages and limitations of different patterning methods. Given the identical thickness of monolayer molecular crystals (MMCs) which is beneficial to achieve super uniformity of OSSC arrays and devices, patterning of MMCs is also emphasized. Then, OFET performance is summarized with comparison of the mobility and coefficient of variation based on the OSSC arrays prepared by different methods. Furthermore, advances of OSSC array-based circuits and flexible devices of different functions are highlighted. Finally, the challenges that need to be tackled in the future are presented.
Collapse
Affiliation(s)
- Xiaotong Zhao
- State Key Laboratory of Information Photonics and Optical Communications & School of Integrated Circuits, Beijing University of Posts and Telecommunications, Beijing, 100876, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hantang Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, China
| | - Jing Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan, 031000, China
| | - Jie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ming Lei
- State Key Laboratory of Information Photonics and Optical Communications & School of Integrated Circuits, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
6
|
Zou D, He Z, Chen M, Yan L, Guo Y, Gao G, Li C, Piao Y, Cheng X, Chan PKL. Dry Lithography Patterning of Monolayer Flexible Field Effect Transistors by 2D Mica Stamping. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211600. [PMID: 36841244 DOI: 10.1002/adma.202211600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Indexed: 05/19/2023]
Abstract
Organic field-effect transistors (OFETs) based on 2D monolayer organic semiconductors (OSC) have demonstrated promising potentials for various applications, such as light emitting diode (LED) display drivers, logic circuits, and wearable electrocardiography (ECG) sensors. To date, the fabrications of this class of highly crystallized 2D organic semiconductors (OSC) are dominated by solution shearing. As these organic active layers are only a few molecular layers thick, their compatibilities with conventional thermal evaporated top electrodes or sophisticated photolithography patterning are very limited, which also restricts their device density. Here, an electrode transfer stamp and a semiconductor patterning stamp are developed to fabricate OFETs with channel lengths down to 3 µm over a large area without using any chemicals or causing any damage to the active layer. 2D 2,9-didecyldinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (C10 -DNTT) monolayer OFETs developed by this new approach shows decent performance properties with a low threshold voltage (VTH ) less than 0.5 V, intrinsic mobility higher than 10 cm2 V-1 s-1 and a subthreshold swing (SS) less than 100 mV dec-1 . The proposed patterning approach is completely comparable with ultraflexible parylene substrate less than 2 µm thick. By further reducing the channel length down to 2 µm and using the monolayer OFET in an AC/DC rectifying circuit, the measured cutoff frequency is up to 17.3 MHz with an input voltage of 4 V. The newly proposed electrode transfer and patterning stamps have addressed the long-lasting compatibility problem of depositing electrodes onto 2D organic monolayer and the semiconductor patterning. It opens a new path to reduce the fabrication cost and simplify the manufacturing process of high-density OFETs for more advanced electronic or biomedical applications.
Collapse
Affiliation(s)
- Deng Zou
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong, P. R. China
| | - Zhenfei He
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ming Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Lizhi Yan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yifan Guo
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Guoyun Gao
- Department of Electrical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Can Li
- Department of Electrical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yingzhe Piao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xing Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Paddy K L Chan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong, P. R. China
| |
Collapse
|
7
|
Lv Q, Zheng M, Wang XD, Liao LS. Low-Dimensional Organic Crystals: From Precise Synthesis to Advanced Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203961. [PMID: 36057992 DOI: 10.1002/smll.202203961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Low-dimensional organic crystals (LOCs) have attracted increasing attention recently for their potential applications in miniaturized optoelectronics and integrated photonics. Such applications are possible owing to their tunable physicochemical properties and excellent charge/photon transport features. As a result, the precise synthesis of LOCs has been examined in terms of morphology modulation, large-area pattern arrays, and complex architectures, and this has led to a series of appealing structure-dependent properties for future optoelectronic applications. This review summarizes the recent advances in the precise synthesis of LOCs in addition to discussing their structure-property relationships in the context of optoelectronic applications. It also presents the current challenges related to organic crystals with specific structures and desired performances, and the outlook regarding their use in next-generation integrated optoelectronic applications.
Collapse
Affiliation(s)
- Qiang Lv
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Min Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
8
|
Wu Z, Yan Y, Zhao Y, Liu Y. Recent Advances in Realizing Highly Aligned Organic Semiconductors by Solution-Processing Approaches. SMALL METHODS 2022; 6:e2200752. [PMID: 35793415 DOI: 10.1002/smtd.202200752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Solution-processing approaches are widely used for controlling the aggregation structure of organic semiconductors because they are fast, efficient, and have strong practicability. Effective regulation of the aggregation structure of molecules to achieve highly ordered molecular stacking is key to realizing effective carrier transport and high-performance devices. Numerous studies have achieved highly aligned organic semiconductors using different solution-processing approaches. This article provides a detailed review of the prevalent solution-processing technologies and emerging methods developed over the past few years for the alignment of organic semiconducting materials. These technologies and methods are classified according to the processing principle. This review focuses on the principles of different experimental techniques, improvements upon the conventional methods, and state-of-the-art performance of resulting devices. In addition, a brief discussion of the characteristics and development prospects of various methods is presented.
Collapse
Affiliation(s)
- Zeng Wu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongkun Yan
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
9
|
Zhang H, Liu J, Jiang L. Photocatalytic hydrogen evolution based on carbon nitride and organic semiconductors. NANOTECHNOLOGY 2022; 33:322001. [PMID: 35447618 DOI: 10.1088/1361-6528/ac68f6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic hydrogen evolution (PHE) presents a promising way to solve the global energy crisis. Metal-free carbon nitride (CN) and organic semiconductors photocatalysts have drawn intense interests due to their fascinating properties such as tunable molecular structure, electronic states, strong visible-light absorption, low-cost etc. In this paper, the recent progresses of photocatalytic hydrogen production based on organic photocatalysts, including CN, linear polymers, conjugated porous polymers and small molecules, are reviewed, with emphasis on the various strategies to improve PHE efficiency. Finally, the possible future research trends in the organic photocatalysts are prospected.
Collapse
Affiliation(s)
- Hantang Zhang
- College of Chemistry and Material Science, Shandong Agriculture University, Taian 271000, People's Republic of China
| | - Jie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, People's Republic of China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, People's Republic of China
| |
Collapse
|
10
|
Abstract
Si-based complementary metal-oxide-semiconductor (CMOS) transistors for logic computing have represented the most essential foundation of digital electronic technologies for decades toward the modern information era. The continuous scaling down of the transistor feature size has promoted significant improvements in the computing performance while gradually tending to its limit. Ubiquitous intelligent technologies have quickly penetrated daily life, yielding a tremendous increase in highly data-centric computing applications. Hence, emerging logic devices extending and even transcending the existing CMOS technology are urgently needed to meet the rapidly growing demand for information processing capability, involving revolutionary innovations from material science and architecture design to device applications. This thus gives us the opportunity to realize logic devices for state-of-the-art computing that are fundamentally far beyond the current devices. In this Perspective, we discuss the recent innovative design strategies of emerging logic devices along with the opportunities and challenges, providing a promising avenue toward high-performance and diversiform logic computing in the post-Moore era.
Collapse
Affiliation(s)
- Ziqian Hao
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Yang Yan
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Yi Shi
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Yun Li
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|