1
|
Lang Y, Lai H, Fu Y, Ma R, Fong PWK, Li H, Liu K, Yang X, Lu X, Yang T, Li G, He F. Balanced Miscibility and Crystallinity by 2D Acceptors Enabled Halogen-Free Solvent-Processed Organic Solar Cells to Achieve 19.28% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413270. [PMID: 39558807 DOI: 10.1002/adma.202413270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Indexed: 11/20/2024]
Abstract
Two highly crystalline 2D acceptors, ATIC-C11 and ATIC-BO, with acenaphthene-expanded quinoxaline central cores, have been demonstrated with very different characteristics in ternary organic solar cells (OSCs). The difference in side chains induces their distinctive molecular packing mode and unique crystal structure, in which ATIC-C11 displays a 3D structure with an elliptical framework, and ATIC-BO gives a rectangular framework. Their high crystallinity contributes to organized molecular packing in ternary devices, thus low energetic disorder and suppressed energy loss. Through the analysis of morphology and carrier kinetics, it is found that ATIC-BO's strong self-aggregation and immiscibility induce large aggregates and severely impede charge transfer (CT) and dissociation. Conversely, ATIC-C11's suitable crystallinity and compatibility positively regulate the crystalline kinetics during film formation, thus forming much-ordered molecular packing and favorable phase separation size in blend films. As a result, ATIC-C11-based ternary devices achieve a high efficiency of 19.28% with potential in scalability and stability, which is the top-ranking efficiency among nonhalogenated solvent-processed OSCs. This work not only displays highly efficient and stable halogen-free solvent-processed organic photovoltaics (OPVs), but also offers a new thought for material design and selection rule on the third component in highly efficient ternary OSCs.
Collapse
Affiliation(s)
- Yongwen Lang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- The Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuang Fu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Ruijie Ma
- The Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Patrick W K Fong
- The Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kuan Liu
- The Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xuechun Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Tiangang Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gang Li
- The Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Zhang C, Wang H, Sun X, Zhong X, Wei Y, Xu R, Wang K, Hu H, Xiao M. An Indacenodithienothiophene-Based Wide Bandgap Small Molecule Guest for Efficient and Stable Ternary Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400826. [PMID: 38634190 DOI: 10.1002/smll.202400826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Indexed: 04/19/2024]
Abstract
The strategic and logical development of the third component (guest materials) plays a pivotal and intricate role in improving the efficiency and stability of ternary organic solar cells (OSCs). In this study, a novel guest material with a wide bandgap, named IDTR, is designed, synthesized, and incorporated as the third component. IDTR exhibits complementary absorption characteristics and cascade band alignment with the PM6:Y6 binary system. Morphological analysis reveals that the introduction of IDTR results in strong crystallinity, good miscibility, and proper vertical phase distribution, thereby realizing heightened and balanced charge transport behavior. Remarkably, the novel ternary OSCs have exhibited a significant enhancement in photovoltaic performance. Consequently, open-circuit voltage (VOC), short-circuit current (JSC), and fill factor (FF) have all witnessed substantial improvements with a remarkable power conversion efficiency (PCE) of 18.94% when L8-BO replaced Y6. Beyond the pronounced improvement in photovoltaic performance, superior device stability with a T80 approaching 400 h is successfully achieved. This achievement is attributed to the synergistic interplay of IDTR, providing robust support for the overall enhancement of performance. These findings offer crucial guidance and reference for the design and development of efficient and stable OSCs.
Collapse
Affiliation(s)
- Chenyang Zhang
- College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao, Shangdong, 266000, P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen, 518055, P. R. China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Han Wang
- School of Management, Xián Polytechnic University, Xián, 710048, P. R. China
| | - Xiaokang Sun
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen, 518055, P. R. China
| | - Xiuzun Zhong
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Yulin Wei
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Ruida Xu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Kai Wang
- College of Materials Science and Engineering, Qingdao University, 308 Ningxia Road, Qingdao, Shangdong, 266000, P. R. China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen, 518055, P. R. China
| | - Mingjia Xiao
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, P. R. China
| |
Collapse
|
3
|
Lee JW, Park JS, Jeon H, Lee S, Jeong D, Lee C, Kim YH, Kim BJ. Recent progress and prospects of dimer and multimer acceptors for efficient and stable polymer solar cells. Chem Soc Rev 2024; 53:4674-4706. [PMID: 38529583 DOI: 10.1039/d3cs00895a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
High power conversion efficiency (PCE) and long-term stability are essential prerequisites for the commercialization of polymer solar cells (PSCs). Small-molecule acceptors (SMAs) are core materials that have led to recent, rapid increases in the PCEs of the PSCs. However, a critical limitation of the resulting PSCs is their poor long-term stability. Blend morphology degradation from rapid diffusion of SMAs with low glass transition temperatures (Tgs) is considered the main cause of the poor long-term stability of the PSCs. The recent emergence of oligomerized SMAs (OSMAs), composed of two or more repeating SMA units (i.e., dimerized and trimerized SMAs), has shown great promise in overcoming these challenges. This innovation in material design has enabled OSMA-based PSCs to reach impressive PCEs near 19% and exceptional long-term stability. In this review, we summarize the evolution of OSMAs, including their research background and recent progress in molecular design. In particular, we discuss the mechanisms for high PCE and stability of OSMA-based PSCs and suggest useful design guidelines for high-performance OSMAs. Furthermore, we reflect on the existing hurdles and future directions for OSMA materials towards achieving commercially viable PSCs with high PCEs and operational stabilities.
Collapse
Affiliation(s)
- Jin-Woo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Jin Su Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Hyesu Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Seungjin Lee
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Dahyun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Changyeon Lee
- School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yun-Hi Kim
- Department of Chemistry and RINS, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
Sun Y, Wang L, Guo C, Xiao J, Liu C, Chen C, Xia W, Gan Z, Cheng J, Zhou J, Chen Z, Zhou J, Liu D, Wang T, Li W. π-Extended Nonfullerene Acceptor for Compressed Molecular Packing in Organic Solar Cells To Achieve over 20% Efficiency. J Am Chem Soc 2024; 146:12011-12019. [PMID: 38639467 DOI: 10.1021/jacs.4c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Organic photovoltaics (OPVs) suffer from a trade-off between efficient charge transport and suppressed nonradiative recombination due to the aggregation-induced luminance quenching of organic semiconductors. To resolve this grand challenge, a π-extended nonfullerene acceptor (NFA) B6Cl with large voids among the honeycomb network is designed and introduced into photovoltaic systems. We find that the presence of a small amount of (i.e., 0.5 or 1 wt %) B6Cl can compress the molecular packing of the host acceptor L8-BO, leading to shortened π-π stacking distance from 3.59 to 3.50 Å (that will improve charge transport) together with ordered alkyl chain packing (that will inhibit nonradiative energy loss due to the suppressed C-C and C-H bonds vibrations), as validated by high-energy X-ray scattering measurements. This morphology transformation ultimately results in simultaneously improved JSC, FF, and VOC of OPVs. As a result, the maximum PCEs of PM6:L8-BO and D18:L8-BO are increased from 19.1 and 19.3% to 19.8 and 20.2%, respectively, which are among the highest values for single-junction OPVs. The university of B6Cl to increase the performance of OPVs is further evidenced in a range of polymer:NFA OPVs.
Collapse
Affiliation(s)
- Yuandong Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Liang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chuanhang Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jinyi Xiao
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| | - Chenhao Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chen Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Weiyi Xia
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zirui Gan
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jingchao Cheng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jinpeng Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhenghong Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
5
|
Hu H, Liu S, Xu J, Ma R, Peng Z, Peña TAD, Cui Y, Liang W, Zhou X, Luo S, Yu H, Li M, Wu J, Chen S, Li G, Chen Y. Over 19 % Efficiency Organic Solar Cells Enabled by Manipulating the Intermolecular Interactions through Side Chain Fluorine Functionalization. Angew Chem Int Ed Engl 2024; 63:e202400086. [PMID: 38329002 DOI: 10.1002/anie.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
Fluorine side chain functionalization of non-fullerene acceptors (NFAs) represents an effective strategy for enhancing the performance of organic solar cells (OSCs). However, a knowledge gap persists regarding the relationship between structural changes induced by fluorine functionalization and the resultant impact on device performance. In this work, varying amounts of fluorine atoms were introduced into the outer side chains of Y-series NFAs to construct two acceptors named BTP-F0 and BTP-F5. Theoretical and experimental investigations reveal that side-chain fluorination significantly increase the overall average electrostatic potential (ESP) and charge balance factor, thereby effectively improving the ESP-induced intermolecular electrostatic interaction, and thus precisely tuning the molecular packing and bulk-heterojunction morphology. Therefore, the BTP-F5-based OSC exhibited enhanced crystallinity, domain purity, reduced domain spacing, and optimized phase distribution in the vertical direction. This facilitates exciton diffusion, suppresses charge recombination, and improves charge extraction. Consequently, the promising power conversion efficiency (PCE) of 17.3 % and 19.2 % were achieved in BTP-F5-based binary and ternary devices, respectively, surpassing the PCE of 16.1 % for BTP-F0-based OSCs. This work establishes a structure-performance relationship and demonstrates that fluorine functionalization of the outer side chains of Y-series NFAs is a compelling strategy for achieving ideal phase separation for highly efficient OSCs.
Collapse
Affiliation(s)
- Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| | - Shuai Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jiaoyu Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Zhengxing Peng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Top Archie Dela Peña
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Nansha, 511400, Guangzhou, P. R. China
- The Hong Kong Polytechnic University, Faculty of Science, Department of Applied Physics, Kowloon, Hong Kong, 000000, P. R. China
| | - Yongjie Cui
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenting Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaoli Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Siwei Luo
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Han Yu
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Mingjie Li
- The Hong Kong Polytechnic University, Faculty of Science, Department of Applied Physics, Kowloon, Hong Kong, 000000, P. R. China
| | - Jiaying Wu
- Function Hub, Advanced Materials Thrust, The Hong Kong University of Science and Technology, Nansha, 511400, Guangzhou, P. R. China
| | - Shangshang Chen
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Yiwang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education/National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| |
Collapse
|
6
|
Ma R, Li H, Dela Peña TA, Xie X, Fong PWK, Wei Q, Yan C, Wu J, Cheng P, Li M, Li G. Tunable Donor Aggregation Dominance in a Ternary Matrix of All-Polymer Blends with Improved Efficiency and Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304632. [PMID: 37418757 DOI: 10.1002/adma.202304632] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/23/2023] [Indexed: 07/09/2023]
Abstract
Using two structurally similar polymer acceptors in constructing high-efficiency ternary all-polymer solar cells is a widely acknowledged strategy; however, the focus thus far has not been on how polymer acceptor(s) would tune the aggregation of polymer donors, and furthermore film morphology and device performance (efficiency and stability). Herein, it is reported that matching of the celebrity acceptor PY-IT and the donor PBQx-TCl results in enhanced H-aggregation in PBQx-TCl, which can be finely tuned by controlling the amount of the second acceptor PY-IV. Consequently, the efficiency-optimized PY-IV weight ratio (0.2/1.2) leads to a state-of-the-art power conversion efficiency of 18.81%, wherein light-illuminated operational stability is also enhanced along with well-protected thermal stability. Such enhancements in the efficiency and operational and thermal stabilities of solar cells can be attributed to morphology optimization and the desired glass transition temperature of the target active layer based on comprehensive characterization. In addition to being a high-power conversion efficiency case for all-polymer solar cells, these enhancements are also a successful attempt for using combined acceptors to tune donor aggregation toward optimal morphology, which provides a theoretical basis for the construction of other types of organic photovoltaics beyond all-polymer solar cells.
Collapse
Affiliation(s)
- Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Kowloon, 999077, China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Top Archie Dela Peña
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Xiyun Xie
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Kowloon, 999077, China
| | - Patrick Wai-Keung Fong
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Kowloon, 999077, China
| | - Qi Wei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Cenqi Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiaying Wu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Kowloon, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
7
|
Zhu J, Qin Z, Lan A, Jiang S, Mou J, Ren Y, Do H, Chen ZK, Chen F. A-D-A Type Nonfullerene Acceptors Synthesized by Core Segmentation and Isomerization for Realizing Organic Solar Cells with Low Nonradiative Energy Loss. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305529. [PMID: 37688316 DOI: 10.1002/smll.202305529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Reducing non-radiative recombination energy loss (ΔEnonrad ) in organic solar cells (OSCs) has been considered an effective method to improve device efficiency. In this study, the backbone of PTBTT-4F/4Cl is divided into D1-D2-D3 segments and reconstructed. The isomerized TPBTT-4F/4Cl obtains stronger intramolecular charge transfer (ICT), thus leading to elevated highest occupied molecular orbital (HOMO) energy level and reduced bandgap (Eg ). According to ELoss = Eg- qVOC , the reduced Eg and enhanced open circuit voltage (VOC ) result in lower ELoss , indicating that ELoss has been effectively suppressed in the TPBTT-4F/4Cl based devices. Furthermore, compared to PTBTT derivatives, the isomeric TPBTT derivatives exhibit more planar molecular structure and closer intermolecular stacking, thus affording higher crystallinity of the neat films. Therefore, the reduced energy disorder and corresponding lower Urbach energy (Eu ) of the TPBTT-4F/4Cl blend films lead to low ELoss and high charge-carrier mobility of the devices. As a result, benefitting from synergetic control of molecular stacking and energetic offsets, a maximum power conversion efficiency (PCE) of 15.72% is realized from TPBTT-4F based devices, along with a reduced ΔEnonrad of 0.276 eV. This work demonstrates a rational method of suppressing VOC loss and improving the device performance through molecular design engineering by core segmentation and isomerization.
Collapse
Affiliation(s)
- Jintao Zhu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Zixuan Qin
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Ai Lan
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Shanshan Jiang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Jiayou Mou
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Yong Ren
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Hainam Do
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Zhi-Kuan Chen
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
- Key Laboratory of Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Fei Chen
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo, 315100, China
- Key Laboratory of Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, 315100, China
| |
Collapse
|
8
|
Wu J, Ling Z, Franco LR, Jeong SY, Genene Z, Mena J, Chen S, Chen C, Araujo CM, Marchiori CFN, Kimpel J, Chang X, Isikgor FH, Chen Q, Faber H, Han Y, Laquai F, Zhang M, Woo HY, Yu D, Anthopoulos TD, Wang E. On the Conformation of Dimeric Acceptors and Their Polymer Solar Cells with Efficiency over 18 . Angew Chem Int Ed Engl 2023; 62:e202302888. [PMID: 37380618 DOI: 10.1002/anie.202302888] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
The determination of molecular conformations of oligomeric acceptors (OAs) and their impact on molecular packing are crucial for understanding the photovoltaic performance of their resulting polymer solar cells (PSCs) but have not been well studied yet. Herein, we synthesized two dimeric acceptor materials, DIBP3F-Se and DIBP3F-S, which bridged two segments of Y6-derivatives by selenophene and thiophene, respectively. Theoretical simulation and experimental 1D and 2D NMR spectroscopic studies prove that both dimers exhibit O-shaped conformations other than S- or U-shaped counter-ones. Notably, this O-shaped conformation is likely governed by a distinctive "conformational lock" mechanism, arising from the intensified intramolecular π-π interactions among their two terminal groups within the dimers. PSCs based on DIBP3F-Se deliver a maximum efficiency of 18.09 %, outperforming DIBP3F-S-based cells (16.11 %) and ranking among the highest efficiencies for OA-based PSCs. This work demonstrates a facile method to obtain OA conformations and highlights the potential of dimeric acceptors for high-performance PSCs.
Collapse
Affiliation(s)
- Jingnan Wu
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - Zhaoheng Ling
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Leandro R Franco
- Department of Engineering and Physics, Karlstad University, 65188, Karlstad, Sweden
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 02841 (Republic of, Korea
| | - Zewdneh Genene
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Josué Mena
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Si Chen
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - C Moyses Araujo
- Department of Engineering and Physics, Karlstad University, 65188, Karlstad, Sweden
- Materials Theory Division, Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden
| | - Cleber F N Marchiori
- Department of Engineering and Physics, Karlstad University, 65188, Karlstad, Sweden
| | - Joost Kimpel
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Xiaoming Chang
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Furkan H Isikgor
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Qiaonan Chen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| | - Hendrik Faber
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Frédéric Laquai
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Maojie Zhang
- National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841 (Republic of, Korea
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal, 23955, Saudi Arabia
| | - Ergang Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Göteborg, Sweden
| |
Collapse
|
9
|
Chang B, Chen CH, Hsueh TF, Tan S, Lin YC, Zhao Y, Tsai BS, Chu TY, Chang YN, Tsai CE, Chen CS, Wei KH. High-Performance Poly(3-hexyl thiophene)-Based Organic Photovoltaics with Side-Chain Engineering of Core Units of Small Molecule Acceptors. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37923367 DOI: 10.1021/acsami.3c13007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
In this study, we synthesized a series of four large-band gap small molecule acceptors with side-chain engineering of the dithieno-pyrrolo-fused pentacyclic benzotriazole (BZTTP or Y1 core) or the fused-ring dithienothiophene-pyrrolobenzothiadiazole (TPBT or Y6 core) with difluoro-indene-dione (IO2F) or dichloro-indene-dione (IO2Cl) end groups to form Y1-IO2F, Y1-IO2Cl, Y6-IO2F, and Y6-IO2Cl acceptors, respectively, for blending with poly(3-hexyl thiophene) (P3HT) for bulk heterojunction organic photovoltaics. The complementary UV-vis absorption spectra of these small molecules and P3HT along with their offset energy bands allow broad absorption and effective electron transfer. Through synchrotron wide-angle X-ray scattering (WAXS) analyses and contact angle measurements, we found that the blend of the small molecule Y6-IO2F (having a TPBT core) and P3HT achieves an optimum morphology that balances their crystallinity and miscibility, among those of these four blends, leading to a substantial enhancement in the short-circuit current density and thus power conversion efficiency (PCE) in their devices. For example, the P3HT:Y6-IO2F (w/w: 1/1.2) device exhibited a champion PCE of 10.5% with a short current density (Jsc) value of 15.9 mA/cm2 as compared to the P3HT:Y1-IO2F device having a PCE of 2.2% with a Jsc value of 5.7 mA/cm2 because of the higher Y6-IO2F (with TPBT core) molecular packing that facilitated carrier transport in the devices. The enhanced thermal stability exhibited by the devices incorporating Y6-IO2F and Y6-IO2Cl, as compared to that of Y1-IO2F and Y1-IO2Cl devices, is also due to the more planar TPBT core structure, while the photostability of devices incorporating Y6-IO2Cl and Y1-IO2Cl is better than that of devices incorporating Y6-IO2F and Y1-IO2F, owing to more photostable chemical structures. These results present an outstanding performance for P3HT-based organic solar cells. Moreover, these small molecule blends are processed with an environmentally friendly solvent tetrahydrofuran, demonstrating both the sustainability and commercial viability of these types of organic photovoltaics.
Collapse
Affiliation(s)
- Bin Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chung-Hao Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ting-Fang Hsueh
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Shaun Tan
- Department of Materials Science and Engineering, University of California─Los Angeles, Los Angeles, California 90095, United States
| | - Yu-Che Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yepin Zhao
- Department of Materials Science and Engineering, University of California─Los Angeles, Los Angeles, California 90095, United States
| | - Bing-Shiun Tsai
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ting-Yi Chu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yu-Ning Chang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ching-En Tsai
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Cheng-Sheng Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kung-Hwa Wei
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
10
|
Luo S, Li C, Zhang J, Zou X, Zhao H, Ding K, Huang H, Song J, Yi J, Yu H, Wong KS, Zhang G, Ade H, Ma W, Hu H, Sun Y, Yan H. Auxiliary sequential deposition enables 19%-efficiency organic solar cells processed from halogen-free solvents. Nat Commun 2023; 14:6964. [PMID: 37907534 PMCID: PMC10618449 DOI: 10.1038/s41467-023-41978-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
High-efficiency organic solar cells are often achieved using toxic halogenated solvents and additives that are constrained in organic solar cells industry. Therefore, it is important to develop materials or processing methods that enabled highly efficient organic solar cells processed by halogen free solvents. In this paper, we report an innovative processing method named auxiliary sequential deposition that enables 19%-efficiency organic solar cells processed by halogen free solvents. Our auxiliary sequential deposition method is different from the conventional blend casting or sequential deposition methods in that it involves an additional casting of dithieno[3,2-b:2',3'-d]thiophene between the sequential depositions of the donor (D18-Cl) and acceptor (L8-BO) layers. The auxiliary sequential deposition method enables dramatic performance enhancement from 15% to over 18% compared to the blend casting and sequential deposition methods. Furthermore, by incorporating a branched-chain-engineered acceptor called L8-BO-X, device performance can be boosted to over 19% due to increased intermolecular packing, representing top-tier values for green-solvent processed organic solar cells. Comprehensive morphological and time-resolved characterizations reveal that the superior blend morphology achieved through the auxiliary sequential deposition method promotes charge generation while simultaneously suppressing charge recombination. This research underscores the potential of the auxiliary sequential deposition method for fabricating highly efficient organic solar cells using environmentally friendly solvents.
Collapse
Affiliation(s)
- Siwei Luo
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Chao Li
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Jianquan Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Xinhui Zou
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Heng Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Kan Ding
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Hui Huang
- College of New Materials and New Energies, Shenzhen Technology University, 518118, Shenzhen, Guangdong, China
| | - Jiali Song
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Jicheng Yi
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Han Yu
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Kam Sing Wong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, 518118, Shenzhen, Guangdong, China
| | - Harald Ade
- Department of Physics and Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Huawei Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Yanming Sun
- School of Chemistry, Beihang University, 100191, Beijing, China.
| | - He Yan
- Department of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Energy Institute and Hong Kong Branch of Chinese National, Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, Guangdong Province, China.
| |
Collapse
|
11
|
Lan A, Zhu J, Zhang Z, Lv Y, Lu H, Zhao N, Do H, Chen ZK, Chen F. Asymmetric Non-Fullerene Acceptor Derivatives Incorporated Ternary Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39657-39668. [PMID: 37578345 DOI: 10.1021/acsami.3c06981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Incorporating ITIC derivatives as guest acceptors into binary host systems is an effective strategy for constructing high-performance ternary organic solar cells (TOSCs). In this work, we introduced A-D-A type ITIC derivatives PTBTT-4F (asymmetric) and PTBTP-4F (symmetric) into the PM6:BTP-BO-4F (Y6-BO) binary blend and investigated the impacts of two guest acceptors on the performance of TOSCs. Differentiated device performance was observed, although PTBTT-4F and PTBTP-4F presented similar chemical structures and comparable absorptions. The PTBTT-4F ternary devices exhibited an improved power conversion efficiency (PCE) of 17.67% with increased open circuit (VOC) and current density (JSC), whereas the PTBTP-4F-based ternary devices yielded a relatively lower PCE of 16.34%. PTBTT-4F showed much better compatibility with the host acceptor BTP-BO-4F, so that they formed a well-mixed alloy phase state; more precise phase separation and increased crystallinity were thus induced in the ternary blends, leading to reduced molecular recombination and improved charge mobilities, which contributed to improved fill factors of the ternary devices. In addition, the optimized PTBTT-4F devices exhibited good performance tolerance of the photoactive layer thickness, as they even delivered a PCE of 15.25% when the active layer was as thick as up to ∼300 nm.
Collapse
Affiliation(s)
- Ai Lan
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Jintao Zhu
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Zhuohan Zhang
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yifan Lv
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Hong Lu
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Ningxin Zhao
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Hainam Do
- Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China
- Key Laboratory of Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Zhi-Kuan Chen
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315100, China
| | - Fei Chen
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315100, China
| |
Collapse
|
12
|
Wang Q, Liu J, Zhang X, Tang Y, Xiong Y, Zhang L, Xiao T, Fan Q. Photoactive oligomer with D-D'-A-D'-D''-D'-A-D'-D scaffold for high-efficiency NIR-II phototheranostics. Chem Commun (Camb) 2023; 59:9611-9614. [PMID: 37461357 DOI: 10.1039/d3cc02199h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
A D-D'-A-D'-D''-D'-A-D'-D type photoactive oligomer (O-BT) based nanoparticles (NPs) were prepared for biomedical application. The O-BT NPs possessed a high extinction coefficient, excellent hyperthermia generation ability, satisfactory NIR-II fluorescence emission, and good batch-to-batch reproducibility, and could be used as high-efficiency phototheranostics for photothermal therapy and NIR-II fluorescence imaging.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Jiawei Liu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Xinmin Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Youguang Tang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Yanwei Xiong
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Liangliang Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Tangxin Xiao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Quli Fan
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| |
Collapse
|
13
|
Liu K, Jiang Y, Liu F, Ran G, Huang F, Wang W, Zhang W, Zhang C, Hou J, Zhu X. Organic Solar Cells with Over 19% Efficiency Enabled by a 2D-Conjugated Non-Fullerene Acceptor Featuring Favorable Electronic and Aggregation Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300363. [PMID: 37243566 DOI: 10.1002/adma.202300363] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/16/2023] [Indexed: 05/29/2023]
Abstract
The π-expansion of non-fullerene acceptors is a promising method for boosting the organic photovoltaic performance by allowing the fine-tuning of electronic structures and molecular packing. In this work, highly efficient organic solar cells (OSCs) are fabricated using a 2D π-expansion strategy to design new non-fullerene acceptors. Compared with the quinoxaline-fused cores of AQx-16, the π-expanded phenazine-fused cores of AQx-18 induce more ordered and compact packing between adjacent molecules, affording an optimized morphology with rational phase separation in the blend film. This facilitates efficient exciton dissociation and inhibited charge recombination. Consequently, a power conversion efficiency (PCE) of 18.2% with simultaneously increasing Voc , Jsc , and fill factor is achieved in the AQx-18-based binary OSCs. Significantly, AQx-18-based ternary devices fabricated via a two-in-one alloy acceptor strategy exhibit a superior PCE of 19.1%, one of the highest values ever reported for OSCs, along with a high Voc of 0.928 V. These results indicate the importance of the 2D π-expansion strategy for the delicate regulation of the electronic structures and crystalline behaviors of the non-fullerene acceptors to achieve superior photovoltaic performance, aimed at significantly promoting further development of OSCs.
Collapse
Affiliation(s)
- Kerui Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Fei Huang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wenxuan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Zhao X, An Q, Zhang H, Yang C, Mahmood A, Jiang M, Jee MH, Fu B, Tian S, Woo HY, Wang Y, Wang JL. Double Asymmetric Core Optimizes Crystal Packing to Enable Selenophene-based Acceptor with Over 18 % Efficiency in Binary Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202216340. [PMID: 36591914 DOI: 10.1002/anie.202216340] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Side-chain tailoring is a promising method to optimize the performance of organic solar cells (OSCs). However, asymmetric alkyl chain-based small molecular acceptors (SMAs) are still difficult to afford. Herein, we adopted a novel asymmetric n-nonyl/undecyl substitution strategy and synthesized two A-D1 A'D2 -A double asymmetric isomeric SMAs with asymmetric selenophene-based central core for OSCs. Crystallographic analysis indicates that AYT9Se11-Cl forms a more compact and order intermolecular packing compared to AYT11Se9-Cl, which contributed to higher electron mobility in neat AYT9Se11-Cl film. Moreover, the PM6 : AYT9Se11-Cl blend film shows a better morphology with appropriate phase separation and distinct face-on orientation than PM6 : AYT11Se9-Cl. The OSCs with PM6 : AYT9Se11-Cl obtain a superior PCE of 18.12 % compared to PM6 : AYT11Se9-Cl (17.52 %), which is the best efficiency for the selenium-incorporated SMAs in binary BHJ OSCs. Our findings elucidate that the promising double asymmetric strategy with isomeric alkyl chains precisely modulates the crystal packing and enhances the photovoltaic efficiency of selenophene-incorporated SMAs.
Collapse
Affiliation(s)
- Xin Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Heng Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Can Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengyun Jiang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Min Hun Jee
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Bin Fu
- Department of Chemistry, Renmin University of China, 100872, Beijing, China
| | - Shiyu Tian
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, 100872, Beijing, China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering in Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
15
|
Pang S, Chen Z, Li J, Chen Y, Liu Z, Wu H, Duan C, Huang F, Cao Y. High-efficiency organic solar cells processed from a real green solvent. MATERIALS HORIZONS 2023; 10:473-482. [PMID: 36468609 DOI: 10.1039/d2mh01314b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The fabrication of organic solar cells (OSCs) depends heavily on the use of highly toxic chlorinated solvents, which are incompatible with industrial manufacturing. The reported alternative solvents such as non-halogenated aromatic hydrocarbons and cyclic ethers are also not really "green" according to the "Globally Harmonized System of Classification and Labelling of Chemicals" of the United Nations. Therefore, processing from real green solvents such as water, alcohols, or anisole will constitute a big breakthrough for OSCs. However, it is fundamentally challenging to obtain high-performance photovoltaic materials processable from these solvents. Herein, we propose the incorporation of a B-N covalent bond, which has a dipole moment of 1.84 Debye, into the conjugated backbone of polymer donors to fabricate high-efficiency OSCs from anisole, a real green and eco-compatible solvent recommended by the United Nations. Based on a newly developed B-N-based polymer, the OSCs with a record-high efficiency of 15.65% in the 0.04 cm2 device and 14.01% in the 1.10 cm2 device have thus been realized via real green processing.
Collapse
Affiliation(s)
- Shuting Pang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Zhili Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
- Institute of Materials for Optoelectronics and New Energy, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Junyu Li
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Yuting Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Zhitian Liu
- Institute of Materials for Optoelectronics and New Energy, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hongbin Wu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
16
|
Wu Y, Li X, Hua K, Duan X, Ding R, Rui Z, Cao F, Yuan M, Li J, Liu J. Generalized Encapsulations of ZIF-Based Fe-N-C Catalysts with Controllable Nitrogen-Doped Carbon for Significantly-Improved Stability Toward Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207671. [PMID: 36734204 DOI: 10.1002/smll.202207671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Indexed: 06/18/2023]
Abstract
The vigorous development of efficient platinum group metal-free catalysts is considerably important to facilitate the universal application of proton exchange membrane fuel cells. Although nitrogen-coordinated atomic iron intercalated in carbon matrix (Fe-N-C) catalysts exhibit promising catalytic activity, the performance in fuel cells, especially the short lifetime, remains an obstacle. Herein, a highly-active Fe-N-C catalyst with a power density of >1 w cm-2 and prolonged discharge stability with a current density of 357 mA cm-2 after 40 h of constant voltage discharge at 0.7 V in H2 -O2 fuel cells using a controllable and efficient N-C coating strategy is developed. It is clarified that a thicker N-C coating may be more favorable to enhance the stability of Fe-N-C catalysts at the expense of their catalytic activity. The stability enhancement mechanism of the N-C coating strategy is proven to be the synergistic effect of reduced carbon corrosion and iron loss. It is believed that these findings can contribute to the development of Fe-N-C catalysts with high activity and long lifetimes.
Collapse
Affiliation(s)
- Yongkang Wu
- College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Xiaoke Li
- College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Kang Hua
- College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Xiao Duan
- College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Rui Ding
- College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Zhiyan Rui
- College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Feng Cao
- College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Mengchen Yuan
- College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing, 210093, P. R. China
| | - Jia Li
- Energy and Power Innovation Research Institute, North China Electric Power University, 2 Beinong Road, Beijing, 102206, P. R. China
| | - Jianguo Liu
- Energy and Power Innovation Research Institute, North China Electric Power University, 2 Beinong Road, Beijing, 102206, P. R. China
| |
Collapse
|
17
|
Tang Y, Liu L, Deng J, Sun P, Yan D, Peng W, Huang X, Xiao M, Tao Q, Yu D. Incorporating a weak acceptor unit into PTB7-Th to tune the open circuit voltage for non-fullerene polymer solar cells. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Guo C, Li Z, Wang K, Zhou X, Huang D, Liang J, Zhao L. Accelerated Explore of Efficient Ternary Solar Cell with PTB7:PC71BM:SMPV1 Using Machine-Learning Methods. Phys Chem Chem Phys 2022; 24:22538-22545. [DOI: 10.1039/d2cp02368g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Machine learning(ML) provides an efficient tool for predicting the photoelectric conversion efficiency(PCE) of organic solar cells(OSCs). In this paper, random forest (RF), K-nearest neighbors , and support vector machine in...
Collapse
|
19
|
ASİF K, ABBAS F. Role of Neutrophil Lymphocyte Ratio (NLR) in Predicting Disease Severity in Covid -19. TURKISH JOURNAL OF INTERNAL MEDICINE 2021. [DOI: 10.46310/tjim.1011041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|