1
|
Li X, Chen J, Yu F, Chen X, Lu W, Li G. Achieving a Noise Limit with a Few-layer WSe 2 Avalanche Photodetector at Room Temperature. NANO LETTERS 2024; 24:13255-13262. [PMID: 39320324 DOI: 10.1021/acs.nanolett.4c03450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
We engineered a two-dimensional Pt/WSe2/Ni avalanche photodetector (APD) optimized for ultraweak signal detection at room temperature. By fine-tuning the work functions, we achieved an ultralow dark current of 10-14 A under small bias, with a noise equivalent power (NEP) of 8.09 fW/Hz1/2. This performance is driven by effective dark barrier blocking and a record-long electron mean free path (123 nm) in intrinsic WSe2, minimizing dark carrier replenishment and suppressing noise under an ultralow electric field. Our APD exhibits a high gain of 5 × 105 at a modulation frequency of 20 kHz, effectively balancing gain and bandwidth, a common challenge in traditional photovoltaic-based APDs. By addressing the typical challenges of high noise and low gain and minimizing dependence on high electric fields, this work highlights the potential of 2D materials in developing efficient, low-power, and ultrasensitive photodetections.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing 100049, China
| | - Jin Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing 100049, China
| | - Feilong Yu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaoshuang Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No.1 Sub-Lane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
| | - Wei Lu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No.1 Sub-Lane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
| | - Guanhai Li
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China
- University of Chinese Academy of Science, No. 19A Yuquan Road, Beijing 100049, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No.1 Sub-Lane Xiangshan, Hangzhou, 310024, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai, 201315, China
| |
Collapse
|
2
|
Nguyen XA, Le LV, Kim SH, Kim YD, Diware MS, Kim TJ, Kim YD. Temperature dependence of the dielectric function and critical points of monolayer WSe 2. Sci Rep 2024; 14:13486. [PMID: 38866902 PMCID: PMC11169377 DOI: 10.1038/s41598-024-64303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
Monolayer materials typically display intriguing temperature-dependent dielectric and optical properties, which are crucial for improving the structure and functionality of associated devices. Due to its unique photoelectric capabilities, monolayer WSe2 has recently received a lot of attention in the fields of atomically thin electronics and optoelectronics. In this work, we focus on the evolution of the temperature-dependent dielectric function (ε = ε1 + i ε2) of monolayer WSe2 over energies from 0.74 to 6.40 eV and temperatures from 40 to 350 K. We analyze the second derivatives of ε with respect to energy to accurately locate the critical points (CP). The dependence of the observed CP energies on temperature is consistent with the alternative domination of the declining exciton binding energy as the temperature increases.
Collapse
Affiliation(s)
- Xuan Au Nguyen
- Department of Physics, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Long V Le
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Suk Hyun Kim
- Department of Physics, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Information Display, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Young Duck Kim
- Department of Physics, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mangesh S Diware
- Advanced Research Center, Parksystems Co., Suwon, Republic of Korea
| | - Tae Jung Kim
- Department of Physics, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Center for Converging Humanities, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Young Dong Kim
- Department of Physics, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
3
|
Xiao Y, Xiong C, Chen MM, Wang S, Fu L, Zhang X. Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chem Soc Rev 2023; 52:1215-1272. [PMID: 36601686 DOI: 10.1039/d1cs01016f] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Together with the development of two-dimensional (2D) materials, transition metal dichalcogenides (TMDs) have become one of the most popular series of model materials for fundamental sciences and practical applications. Due to the ever-growing requirements of customization and multi-function, dozens of modulated structures have been introduced in TMDs. In this review, we present a systematic and comprehensive overview of the structure modulation of TMDs, including point, linear and out-of-plane structures, following and updating the conventional classification for silicon and related bulk semiconductors. In particular, we focus on the structural characteristics of modulated TMD structures and analyse the corresponding root causes. We also summarize the recent progress in modulating methods, mechanisms, properties and applications based on modulated TMD structures. Finally, we demonstrate challenges and prospects in the structure modulation of TMDs and forecast potential directions about what and how breakthroughs can be achieved.
Collapse
Affiliation(s)
- Yao Xiao
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Chengyi Xiong
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Miao-Miao Chen
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Shengfu Wang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lei Fu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. .,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Xiuhua Zhang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| |
Collapse
|
4
|
Wang X, Shang Z, Zhang C, Kang J, Liu T, Wang X, Chen S, Liu H, Tang W, Zeng YJ, Guo J, Cheng Z, Liu L, Pan D, Tong S, Wu B, Xie Y, Wang G, Deng J, Zhai T, Deng HX, Hong J, Zhao J. Electrical and magnetic anisotropies in van der Waals multiferroic CuCrP 2S 6. Nat Commun 2023; 14:840. [PMID: 36792610 PMCID: PMC9931707 DOI: 10.1038/s41467-023-36512-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Multiferroic materials have great potential in non-volatile devices for low-power and ultra-high density information storage, owing to their unique characteristic of coexisting ferroelectric and ferromagnetic orders. The effective manipulation of their intrinsic anisotropy makes it promising to control multiple degrees of the storage "medium". Here, we have discovered intriguing in-plane electrical and magnetic anisotropies in van der Waals (vdW) multiferroic CuCrP2S6. The uniaxial anisotropies of current rectifications, magnetic properties and magnon modes are demonstrated and manipulated by electric direction/polarity, temperature variation and magnetic field. More important, we have discovered the spin-flop transition corresponding to specific resonance modes, and determined the anisotropy parameters by consistent model fittings and theoretical calculations. Our work provides in-depth investigation and quantitative analysis of electrical and magnetic anisotropies with the same easy axis in vdW multiferroics, which will stimulate potential device applications of artificial bionic synapses, multi-terminal spintronic chips and magnetoelectric devices.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing, 100124, China.
| | - Zixuan Shang
- grid.28703.3e0000 0000 9040 3743Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing, 100124 China
| | - Chen Zhang
- grid.9227.e0000000119573309State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
| | - Jiaqian Kang
- grid.43555.320000 0000 8841 6246School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Tao Liu
- grid.54549.390000 0004 0369 4060National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Xueyun Wang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Siliang Chen
- grid.19373.3f0000 0001 0193 3564Guangdong Provincial Key Laboratory of Semiconductor, Optoelectronic Materials and Intelligent Photonic Systems, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055 China
| | - Haoliang Liu
- Guangdong Provincial Key Laboratory of Semiconductor, Optoelectronic Materials and Intelligent Photonic Systems, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wei Tang
- grid.263488.30000 0001 0472 9649Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Yu-Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Jianfeng Guo
- grid.24539.390000 0004 0368 8103Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, 100872 China
| | - Zhihai Cheng
- grid.24539.390000 0004 0368 8103Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, 100872 China
| | - Lei Liu
- grid.9227.e0000000119573309State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
| | - Dong Pan
- grid.9227.e0000000119573309State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
| | - Shucheng Tong
- grid.9227.e0000000119573309State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
| | - Bo Wu
- grid.28703.3e0000 0000 9040 3743Key Laboratory of Optoelectronics Technology Ministry of Education, Beijing University of Technology, Beijing, 100124 China
| | - Yiyang Xie
- grid.28703.3e0000 0000 9040 3743Key Laboratory of Optoelectronics Technology Ministry of Education, Beijing University of Technology, Beijing, 100124 China
| | - Guangcheng Wang
- grid.28703.3e0000 0000 9040 3743Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing, 100124 China
| | - Jinxiang Deng
- grid.28703.3e0000 0000 9040 3743Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing, 100124 China
| | - Tianrui Zhai
- grid.28703.3e0000 0000 9040 3743Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing, 100124 China
| | - Hui-Xiong Deng
- grid.9227.e0000000119573309State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
| | - Jiawang Hong
- grid.43555.320000 0000 8841 6246School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Jianhua Zhao
- grid.9227.e0000000119573309State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 China
| |
Collapse
|