1
|
Feng Y, Liang M, Zhao X, You R. Fabrication and modulation of flexible electromagnetic metamaterials. MICROSYSTEMS & NANOENGINEERING 2025; 11:14. [PMID: 39833159 PMCID: PMC11747097 DOI: 10.1038/s41378-024-00806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/27/2024] [Accepted: 09/24/2024] [Indexed: 01/22/2025]
Abstract
Flexible electromagnetic metamaterials are a potential candidate for the ideal material for electromagnetic control due to their unique physical properties and structure. Flexible electromagnetic metamaterials can be designed to exhibit specific responses to electromagnetic waves within a particular frequency range. Research shows that flexible electromagnetic metamaterials exhibit significant electromagnetic control characteristics in microwave, terahertz, infrared and other frequency bands. It has a wide range of applications in the fields of electromagnetic wave absorption and stealth, antennas and microwave devices, communication information and other fields. In this review, the currently popular fabrication methods of flexible electromagnetic metamaterials are first summarized, highlighting the electromagnetic modulation capability in different frequency bands. Then, the applications of flexible electromagnetic metamaterials in four aspects, namely electromagnetic stealth, temperature modulation, electromagnetic shielding, and wearable sensors, are elaborated and summarized in detail. In addition, this review also discusses the shortcomings and limitations of flexible electromagnetic metamaterials for electromagnetic control. Finally, the conclusion and perspective of the electromagnetic properties of flexible electromagnetic metamaterials are presented.
Collapse
Affiliation(s)
- Yanshuo Feng
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 100192, Beijing, China
- Laboratory of Intelligent Microsystems, Beijing Information Science and Technology University, 100192, Beijing, China
| | - Misheng Liang
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 100192, Beijing, China.
- Laboratory of Intelligent Microsystems, Beijing Information Science and Technology University, 100192, Beijing, China.
| | - Xiaoguang Zhao
- Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Rui You
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, 100192, Beijing, China.
- Laboratory of Intelligent Microsystems, Beijing Information Science and Technology University, 100192, Beijing, China.
- Beijing Future Chip Technology Advanced Innovation Center, 100192, Beijing, China.
| |
Collapse
|
2
|
Pruksawan S, Teo RLJ, Cheang YH, Chong YT, Ng ELL, Wang F. Structurally Transformable and Reconfigurable Hydrogel-Based Mechanical Metamaterials and Their Application in Biomedical Stents. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4055-4066. [PMID: 39746880 DOI: 10.1021/acsami.4c20599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Mechanical metamaterials exhibit several unusual mechanical properties, such as a negative Poisson's ratio, which impart additional capabilities to materials. Recently, hydrogels have emerged as exceptional candidates for fabricating mechanical metamaterials that offer enhanced functionality and expanded applications due to their unique responsive characteristics. However, the adaptability of these metamaterials remains constrained and underutilized, as they lack integration of the hydrogels' soft and responsive characteristics with the metamaterial design. Here, we propose structurally transformable and reconfigurable hydrogel-based mechanical metamaterials through three-dimensional (3D) printing of lattice structures composed of multishape-memory poly(acrylic acid)-chitosan hydrogels. By incorporating reversible shape-memory mechanisms that control the structural arrangements of the lattice, these metamaterials can exhibit transformable and reconfigurable mechanical characteristics under various environmental conditions, including auxetic behavior, with Poisson's ratios switchable from negative to zero or positive. These adaptable mechanical responses across different states arise from structural changes in lattice, surpassing the gradual changes observed in conventional stimuli-responsive materials. The application of these metamaterials in multimode biomedical stents demonstrates their adaptability in practical settings, allowing them to transition between expandable, nonexpandable, and shrinkable states, with corresponding Poisson's ratios. By integrating multishape-memory soft materials with metamaterial design, we can significantly enhance their functionality, advancing the development of smart biomaterials.
Collapse
Affiliation(s)
- Sirawit Pruksawan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Rigel Lu Jun Teo
- College of Design and Engineering, National University of Singapore (NUS), 15 Kent Ridge Crescent, Singapore 117585, Republic of Singapore
| | - Yu Hong Cheang
- Nanyang Polytechnic, 180 Ang Mo Kio Avenue 8, Singapore 569830, Republic of Singapore
| | - Yi Ting Chong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Evelyn Ling Ling Ng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - FuKe Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
3
|
Cao Z, Sai H, Wang W, Yang K, Wang L, Lv P, Duan H, Huang T. Bioinspired Microhinged Actuators for Active Mechanism-Based Metamaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407231. [PMID: 39555911 PMCID: PMC11727244 DOI: 10.1002/advs.202407231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/03/2024] [Indexed: 11/19/2024]
Abstract
Mechanism-based metamaterials, comprising rigid elements interconnected by flexible hinges, possess the potential to develop intelligent micromachines with programmable motility and morphology. However, the absence of efficient microactuators has constrained the ability to achieve multimodal locomotion and active shape-morphing behaviors at the micro and nanoscale. In this study, inspiration from the flight mechanisms of tiny insects is drawn to develop a biomimetic microhinged actuator by integrating compliant mechanisms with soft hydrogel muscle. A Pseudo-Rigid-Body mechanical model is introduced to analyze structural deformation, demonstrating that this hydrogel-based microactuator can undergo significant folding while maintaining high structural stiffness. Furthermore, multiple microhinged actuators are combined to facilitate folding in multiple degrees of freedom and arbitrary directions. Fabricated by a multi-step four-dimensional (4D) direct laser writing technique, the microhinged actuators are integrated into 2D and 3D metamaterials enabling programable shape morphing. Additionally, micro-kirigami with photonic structures is demonstrated to show the pattern transforming actuated by the microhinges. This bioinspired design approach opens new avenues for the development of active mechanism-based metamaterials capable of intricate shape-morphing behaviors.
Collapse
Affiliation(s)
- Zi‐Yi Cao
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Huayang Sai
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Weiwei Wang
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Kai‐Cheng Yang
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Linlin Wang
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Pengyu Lv
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Huiling Duan
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
| | - Tian‐Yun Huang
- Department of Advanced Manufacturing and RoboticsState Key Laboratory for Turbulence and Complex SystemsBIC‐ESATCollege of EngineeringPeking UniversityBeijing100871China
- National Key Laboratory of Advanced Micro and Nano Manufacture TechnologyBeijing100871China
| |
Collapse
|
4
|
Xue J, Liu D, Li D, Hong T, Li C, Zhu Z, Sun Y, Gao X, Guo L, Shen X, Ma P, Zheng Q. New Carbon Materials for Multifunctional Soft Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312596. [PMID: 38490737 DOI: 10.1002/adma.202312596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Soft electronics are garnering significant attention due to their wide-ranging applications in artificial skin, health monitoring, human-machine interaction, artificial intelligence, and the Internet of Things. Various soft physical sensors such as mechanical sensors, temperature sensors, and humidity sensors are the fundamental building blocks for soft electronics. While the fast growth and widespread utilization of electronic devices have elevated life quality, the consequential electromagnetic interference (EMI) and radiation pose potential threats to device precision and human health. Another substantial concern pertains to overheating issues that occur during prolonged operation. Therefore, the design of multifunctional soft electronics exhibiting excellent capabilities in sensing, EMI shielding, and thermal management is of paramount importance. Because of the prominent advantages in chemical stability, electrical and thermal conductivity, and easy functionalization, new carbon materials including carbon nanotubes, graphene and its derivatives, graphdiyne, and sustainable natural-biomass-derived carbon are particularly promising candidates for multifunctional soft electronics. This review summarizes the latest advancements in multifunctional soft electronics based on new carbon materials across a range of performance aspects, mainly focusing on the structure or composite design, and fabrication method on the physical signals monitoring, EMI shielding, and thermal management. Furthermore, the device integration strategies and corresponding intriguing applications are highlighted. Finally, this review presents prospects aimed at overcoming current barriers and advancing the development of state-of-the-art multifunctional soft electronics.
Collapse
Affiliation(s)
- Jie Xue
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Dan Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Da Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Tianzeng Hong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Chuanbing Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zifu Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yuxuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xiaobo Gao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Lei Guo
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xi Shen
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
- The Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Pengcheng Ma
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
5
|
Zhang M, Li M, Xu W, Zhang F, Yao D, Wang X, Dong W. Soft Wireless Passive Chipless Sensors for Biological Applications: A Review. BIOSENSORS 2024; 15:6. [PMID: 39852057 PMCID: PMC11764421 DOI: 10.3390/bios15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
Soft wireless passive sensors have been applied in biological, engineering, and other fields due to their advantages in powerless supply and remote data transmission. External information is obtained by soft wireless passive sensors via the external coils based on electromagnetic induction. The purpose of this review paper is to outline the biological applications of soft wireless passive chipless sensors and provide a classification of wireless passive sensors and an overall explanation of the main work. Three kinds of soft wireless sensors, soft wireless passive LC-resonant sensors, soft wireless radio frequency (RF) sensors, and soft wireless surface acoustic wave (SAW) sensors, are introduced with their working principles, equitant circuits, and biological applications. Soft wireless passive sensors with integrated LC-resonant units are applied to physical quantity measurements for denoting the mapping relationship between the frequency resonance and the monitored object. Utilizing the electromagnetic field principle, RF sensors enable wireless measurements and data exchange of physical parameters. SAW sensors with piezoelectric substrates are applied to physical parameter monitoring using guided waves in monitoring objects. Soft wireless passive sensors aim to monitor biological health without an external power supply or wired data communication, which would bring increased convenience to the lives of the people who use them.
Collapse
Affiliation(s)
- Mingguang Zhang
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China; (M.Z.); (M.L.); (W.X.); (D.Y.); (X.W.)
| | - Mengyun Li
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China; (M.Z.); (M.L.); (W.X.); (D.Y.); (X.W.)
| | - Wei Xu
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China; (M.Z.); (M.L.); (W.X.); (D.Y.); (X.W.)
| | - Fan Zhang
- Department of Mechanical and Electrical Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China;
| | - Daojin Yao
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China; (M.Z.); (M.L.); (W.X.); (D.Y.); (X.W.)
| | - Xiaoming Wang
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China; (M.Z.); (M.L.); (W.X.); (D.Y.); (X.W.)
| | - Wentao Dong
- School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China; (M.Z.); (M.L.); (W.X.); (D.Y.); (X.W.)
| |
Collapse
|
6
|
Zou Y, Liu G, Wang H, Du K, Guo J, Shang Z, Guo R, Zhou F, Liu W. Ultra-Stretchable Composite Organohydrogels Polymerized Based on MXene@Tannic Acid-Ag Autocatalytic System for Highly Sensitive Wearable Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404435. [PMID: 39140644 DOI: 10.1002/smll.202404435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Conductive hydrogels have attracted widespread attention in the fields of biomedicine and health monitoring. However, their practical application is severely hindered by the lengthy and energy-intensive polymerization process and weak mechanical properties. Here, a rapid polymerization method of polyacrylic acid/gelatin double-network organohydrogel is designed by integrating tannic acid (TA) and Ag nanoparticles on conductive MXene nanosheets as catalyst in a binary solvent of water and glycerol, requiring no external energy input. The synergistic effect of TA and Ag NPs maintains the dynamic redox activity of phenol and quinone within the system, enhancing the efficiency of ammonium persulfate to generate radicals, leading to polymerization within 10 min. Also, ternary composite MXene@TA-Ag can act as conductive agents, enhanced fillers, adhesion promoters, and antibacterial agents of organohydrogels, granting them excellent multi-functionality. The organohydrogels exhibit excellent stretchability (1740%) and high tensile strength (184 kPa). The strain sensors based on the organohydrogels exhibit ultrahigh sensitivity (GF = 3.86), low detection limit (0.1%), and excellent stability (>1000 cycles, >7 days). These sensors can monitor the human limb movements, respiratory and vocal cord vibration, as well as various levels of arteries. Therefore, this organohydrogel holds potential for applications in fields such as human health monitoring and speech recognition.
Collapse
Affiliation(s)
- Yuxin Zou
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guoqiang Liu
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hanxin Wang
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kang Du
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jinglun Guo
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhenling Shang
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ruisheng Guo
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Feng Zhou
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Weimin Liu
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
7
|
Liu J, Lv S, Mu Y, Tong J, Liu L, He T, Zeng Q, Wei D. Applied research and recent advances in the development of flexible sensing hydrogels from cellulose: A review. Int J Biol Macromol 2024; 281:136100. [PMID: 39448288 DOI: 10.1016/j.ijbiomac.2024.136100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Flexible wearable smart sensing materials have gained immense momentum, and biomass-based hydrogel sensors for renewable and biologically safe wearable sensors have attracted significant attention in order to meet the growing demand for sustainability and ecological friendliness. Cellulose has been widely used in the field of biomass-based hydrogel sensing materials, being the most abundant biomass material in nature. This review mainly focuses on the types of cellulose hydrogels, the preparation methods and their applications in smart flexible sensing materials. The structure-functional properties-application relationship of cellulose hydrogels and the applications of various cellulose hydrogels in flexible sensing are described in detail. Then it focuses on the methods and mechanisms of cellulose hydrogel flexible sensors preparation, and then summarizes the research of cellulose hydrogel sensors for different types of stimulus response mechanisms to pressure, pH, biomolecules, ions, temperature, humidity, and light. The applications of cellulose hydrogels as flexible sensing materials in biomedical sensing, smart wearable and environmental monitoring are further summarized. Finally, the future development trend of cellulose hydrogels is briefly introduced and the future development of cellulose hydrogel sensing materials is envisioned.
Collapse
Affiliation(s)
- Jinru Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yanlu Mu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiahao Tong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Leipeng Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tingxiang He
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiao Zeng
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Dequan Wei
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
8
|
Kim K, Phon R, Park E, Lim S. 4D-printed intelligent reflecting surface with improved beam resolution via both phase modulation and space modulation. MICROSYSTEMS & NANOENGINEERING 2024; 10:157. [PMID: 39468050 PMCID: PMC11519457 DOI: 10.1038/s41378-024-00795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 10/30/2024]
Abstract
Recently, intelligent reflecting surfaces (IRSs) have emerged as potential candidates for overcoming the line-of-sight issue in 5 G/6 G wireless communication. These IRSs can manipulate the direction of reflected beams, enabling efficient beam steering to enhance the performance of wireless communication. Each unit cell (or unit structure) of an IRS commonly consists of electrical elements for phase modulation. However, by employing phase modulation alone, an IRS can steer the reflected electromagnetic waves toward only discrete and specific angles, leaving a wide range of out-of-beam areas. In this work, an IRS that uses both phase modulation and space modulation is presented to improve the beam resolution and continuously cover out-of-beam areas that phase modulation alone cannot address. A positive-intrinsic-negative diode is mounted on a unit cell for phase modulation, and a 4D-printed reconfigured structure is fabricated to demonstrate space modulation. The beam-steering function is achieved by alternating the states of the diodes in the same columns, while the beam resolution is improved by controlling the gaps between the columns. The functions are first theoretically and numerically analyzed and then experimentally verified, demonstrating that additional angles of -46°/+50°, -22°/+14°, and -16°/+12° are achieved with space modulation and -60°/+62°, -30°/+22°, and ±16° are achieved by phase modulation alone. The proposed IRS offers the possibility of functional integration in a variety of indoor applications within the wireless communication field.
Collapse
Affiliation(s)
- Kyounghwan Kim
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ratanak Phon
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Eiyong Park
- School of Electrical and Electronic Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sungjoon Lim
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
- School of Electrical and Electronic Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
9
|
Gu H, Dong X, Zhang Q, Chi D, Zhang Y, Cheng Z, Lv T, Xie Z, Xu Y, Zhang D, Liu Y. Intelligent Reversible Reconfigurable Metamaterials Based on a Two-Way Shape Memory Polymer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54627-54635. [PMID: 39347963 DOI: 10.1021/acsami.4c11911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The development of intelligent reversible reconfigurable metamaterials has great significance in constructing three-dimensional metamaterials and introducing reversible tunability into metamaterials. Here, we introduce an intelligent metamaterial consisting of a two-way shape memory polymer (2W-SMP) ethylene vinyl acetate copolymer (EVA) actuator substrate and a patterned flexible-rigid film. Mechanical buckling of the 2W-SMP substrate was controlled by thermal stimulation. This makes it possible to afford an ability to initiate 3D structure formation or shape reconfiguration remotely in an on-demand fashion. In addition, the shape of the 2W-SMP substrate is temperature-dependent, allowing repeatable reversible deformation through temperature control after a single programming. Therefore, the electromagnetic properties of metamaterials can also be repeatedly and reversibly tuned between 9.15 and 10.82 GHz. Experimental demonstrations include the deformation and tunable electromagnetic properties of intelligent reversible reconfigurable metamaterial cells. The results create many opportunities for advanced programmable three-dimensional metamaterials.
Collapse
Affiliation(s)
- Haoyu Gu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xiaoyu Dong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Qiankun Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dequan Chi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Zhongjun Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Tong Lv
- Research Institute of Aerospace Special Materials and Processing Technology, Beijing 100174, P. R. China
| | - Zhimin Xie
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yongjun Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dongjie Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yuyan Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
10
|
Ho J, Kim W, Kim D, Chung SK, Lim S. Foldable Metamaterial Absorber with Liquid Metal Printing on Paper. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53261-53272. [PMID: 39315532 DOI: 10.1021/acsami.4c12021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Metamaterials, characterized by their unique artificial periodic structures, exhibit extraordinary abilities in controlling electromagnetic waves not found in natural materials. Metamaterial absorbers, for example, have been developed by patterning solid conductive materials on dielectric surfaces. However, the foldability limitations of solid conductors make them unsuitable as foldable metamaterial absorbers since they lose those desirable properties when folded. To address this challenge, various methods using liquid metals have emerged, but they either require often necessitate structural frames or are primarily suited for hard surfaces, limiting their foldability potential. This study proposes an innovative solution involving the deposition of liquid metal onto paper surfaces to overcome foldability constraints. We design a metamaterial absorber with a circular pattern using three sheets of printing paper bonded with a film, leveraging these adhesive properties of oxidized gallium-based liquid metal to waterproof agent coated printing paper while preventing adhesion to laser-printed toner surfaces. The experimental results show that this absorber achieves an absorption rate of more than 90% in the frequency range of 10.36-10.76 GHz while being insensitive to polarization and incidence angle. Surprisingly, our proposed absorber retains its excellent performance even after being folded and unfolded up to 50 times. This foldable metamaterial absorber made of liquid metal is a promising solution for electromagnetic wave management applications requiring flexibility and adaptability.
Collapse
Affiliation(s)
- Jinwoo Ho
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Woochan Kim
- Department of Mechanical Engineering, Myongji University, Yongin 17058, Republic of Korea
| | - Daeyoung Kim
- Department of Electrical Engineering, Korea Army Academy, Yeong-Cheon 38900, Republic of Korea
| | - Sang Kug Chung
- Department of Mechanical Engineering, Myongji University, Yongin 17058, Republic of Korea
| | - Sungjoon Lim
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
11
|
Zhang T, Wang Y, Feng X, Zuo Y, Yu H, Bao H, Jiang F, Jiang S. Flexible electronics for cardiovascular monitoring on complex physiological skins. iScience 2024; 27:110707. [PMID: 39262772 PMCID: PMC11387687 DOI: 10.1016/j.isci.2024.110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Cardiovascular diseases (CVDs) pose a significant global health threat, responsible for a considerable portion of worldwide mortality. Flexible electronics enable continuous, noninvasive, real-time, and portable monitoring, providing an ideal platform for personalized healthcare. Nevertheless, challenges persist in sustaining stable adherence across diverse and intricate skin environments, hindering further advancement toward clinical applications. Strategies such as structural design and chemical modification can significantly enhance the environmental adaptability and monitoring performance of flexible electronics. This review delineates processing techniques, including structural design and chemical modification, to mitigate signal interference from sebaceous skin, motion artifacts from the skin in motion, and infection risks from fragile skin, thereby enabling the accurate monitoring of key cardiovascular indicators in complex physiological environments. Moreover, it delves into the potential for the strategic development and improvement of flexible electronics to ensure their alignment with complex physiological environment requirements, facilitating their transition to clinical applications.
Collapse
Affiliation(s)
- Tianqi Zhang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Yunshen Wang
- Department of Pneumology, Tianjin Children's Hospital, Children's Hospital, Tianjin University, Tianjin 300204, China
| | - Xingdong Feng
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Yizhou Zuo
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Hannong Yu
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Hong Bao
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipments, Xidian University, Xi'an 710071, China
| | - Fan Jiang
- Geriatric Medical Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Shan Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipments, Xidian University, Xi'an 710071, China
| |
Collapse
|
12
|
Wen D, Yuan R, Cao K, Yang F, Chen R. Advancements in atomic-scale interface engineering for flexible electronics: enhancing flexibility and durability. NANOTECHNOLOGY 2024; 35:412501. [PMID: 39025081 DOI: 10.1088/1361-6528/ad64db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Flexible electronics, such as wearable displays, implantable electronics, soft robots, and smart skin, have garnered increasing attention. Despite notable advancements in research, a bottleneck remains at the product level due to the prevalent use of polymer-based materials, requiring encapsulation films for lifespan extension and reliable performance. Multilayer composites, incorporating thin inorganic layers to maintain low permeability towards moisture, oxygen, ions, etc, exhibit potential in achieving highly flexible barriers but encounter challenges stemming from interface instability between layers. This perspective offers a succinct review of strategies and provides atomic-scale interface modulation strategy utilizing atomic layer integration technology focused on enhancing the flexibility of high-barrier films. It delves into bendable multilayers with atomic-scale interface modulation strategies, encompassing internal stress and applied stress modulation, as well as stretchable composite structural designs such as gradient/hybrid, wavy, and island. These strategies showcase significant improvements in flexibility from bendable to stretchable while maintaining high barrier properties. Besides, optimized manufacturing methods, materials, and complex structure design based on atomic-scale interface engineering are provided, better aligning with the future development of flexible electronics. By laying the groundwork for these atomic-scale strategies, this perspective contributes to the evolution of flexible electronics, enhancing their flexibility, durability, and functionality.
Collapse
Affiliation(s)
- Di Wen
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Ruige Yuan
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Kun Cao
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Fan Yang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| | - Rong Chen
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China
| |
Collapse
|
13
|
Xiao BH, Xiao K, Li JX, Xiao CF, Cao S, Liu ZQ. Flexible electrochemical energy storage devices and related applications: recent progress and challenges. Chem Sci 2024; 15:11229-11266. [PMID: 39055032 PMCID: PMC11268522 DOI: 10.1039/d4sc02139h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Given the escalating demand for wearable electronics, there is an urgent need to explore cost-effective and environmentally friendly flexible energy storage devices with exceptional electrochemical properties. However, the existing types of flexible energy storage devices encounter challenges in effectively integrating mechanical and electrochemical performances. This review is intended to provide strategies for the design of components in flexible energy storage devices (electrode materials, gel electrolytes, and separators) with the aim of developing energy storage systems with excellent performance and deformability. Firstly, a concise overview is provided on the structural characteristics and properties of carbon-based materials and conductive polymer materials utilized in flexible energy storage devices. Secondly, the fabrication process and strategies for optimizing their structures are summarized. Subsequently, a comprehensive review is presented regarding the applications of carbon-based materials and conductive polymer materials in various fields of flexible energy storage, such as supercapacitors, lithium-ion batteries, and zinc-ion batteries. Finally, the challenges and future directions for next-generation flexible energy storage systems are proposed.
Collapse
Affiliation(s)
- Bo-Hao Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
- School of Materials Science & Engineering, Jiangsu University Zhenjiang 212013 China
| | - Kang Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Jian-Xi Li
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Can-Fei Xiao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| | - Shunsheng Cao
- School of Materials Science & Engineering, Jiangsu University Zhenjiang 212013 China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University Guangzhou 510006 China
| |
Collapse
|
14
|
Lu X, Mo Z, Liu Z, Hu Y, Du C, Liang L, Liu Z, Chen G. Robust, Efficient, and Recoverable Thermocells with Zwitterion-Boosted Hydrogel Electrolytes for Energy-Autonomous and Wearable Sensing. Angew Chem Int Ed Engl 2024; 63:e202405357. [PMID: 38682802 DOI: 10.1002/anie.202405357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/01/2024]
Abstract
The rapid growth of flexible quasi-solid-state thermocells (TECs) provides a fresh way forward for wearable electronics. However, their insufficient mechanical strength and power output still hinder their further applications. This work demonstrates a one-stone-two-birds strategy to synergistically enhance the mechanical and thermoelectrochemical properties of the [Fe(CN)6]3-/4--based TECs. By introducing Hofmeister effect and multiple non-covalent interactions via betaine zwitterions, the mechanical strength of the conventional brittle gelatin hydrogel electrolytes is substantially improved from 50 to 440 kPa, with a high stretchability approaching 250 %. Meanwhile, the betaine zwitterions strongly affect the solvation structure of [Fe(CN)6]3- ions, thus enlarging the entropy difference and raising the thermoelectrochemical Seebeck coefficient from 1.47 to 2.2 mV K-1. The resultant quasi-solid-state TECs exhibit a normalized output power density of 0.48 mW m-2 K-2, showing a notable improvement in overall performance compared to their counterparts without zwitterion regulation. The intrinsic thermo-reversible property also allows the TECs to repeatedly self-recover through sol-gel transformations, ensuring reliable energy output and even recycling of TECs in case of extreme mechanical damages. An energy-autonomous smart glove consisting of eighteen individual TECs is further designed, which can simultaneously monitor the temperature of different positions on any touched object, demonstrating high potential in wearable applications.
Collapse
Affiliation(s)
- Xin Lu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Ziwei Mo
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Zhaopeng Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Yifeng Hu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Chunyu Du
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Lirong Liang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Zhuoxin Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Guangming Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
15
|
Pan X, Zhou Z, Liu Y, Xiao Y, Lin S, Pu W, Wang H. A flexible precontact CNT-Al 2O 3 fiber sensor resistant to extreme temperatures. NANOSCALE 2024; 16:12577-12585. [PMID: 38856916 DOI: 10.1039/d4nr01573h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
As a new soft electronic product, a flexible precontact sensor provides spatial position sensing ability. However, the properties of traditional polymer materials change in industrial environments with extreme temperatures, which can cause the sensor function to decline or even fail. In this study, we propose a flexible fiber sensor based on the capacitor principle, which achieves a stable spatial positioning function and is not affected by a wide range of temperature changes. The fiber element of the sensor is obtained through the deposition of a flexible Al2O3 ceramic coating onto the surface of a carbon nanotube fiber (CNTF) via atomic layer deposition (ALD) technology. Coatings of different thicknesses (100 nm, 200 nm, and 300 nm) show different colors. The temperature resistance and flame retardancy of Al2O3 keep the morphology of the composite fiber unaffected by flame or high temperatures. Even at extreme temperatures (-78 °C to 500 °C), the sensor's sensing ability exhibits excellent stability. In addition, the spatial perception of the fibers remained viable after repeated bending (10 000 times). We demonstrate the potential of the sensor to acquire position information during high-temperature industrial pipe docking.
Collapse
Affiliation(s)
- Xinghai Pan
- School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610065, China.
| | - Zisong Zhou
- School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610065, China.
| | - Yanling Liu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610065, China.
| | - Yuhang Xiao
- School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610065, China.
| | - Sen Lin
- School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Wei Pu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610065, China.
| | - Haolun Wang
- School of Aeronautics and Astronautics, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
16
|
Jia L, Li Y, Ren A, Xiang T, Zhou S. Degradable and Recyclable Hydrogels for Sustainable Bioelectronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32887-32905. [PMID: 38904545 DOI: 10.1021/acsami.4c05663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Hydrogel bioelectronics has been widely used in wearable sensors, electronic skin, human-machine interfaces, and implantable tissue-electrode interfaces, providing great convenience for human health, safety, and education. The generation of electronic waste from bioelectronic devices jeopardizes human health and the natural environment. The development of degradable and recyclable hydrogels is recognized as a paradigm for realizing the next generation of environmentally friendly and sustainable bioelectronics. This review first summarizes the wide range of applications for bioelectronics, including wearable and implantable devices. Then, the employment of natural and synthetic polymers in hydrogel bioelectronics is discussed in terms of degradability and recyclability. Finally, this work provides constructive thoughts and perspectives on the current challenges toward hydrogel bioelectronics, providing valuable insights and guidance for the future evolution of sustainable hydrogel bioelectronics.
Collapse
Affiliation(s)
- Lianghao Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuanhong Li
- Department of Orthodontics, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Aobo Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Xiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
17
|
Chen B, Shen K, Li Y, Huang B, Su H, Xu J, Yang S, Zhou Q, Lan L, Peng J, Cao Y. Artificial Multi-Stimulus-Responsive E-Skin Based on an Ionic Film with a Counter-Ion Exchange Reagent. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310847. [PMID: 38385814 DOI: 10.1002/smll.202310847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/10/2024] [Indexed: 02/23/2024]
Abstract
Sensing pressure and temperature are two important functions of human skin that integrate different types of tactile receptors. In this paper, a deformable artificial flexible multi-stimulus-responsive sensor is demonstrated that can distinguish mechanical pressure from temperature by measuring the impedance and the electrical phase at the same frequency without signal interference. The electrical phase, which is used for measuring the temperature, is totally independent of the pressure by controlling the surface micro-shapes and the ion content of the ionic film. By doping the counter-ion exchange reagent into the ionic liquid before pouring, the upper temperature measuring limit increases from 35 to 50 °C, which is higher than the human body temperature and the ambient temperature on Earth. The sensor shows high sensitivity to pressure (up to 0.495 kPa-1) and a wide temperature sensing range (-10 to 50 °C). A multimodal ion-electronic skin (IEM-skin) with an 8 × 8 multi-stimulus-responsive sensor array is fabricated and can successfully sense the distribution of temperature and pressure at the same time. Finally, the sensors are used for monitoring the touching motions of a robot-arm finger controlled by a remote interactive glove and successfully detect the touching states and the temperature changes of different objects.
Collapse
Affiliation(s)
- Baozhong Chen
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Kangxin Shen
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yaping Li
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Bo Huang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Huiming Su
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Jintao Xu
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Shuai Yang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Qi Zhou
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Linfeng Lan
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Junbiao Peng
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yong Cao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
18
|
Qu Y, Zhou Y, Yang Q, Cao J, Liu Y, Qi X, Jiang S. Lignin-Derived Lightweight Carbon Aerogels for Tunable Epsilon-Negative Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401767. [PMID: 38713745 PMCID: PMC11234391 DOI: 10.1002/advs.202401767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/25/2024] [Indexed: 05/09/2024]
Abstract
Electromagnetic (EM) metamaterials have garnered considerable attention due to their capacity to achieve negative parameters, significantly influencing the integration of natural materials with artificially structural media. The emergence of carbon aerogels (CAs) offers an opportunity to create lightweight EM metamaterials, notable for their promising EM shielding or absorption effects. This paper introduces an efficient, low-cost method for fabricating CAs without requiring stringent drying conditions. By finely tuning the ZnCl2/lignin ratio, the porosity is controlled in CAs. This control leads to an epsilon-negative response in the radio-frequency region, driven by the intrinsic plasmonic state of the 3D carbon network, as opposed to traditional periodic building blocks. This approach yields a tunable and weakly epsilon-negative response, reaching an order of magnitude of -103 under MHz frequencies. Equivalent circuit analysis highlights the inductive characteristics of CAs, correlating their significant dielectric loss at low frequencies. Additionally, EM simulations are performed to evaluate the distribution of the electric field vector in epsilon-negative CAs, showcasing their potential for effective EM shielding. The lignin-derived, lightweight CAs with their tunable epsilon-negative response hold promise for pioneering new directions in EM metamaterials and broadening their application in diverse extreme conditions.
Collapse
Affiliation(s)
- Yunpeng Qu
- College of Physics, Guizhou University, Guiyang, 550025, China
| | - Yunlei Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311200, China
| | - Qiuyun Yang
- College of Physics, Guizhou University, Guiyang, 550025, China
| | - Jun Cao
- School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yao Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, China
| | - Xiaosi Qi
- College of Physics, Guizhou University, Guiyang, 550025, China
| | - Shan Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, China
- Jianghuai Advance Technology Center, Hefei, 230000, China
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
19
|
Hao Y, Niu Z, Yang J, Wang M, Liu H, Qin Y, Su W, Zhang H, Zhang C, Li X. Self-Powered Terahertz Modulators Based on Metamaterials, Liquid Crystals, and Triboelectric Nanogenerators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32249-32258. [PMID: 38869324 DOI: 10.1021/acsami.4c04251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
6G communication mainly occurs in the THz band (0.1-10 THz), which can achieve excellent performance. Self-powered THz modulators are essential for achieving better conduction, modulation, and manipulation of THz waves. Herein, a self-powered terahertz modulator, which is based on metamaterials, liquid crystals (LCs), and rotary triboelectric nanogenerators (R-TENGs), is proposed to realize the driving of different array elements. The corresponding designs can achieve an integrated design and preparation method for dynamic spectrum-reconfigurable liquid crystal metamaterials. In addition, for the type of cross-structure metamaterial liquid crystal box, a phase modulation of 1 GHz is achieved at frequencies of 0.117 and 0.161 THz with modulation depths of 13 and 11%, respectively. Because the R-TENG with a multifan blade and circular electrodes can generate 18 peaks of electric output in every rotation, it can successfully provide sufficient frequency alternating-current electric energy to drive the terahertz modulator and achieve a self-powered function. Our findings lay a solid theoretical foundation for further building self-powered THz communication systems and promote the development of a theoretical system for LC-driving spectrum-reconfigurable devices in the THz domain.
Collapse
Affiliation(s)
- Yijun Hao
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Zihao Niu
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Jiayi Yang
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Meiqi Wang
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Haopeng Liu
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Yong Qin
- State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Wei Su
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Hongke Zhang
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Chuguo Zhang
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Xiuhan Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| |
Collapse
|
20
|
Liu J, Huang L, Guo H, Liu H, Lu T. Hybrid-Microstructure-Based Soft Network Materials with Independent Tunability of Mechanical Properties over Large Deformations. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32411-32424. [PMID: 38865596 DOI: 10.1021/acsami.4c04966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Introducing auxetic metamaterials into stretchable electronics shows promising prospects for enhancing the performance and innovating the functionalities of various devices, such as stretchable strain sensors. Nevertheless, most existing auxetics fail to meet the requirement of stretchable electronics, which typically include high mechanical flexibility and stable Poisson's ratio over large deformations. Moreover, despite being highly advantageous for application in diverse load-bearing conditions, achieving tunability of J-shaped stress-strain response independent of negative Poisson's ratio remains a significant challenge. This paper introduces a class of hybrid-microstructure-based soft network materials (HMSNMs) consisting of different types of microstructures along the loading and transverse directions. The J-shaped stress-strain curve and nonlinear Poisson's ratio for HMSNMs can be tuned independently of each other. The HMSNM provides much higher strength than the corresponding existing metamaterial while offering a nearly stable negative Poisson's ratio over large strains. Both mechanical properties under infinitesimal and large deformations can be well-tuned by geometric parameters. Fascinating functionalities such as shape programming and stress regulation are achieved by integrating a set of HMSNMs in series/parallel configurations. A stretchable LED-integrated display capable of displaying dynamic images without distortion under uniaxial stretching serves as a demonstrative application.
Collapse
Affiliation(s)
- Jianxing Liu
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Linwei Huang
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haoyu Guo
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haiyang Liu
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR 999077, China
| | - Tongqing Lu
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
21
|
Duan Y, Yu R, Zhang H, Yang W, Xie W, Huang Y, Yin Z. Programmable, High-resolution Printing of Spatially Graded Perovskites for Multispectral Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313946. [PMID: 38582876 DOI: 10.1002/adma.202313946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Micro/nanostructured perovskites with spatially graded compositions and bandgaps are promising in filter-free, chip-level multispectral, and hyperspectral detection. However, achieving high-resolution patterning of perovskites with controlled graded compositions is challenging. Here, a programmable mixed electrohydrodynamic printing (M-ePrinting) technique is presented to realize the one-step direct-printing of arbitrary spatially graded perovskite micro/nanopatterns for the first time. M-ePrinting enables in situ mixing and ejection of solutions with controlled composition/bandgap by programmatically varying driving voltage applied to a multichannel nozzle. Composition can be graded over a single dot, line or complex pattern, and the printed feature size is down to 1 µm, which is the highest printing resolution of graded patterns to the knowledge. Photodetectors based on micro/nanostructured perovskites with halide ions gradually varying from Br to I are constructed, which successfully achieve multispectral detection and full-color imaging, with a high detectivity and responsivity of 3.27 × 1015 Jones and 69.88 A W-1, respectively. The presented method provides a versatile and competitive approach for such miniaturized bandgap-tunable perovskite spectrometer platforms and artificial vision systems, and also opens new avenues for the digital fabrication of composition-programmable structures.
Collapse
Affiliation(s)
- Yongqing Duan
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rui Yu
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hanyuan Zhang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weili Yang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenshuo Xie
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - YongAn Huang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhouping Yin
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| |
Collapse
|
22
|
Merces L, Ferro LMM, Thomas A, Karnaushenko DD, Luo Y, Egunov AI, Zhang W, Bandari VK, Lee Y, McCaskill JS, Zhu M, Schmidt OG, Karnaushenko D. Bio-Inspired Dynamically Morphing Microelectronics toward High-Density Energy Applications and Intelligent Biomedical Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313327. [PMID: 38402420 DOI: 10.1002/adma.202313327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Choreographing the adaptive shapes of patterned surfaces to exhibit designable mechanical interactions with their environment remains an intricate challenge. Here, a novel category of strain-engineered dynamic-shape materials, empowering diverse multi-dimensional shape modulations that are combined to form fine-grained adaptive microarchitectures is introduced. Using micro-origami tessellation technology, heterogeneous materials are provided with strategic creases featuring stimuli-responsive micro-hinges that morph precisely upon chemical and electrical cues. Freestanding multifaceted foldable packages, auxetic mesosurfaces, and morphable cages are three of the forms demonstrated herein of these complex 4-dimensional (4D) metamaterials. These systems are integrated in dual proof-of-concept bioelectronic demonstrations: a soft foldable supercapacitor enhancing its power density (≈108 mW cm-2), and a bio-adaptive device with a dynamic shape that may enable novel smart-implant technologies. This work demonstrates that intelligent material systems are now ready to support ultra-flexible 4D microelectronics, which can impart autonomy to devices culminating in the tangible realization of microelectronic morphogenesis.
Collapse
Affiliation(s)
- Leandro Merces
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Letícia Mariê Minatogau Ferro
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Aleena Thomas
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Institute of Chemistry, Chemnitz University of Technology, 09107, Chemnitz, Germany
| | - Dmitriy D Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Yumin Luo
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Aleksandr I Egunov
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Wenlan Zhang
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Vineeth K Bandari
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Yeji Lee
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - John S McCaskill
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- European Centre for Living Technology (ECLT), Venice, 30123, Italy
| | - Minshen Zhu
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09126, Chemnitz, Germany
- Nanophysics, Faculty of Physics, Dresden University of Technology, 01062, Dresden, Germany
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
| |
Collapse
|
23
|
Jiang Y, Ye D, Li A, Zhang B, Han W, Niu X, Zeng M, Guo L, Zhang G, Yin Z, Huang Y. Transient charge-driven 3D conformal printing via pulsed-plasma impingement. Proc Natl Acad Sci U S A 2024; 121:e2402135121. [PMID: 38771869 PMCID: PMC11145272 DOI: 10.1073/pnas.2402135121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024] Open
Abstract
Seamless integration of microstructures and circuits on three-dimensional (3D) complex surfaces is of significance and is catalyzing the emergence of many innovative 3D curvy electronic devices. However, patterning fine features on arbitrary 3D targets remains challenging. Here, we propose a facile charge-driven electrohydrodynamic 3D microprinting technique that allows micron- and even submicron-scale patterning of functional inks on a couple of 3D-shaped dielectrics via an atmospheric-pressure cold plasma jet. Relying on the transient charging of exposed sites arising from the weakly ionized gas jet, the specified charge is programmably deposited onto the surface as a virtual electrode with spatial and time spans of ~mm in diameter and ~μs in duration to generate a localized electric field accordantly. Therefore, inks with a wide range of viscosities can be directly drawn out from micro-orifices and deposited on both two-dimensional (2D) planar and 3D curved surfaces with a curvature radius down to ~1 mm and even on the inner wall of narrow cavities via localized electrostatic attraction, exhibiting a printing resolution of ~450 nm. In addition, several conformal electronic devices were successfully printed on 3D dielectric objects. Self-aligned 3D microprinting, with stacking layers up to 1400, is also achieved due to the electrified surfaces. This microplasma-induced printing technique exhibits great advantages such as ultrahigh resolution, excellent compatibility of inks and substrates, antigravity droplet dispersion, and omnidirectional printing on 3D freeform surfaces. It could provide a promising solution for intimately fabricating electronic devices on arbitrary 3D surfaces.
Collapse
Affiliation(s)
- Yu Jiang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Dong Ye
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Aokang Li
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Bo Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| | - Wenhu Han
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| | - Xuechen Niu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Mingtao Zeng
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Lianbo Guo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Guanjun Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi710049, People's Republic of China
| | - Zhouping Yin
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - YongAn Huang
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| |
Collapse
|
24
|
Wang Y, Jing W, Gao L, Han F, Meng Q, Yang C, Zhao L, Jiang Z, Chan CH. Split ring hole metamaterial-enhanced pyroelectric detector for efficient multi-narrowband terahertz detection. OPTICS EXPRESS 2024; 32:19779-19791. [PMID: 38859104 DOI: 10.1364/oe.522788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/04/2024] [Indexed: 06/12/2024]
Abstract
Derived from infrared pyroelectric detection, typical terahertz (THz) pyroelectric detectors have low sensitivity at low-frequency THz bands. Based on the high-efficiency absorption of the metamaterial perfect absorber (MPA), a novel split ring hole metamaterial-enhanced pyroelectric detector is proposed to achieve efficient multi-narrowband THz detection. Using high frequency simulation software (HFSS), the dimensional parameters including ring radius, ring width, connection beam width, array period, and thickness, are optimized to enhance efficient multi-narrowband absorption. The as-optimized metamaterial-enhanced detectors are fabricated via micro-nano manufacturing technology. The voltage responsiveness and noise equivalent power of the metamaterial-enhanced detector are tested by THz focused optical path and compared with those of the typical pyroelectric detector and the simulated MPA absorptivity. The results indicate that the metamaterial-enhanced detector has a multi-narrowband detection capability at 0.245 THz, 0.295 THz, and 0.38 THz, which is close to the simulated MPA absorptivity. Compared to the typical pyroelectric detector, the split ring hole metamaterial-enhanced detector can simultaneously achieve thermal absorption, thermal conduction, and pyroelectricity in the same MPA structure, providing faster response speed above 100 Hz chopper frequency and two times higher detection sensitivity at multi-narrowband THz frequencies. This research can be used for THz sensing, absorption filtering, biological macromolecule detection, and other applications.
Collapse
|
25
|
Peng J, Lin X, Yan X, Yan X, Hu X, Yao H, Liang L, Ma G. Terahertz Biosensor Engineering Based on Quasi-BIC Metasurface with Ultrasensitive Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:799. [PMID: 38727393 PMCID: PMC11085241 DOI: 10.3390/nano14090799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
Terahertz (THz) sensors have attracted great attention in the biological field due to their nondestructive and contact-free biochemical samples. Recently, the concept of a quasi-bound state in the continuum (QBIC) has gained significant attention in designing biosensors with ultrahigh sensitivity. QBIC-based metasurfaces (MSs) achieve excellent performance in various applications, including sensing, optical switching, and laser, providing a reliable platform for biomaterial sensors with terahertz radiation. In this study, a structure-engineered THz MS consisting of a "double C" array has been designed, in which an asymmetry parameter α is introduced into the structure by changing the length of one subunit; the Q-factor of the QBIC device can be optimized by engineering the asymmetry parameter α. Theoretical calculation with coupling equations can well reproduce the THz transmission spectra of the designed THz QBIC MS obtained from the numerical simulation. Experimentally, we adopt an MS with α = 0.44 for testing arginine molecules. The experimental results show that different concentrations of arginine molecules lead to significant transmission changes near QBIC resonant frequencies, and the amplitude change is shown to be 16 times higher than that of the classical dipole resonance. The direct limit of detection for arginine molecules on the QBIC MS reaches 0.36 ng/mL. This work provides a new way to realize rapid, accurate, and nondestructive sensing of trace molecules and has potential application in biomaterial detection.
Collapse
Affiliation(s)
- Jun Peng
- Department of Physics, Shanghai University, Shanghai 200444, China; (J.P.); (X.L.); (X.Y.)
- School of Opto-Electronic Engineering, Zaozhuang University, Zaozhuang 277160, China; (X.Y.); (X.H.)
| | - Xian Lin
- Department of Physics, Shanghai University, Shanghai 200444, China; (J.P.); (X.L.); (X.Y.)
| | - Xiaona Yan
- Department of Physics, Shanghai University, Shanghai 200444, China; (J.P.); (X.L.); (X.Y.)
| | - Xin Yan
- School of Opto-Electronic Engineering, Zaozhuang University, Zaozhuang 277160, China; (X.Y.); (X.H.)
| | - Xiaofei Hu
- School of Opto-Electronic Engineering, Zaozhuang University, Zaozhuang 277160, China; (X.Y.); (X.H.)
| | - Haiyun Yao
- School of Opto-Electronic Engineering, Zaozhuang University, Zaozhuang 277160, China; (X.Y.); (X.H.)
| | - Lanju Liang
- School of Opto-Electronic Engineering, Zaozhuang University, Zaozhuang 277160, China; (X.Y.); (X.H.)
| | - Guohong Ma
- Department of Physics, Shanghai University, Shanghai 200444, China; (J.P.); (X.L.); (X.Y.)
| |
Collapse
|
26
|
Zhang J, Shi BQ, Wang B, Yu GQ. Crushing Response and Optimization of a Modified 3D Re-Entrant Honeycomb. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2083. [PMID: 38730890 PMCID: PMC11084968 DOI: 10.3390/ma17092083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
A modified 3D re-entrant honeycomb is designed and fabricated utilizing Laser Cladding Deposition (LCD) technology, the mechanical properties of which are systematically investigated by experimental and finite element (FE) methods. Firstly, the influences of honeycomb angle on localized deformation and the response of force are studied by an experiment. Experimental results reveal that the honeycomb angles have a significant effect on deformation and force. Secondly, a series of numerical studies are conducted to analyze stress characteristics and energy absorption under different angles (α) and velocities (v). It is evident that two variables play an important role in stress and energy. Thirdly, response surface methodology (RSM) and the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) are implemented with high precision to solve multi-objective optimization. Finally, the final compromise solution is determined based on the fitness function, with an angle of 49.23° and an impact velocity of 16.40 m/s. Through simulation verification, the errors of energy absorption (EA) and peak crush stress (PCS) are 9.26% and 0.4%, respectively. The findings of this study offer valuable design guidance for selecting the optimal design parameters under the same mass conditions to effectively enhance the performance of the honeycomb.
Collapse
Affiliation(s)
- Jun Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Bo-Qiang Shi
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Bo Wang
- Xinxing Cathay International Intelligent Equipment Technology Research Institute Co., Ltd., Beijing 100071, China;
| | - Guo-Qing Yu
- State Key Laboratory of Intelligent Manufacturing of Advanced Construction Machinery, Xuzhou 221004, China;
| |
Collapse
|
27
|
El Helou C, Hyatt LP, Buskohl PR, Harne RL. Intelligent electroactive material systems with self-adaptive mechanical memory and sequential logic. Proc Natl Acad Sci U S A 2024; 121:e2317340121. [PMID: 38527196 PMCID: PMC10998560 DOI: 10.1073/pnas.2317340121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/09/2024] [Indexed: 03/27/2024] Open
Abstract
By synthesizing the requisite functionalities of intelligence in an integrated material system, it may become possible to animate otherwise inanimate matter. A significant challenge in this vision is to continually sense, process, and memorize information in a decentralized way. Here, we introduce an approach that enables all such functionalities in a soft mechanical material system. By integrating nonvolatile memory with continuous processing, we develop a sequential logic-based material design framework. Soft, conductive networks interconnect with embedded electroactive actuators to enable self-adaptive behavior that facilitates autonomous toggling and counting. The design principles are scaled in processing complexity and memory capacity to develop a model 8-bit mechanical material that can solve linear algebraic equations based on analog mechanical inputs. The resulting material system operates continually to monitor the current mechanical configuration and to autonomously search for solutions within a desired error. The methods created in this work are a foundation for future synthetic general intelligence that can empower materials to autonomously react to diverse stimuli in their environment.
Collapse
Affiliation(s)
- Charles El Helou
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA16802
| | - Lance P. Hyatt
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA16802
| | - Philip R. Buskohl
- Functional Materials Division, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH45433
| | - Ryan L. Harne
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA16802
| |
Collapse
|
28
|
Jin L, Yang S. Engineering Kirigami Frameworks Toward Real-World Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308560. [PMID: 37983878 DOI: 10.1002/adma.202308560] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Indexed: 11/22/2023]
Abstract
The surge in advanced manufacturing techniques has led to a paradigm shift in the realm of material design from developing completely new chemistry to tailoring geometry within existing materials. Kirigami, evolved from a traditional cultural and artistic craft of cutting and folding, has emerged as a powerful framework that endows simple 2D sheets with unique mechanical, thermal, optical, and acoustic properties, as well as shape-shifting capabilities. Given its flexibility, versatility, and ease of fabrication, there are significant efforts in developing kirigami algorithms to create various architectured materials for a wide range of applications. This review summarizes the fundamental mechanisms that govern the transformation of kirigami structures and elucidates how these mechanisms contribute to their distinctive properties, including high stretchability and adaptability, tunable surface topography, programmable shape morphing, and characteristics of bistability and multistability. It then highlights several promising applications enabled by the unique kirigami designs and concludes with an outlook on the future challenges and perspectives of kirigami-inspired metamaterials toward real-world applications.
Collapse
Affiliation(s)
- Lishuai Jin
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
29
|
Jiao Z, Hu Z, Dong Z, Tang W, Yang H, Zou J. Reprogrammable Metamaterial Processors for Soft Machines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305501. [PMID: 38161221 PMCID: PMC10953550 DOI: 10.1002/advs.202305501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Soft metamaterials have attracted extensive attention due to their remarkable properties. These materials hold the potential to program and control the morphing behavior of soft machines, however, their combination is limited by the poor reprogrammability of metamaterials and incompatible communication between them. Here, printable and recyclable soft metamaterials possessing reprogrammable embedded intelligence to regulate the morphing of soft machines are introduced. These metamaterials are constructed from interconnected and periodically arranged logic unit cells that are able to perform compound logic operations coupling multiplication and negation. The scalable computation capacity of the unit cell empowers it to simultaneously process multiple fluidic signals with different types and magnitudes, thereby allowing the execution of sophisticated and high-level control operations. By establishing the laws of physical Boolean algebra and formulating a universal design route, soft metamaterials capable of diverse logic operations can be readily created and reprogrammed. Besides, the metamaterials' potential of directly serving as fluidic processors for soft machines is validated by constructing a soft latched demultiplexer, soft controllers capable of universal and customizable morphing programming, and a reprogrammable processor without reconnection. This work provides a facile way to create reprogrammable soft fluidic control systems to meet on-demand requirements in dynamic situations.
Collapse
Affiliation(s)
- Zhongdong Jiao
- State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhou310058China
| | - Zhenhan Hu
- State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhou310058China
| | - Zeyu Dong
- State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhou310058China
| | - Wei Tang
- State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhou310058China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhou310058China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhou310058China
| |
Collapse
|
30
|
Zhou Y, Wang S, Yin J, Wang J, Manshaii F, Xiao X, Zhang T, Bao H, Jiang S, Chen J. Flexible Metasurfaces for Multifunctional Interfaces. ACS NANO 2024; 18:2685-2707. [PMID: 38241491 DOI: 10.1021/acsnano.3c09310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optical metasurfaces, capable of manipulating the properties of light with a thickness at the subwavelength scale, have been the subject of extensive investigation in recent decades. This research has been mainly driven by their potential to overcome the limitations of traditional, bulky optical devices. However, most existing optical metasurfaces are confined to planar and rigid designs, functions, and technologies, which greatly impede their evolution toward practical applications that often involve complex surfaces. The disconnect between two-dimensional (2D) planar structures and three-dimensional (3D) curved surfaces is becoming increasingly pronounced. In the past two decades, the emergence of flexible electronics has ushered in an emerging era for metasurfaces. This review delves into this cutting-edge field, with a focus on both flexible and conformal design and fabrication techniques. Initially, we reflect on the milestones and trajectories in modern research of optical metasurfaces, complemented by a brief overview of their theoretical underpinnings and primary classifications. We then showcase four advanced applications of optical metasurfaces, emphasizing their promising prospects and relevance in areas such as imaging, biosensing, cloaking, and multifunctionality. Subsequently, we explore three key trends in optical metasurfaces, including mechanically reconfigurable metasurfaces, digitally controlled metasurfaces, and conformal metasurfaces. Finally, we summarize our insights on the ongoing challenges and opportunities in this field.
Collapse
Affiliation(s)
- Yunlei Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Shaolei Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Junyi Yin
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jianjun Wang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Farid Manshaii
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianqi Zhang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Hong Bao
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Shan Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
31
|
Gong H, Huang J, Wang J, Zhao P, Guo M, Liang C, Bai D, Jiang Z, Li R. Additive Manufacturing for Terahertz Metamaterials on the Dielectric Surface based on Optimized Electrohydrodynamic Drop-on-demand Printing Technology. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4222-4230. [PMID: 38215444 DOI: 10.1021/acsami.3c15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The conventional techniques used to fabricate terahertz metamaterials, such as photolithography and etching, face hindrances in the form of high costs, lengthy processing cycles, and environmental pollution. In contrast, electrohydrodynamic (EHD) drop-on-demand (DOD) printing technology holds promise as an additive manufacturing method capable of producing micrometer- and nanometer-scale patterns rapidly and cost-effectively. However, achieving stable large-area printing proves challenging due to issues related to charge accumulation in insulated substrates and inconsistent meniscus vibration. In this paper, a smooth bipolar waveform driving method is proposed aimed at solving the problems of charge accumulation on insulated substrates and poor print consistency. The method involves utilizing driving waveforms with opposite polarities for neighboring droplets, allowing the charges carried by the printed droplets to neutralize each other. Moreover, extending the duration of the high voltage rise and fall times enhances the consistency of meniscus motion, thereby improving the stability of printing. Through optimization of the printing parameters, droplets with a diameter of 1.37 μm and straight lines with a width of 3 μm were printed. Furthermore, this approach was employed to print terahertz metamaterial surface devices, and the performance of the metamaterial is in good agreement with the simulation results. These findings demonstrate that the method greatly improves the stability of EHD DOD printing, thereby advancing the application of the technology in additive processing at the micro- and nanoscale.
Collapse
Affiliation(s)
- Hongxiao Gong
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| | - Jin Huang
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| | - Jianjun Wang
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| | - Pengbing Zhao
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| | - Man Guo
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| | - Chaoyu Liang
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| | - Dongqiao Bai
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| | - Zhuoyi Jiang
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| | - Ruibo Li
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipment, Xidian University, Xi'an 710071, China
| |
Collapse
|
32
|
Zhang H, Zhang Y. Rational Design of Flexible Mechanical Force Sensors for Healthcare and Diagnosis. MATERIALS (BASEL, SWITZERLAND) 2023; 17:123. [PMID: 38203977 PMCID: PMC10780056 DOI: 10.3390/ma17010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Over the past decade, there has been a significant surge in interest in flexible mechanical force sensing devices and systems. Tremendous efforts have been devoted to the development of flexible mechanical force sensors for daily healthcare and medical diagnosis, driven by the increasing demand for wearable/portable devices in long-term healthcare and precision medicine. In this review, we summarize recent advances in diverse categories of flexible mechanical force sensors, covering piezoresistive, capacitive, piezoelectric, triboelectric, magnetoelastic, and other force sensors. This review focuses on their working principles, design strategies and applications in healthcare and diagnosis, with an emphasis on the interplay among the sensor architecture, performance, and application scenario. Finally, we provide perspectives on the remaining challenges and opportunities in this field, with particular discussions on problem-driven force sensor designs, as well as developments of novel sensor architectures and intelligent mechanical force sensing systems.
Collapse
Affiliation(s)
- Hang Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Zhang Y, Deshmukh A, Wang KW. Embodying Multifunctional Mechano-Intelligence in and Through Phononic Metastructures Harnessing Physical Reservoir Computing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305074. [PMID: 37870205 DOI: 10.1002/advs.202305074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Recent advances in autonomous systems have prompted a strong demand for the next generation of adaptive structures and materials to possess built-in intelligence in their mechanical domain, the so-called mechano-intelligence (MI). Previous MI attempts mainly focused on specific case studies and lacked a systematic foundation in effectively and efficiently constructing and integrating different intelligent functions. Here, a new approach is uncovered to create multifunctional MI in adaptive structures using physical reservoir computing (PRC). That is, to concurrently embody computing power and the key elements of intelligence, namely perception, decision-making, and commanding, directly in the mechanical domain, advancing from conventional reliance on add-on computers and massive electronics. As an exemplar platform, a mechanically intelligent phononic metastructure is developed by harnessing its high-degree-of-freedom nonlinear dynamics as PRC power. Through analyses and experiments, multiple intelligent structural functions are demonstrated ranging from self-tuning wave controls to wave-based logic gates. This research provides the much-needed basis for creating future smart structures and materials that greatly surpass the state of the art-such as lower power consumption, more direct interactions, and better survivability in harsh environments or under cyberattacks. Moreover, it enables the addition of new functions and autonomy to systems without overburdening the onboard computers.
Collapse
Affiliation(s)
- Yuning Zhang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aditya Deshmukh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kon-Well Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
34
|
Chen Y, Zhou Y, Hu Z, Lu W, Li Z, Gao N, Liu N, Li Y, He J, Gao Q, Xie Z, Li J, He Y. Gelatin-Based Metamaterial Hydrogel Films with High Conformality for Ultra-Soft Tissue Monitoring. NANO-MICRO LETTERS 2023; 16:34. [PMID: 38019305 PMCID: PMC10686972 DOI: 10.1007/s40820-023-01225-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/24/2023] [Indexed: 11/30/2023]
Abstract
Implantable hydrogel-based bioelectronics (IHB) can precisely monitor human health and diagnose diseases. However, achieving biodegradability, biocompatibility, and high conformality with soft tissues poses significant challenges for IHB. Gelatin is the most suitable candidate for IHB since it is a collagen hydrolysate and a substantial part of the extracellular matrix found naturally in most tissues. This study used 3D printing ultrafine fiber networks with metamaterial design to embed into ultra-low elastic modulus hydrogel to create a novel gelatin-based conductive film (GCF) with mechanical programmability. The regulation of GCF nearly covers soft tissue mechanics, an elastic modulus from 20 to 420 kPa, and a Poisson's ratio from - 0.25 to 0.52. The negative Poisson's ratio promotes conformality with soft tissues to improve the efficiency of biological interfaces. The GCF can monitor heartbeat signals and respiratory rate by determining cardiac deformation due to its high conformability. Notably, the gelatin characteristics of the biodegradable GCF enable the sensor to monitor and support tissue restoration. The GCF metamaterial design offers a unique idea for bioelectronics to develop implantable sensors that integrate monitoring and tissue repair and a customized method for endowing implanted sensors to be highly conformal with soft tissues.
Collapse
Affiliation(s)
- Yuewei Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yanyan Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Zihe Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Weiying Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Zhuang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Ning Gao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Nian Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yuanrong Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jing He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China.
| | - Jiachun Li
- School of Mechanical Engineering, Guizhou University, Guiyang, 550025, People's Republic of China.
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
35
|
Hu T, Pan T, Guo D, Xiao Y, Li F, Gao M, Huang Z, Zhu J, Cheng T, Lin Y. Omnidirectional Configuration of Stretchable Strain Sensor Enabled by the Strain Engineering with Chiral Auxetic Metamaterial. ACS NANO 2023; 17:22035-22045. [PMID: 37844133 DOI: 10.1021/acsnano.3c08624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
An electromechanical interface plays a pivotal role in determining the performance of a stretchable strain sensor. The intrinsic mechanical property of the elastomer substrate prevents the efficient modulation of the electromechanical interface, which limits the further evolution of a stretchable strain sensor. In this study, a chiral auxetic metamaterial (CAM) is incorporated into the elastomer substrate of a stretchable strain sensor to override the deformation behavior of the pristine device and regulate the device performance. The tunable isotropic Poisson's ratio (from 0.37 to -0.25) achieved by the combination of CAM and elastomer substrate endows the stretchable strain sensor with significantly enhanced sensitivity (53-fold improvement) and excellent omnidirectional sensing ability. The regulation mechanism associated with crack propagation on the deformed substrate is also revealed with finite element simulations and experiments. The demonstration of on-body monitoring of human physiological signals and a smart training assistant for trampoline gymnastics with the CAM-incorporated strain sensor further illustrates the benefits of omnidirectionally enhanced performance.
Collapse
Affiliation(s)
- Taiqi Hu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
- School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
- Research Centre for Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, People's Republic of China
| | - Dengji Guo
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Yang Xiao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Fan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Zhenlong Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
- Research Centre for Information Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, People's Republic of China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | - Jia Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tiedong Cheng
- School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, People's Republic of China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| |
Collapse
|
36
|
Lee H, Jang J, Lee J, Shin M, Lee JS, Son D. Stretchable Gold Nanomembrane Electrode with Ionic Hydrogel Skin-Adhesive Properties. Polymers (Basel) 2023; 15:3852. [PMID: 37765706 PMCID: PMC10537659 DOI: 10.3390/polym15183852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Skin has a dynamic surface and offers essential information through biological signals originating from internal organs, blood vessels, and muscles. Soft and stretchable bioelectronics can be used in wearable machines for long-term stability and to continuously obtain distinct bio-signals in conjunction with repeated expansion and contraction with physical activities. While monitoring bio-signals, the electrode and skin must be firmly attached for high signal quality. Furthermore, the signal-to-noise ratio (SNR) should be high enough, and accordingly, the ionic conductivity of an adhesive hydrogel needs to be improved. Here, we used a chitosan-alginate-chitosan (CAC) triple hydrogel layer as an interface between the electrodes and the skin to enhance ionic conductivity and skin adhesiveness and to minimize the mechanical mismatch. For development, thermoplastic elastomer Styrene-Ethylene-Butylene-Styrene (SEBS) dissolved in toluene was used as a substrate, and gold nanomembranes were thermally evaporated on SEBS. Subsequently, CAC triple layers were drop-casted onto the gold surface one by one and dried successively. Lastly, to demonstrate the performance of our electrodes, a human electrocardiogram signal was monitored. The electrodes coupled with our CAC triple hydrogel layer showed high SNR with clear PQRST peaks.
Collapse
Affiliation(s)
- Hyelim Lee
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaepyo Jang
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea (M.S.)
| | - Jaebeom Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea (M.S.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mikyung Shin
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea (M.S.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jung Seung Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea (M.S.)
- Department of Superintelligence Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
37
|
Lu X, Xie D, Zhu K, Wei S, Mo Z, Du C, Liang L, Chen G, Liu Z. Swift Assembly of Adaptive Thermocell Arrays for Device-Level Healable and Energy-Autonomous Motion Sensors. NANO-MICRO LETTERS 2023; 15:196. [PMID: 37566154 PMCID: PMC10421839 DOI: 10.1007/s40820-023-01170-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023]
Abstract
The evolution of wearable technology has prompted the need for adaptive, self-healable, and energy-autonomous energy devices. This study innovatively addresses this challenge by introducing an MXene-boosted hydrogel electrolyte, which expedites the assembly process of flexible thermocell (TEC) arrays and thus circumvents the complicated fabrication of typical wearable electronics. Our findings underscore the hydrogel electrolyte's superior thermoelectrochemical performance under substantial deformations and repeated self-healing cycles. The resulting hydrogel-based TEC yields a maximum power output of 1032.1 nW under the ΔT of 20 K when being stretched to 500% for 1000 cycles, corresponding to 80% of its initial state; meanwhile, it sustains 1179.1 nW under the ΔT of 20 K even after 60 cut-healing cycles, approximately 92% of its initial state. The as-assembled TEC array exhibits device-level self-healing capability and high adaptability to human body. It is readily applied for touch-based encrypted communication where distinct voltage signals can be converted into alphabet letters; it is also employed as a self-powered sensor to in-situ monitor a variety of body motions for complex human actions. The swift assembly approach, combined with the versatile functionality of the TEC device, paves the way for future advancements in wearable electronics targeting at fitness monitoring and human-machine interfaces.
Collapse
Affiliation(s)
- Xin Lu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Daibin Xie
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Kaihua Zhu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Shouhao Wei
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Ziwei Mo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Chunyu Du
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Lirong Liang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Guangming Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| | - Zhuoxin Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
38
|
Lin X, Fan L, Wang L, Filppula AM, Yu Y, Zhang H. Fabricating biomimetic materials with ice-templating for biomedical applications. SMART MEDICINE 2023; 2:e20230017. [PMID: 39188345 PMCID: PMC11236069 DOI: 10.1002/smmd.20230017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 08/28/2024]
Abstract
The proper organization of cells and tissues is essential for their functionalization in living organisms. To create materials that mimic natural structures, researchers have developed techniques such as patterning, templating, and printing. Although these techniques own several advantages, these processes still involve complexity, are time-consuming, and have high cost. To better simulate natural materials with micro/nanostructures that have evolved for millions of years, the use of ice templates has emerged as a promising method for producing biomimetic materials more efficiently. This article explores the historical approaches taken to produce traditional biomimetic structural biomaterials and delves into the principles underlying the ice-template method and their various applications in the creation of biomimetic materials. It also discusses the most recent biomedical uses of biomimetic materials created via ice templates, including porous microcarriers, tissue engineering scaffolds, and smart materials. Finally, the challenges and potential of current ice-template technology are analyzed.
Collapse
Affiliation(s)
- Xiang Lin
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Lu Fan
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Li Wang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Anne M. Filppula
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Yunru Yu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
39
|
Jiang S, Zhang T, Zhou Y, Lai P, Huang Y. Wearable ultrasound bioelectronics for healthcare monitoring. Innovation (N Y) 2023; 4:100447. [PMID: 37485081 PMCID: PMC10362511 DOI: 10.1016/j.xinn.2023.100447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 07/25/2023] Open
Affiliation(s)
- Shan Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Tianqi Zhang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Yingying Zhou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Puxiang Lai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Pediatric Cardiac Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100037, China
| |
Collapse
|
40
|
Du J, Fu G, Xu X, Elshahawy AM, Guan C. 3D Printed Graphene-Based Metamaterials: Guesting Multi-Functionality in One Gain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207833. [PMID: 36760019 DOI: 10.1002/smll.202207833] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/08/2023] [Indexed: 05/11/2023]
Abstract
Advanced functional materials with fascinating properties and extended structural design have greatly broadened their applications. Metamaterials, exhibiting unprecedented physical properties (mechanical, electromagnetic, acoustic, etc.), are considered frontiers of physics, material science, and engineering. With the emerging 3D printing technology, the manufacturing of metamaterials becomes much more convenient. Graphene, due to its superior properties such as large surface area, superior electrical/thermal conductivity, and outstanding mechanical properties, shows promising applications to add multi-functionality into existing metamaterials for various applications. In this review, the aim is to outline the latest developments and applications of 3D printed graphene-based metamaterials. The structure design of different types of metamaterials and the fabrication strategies for 3D printed graphene-based materials are first reviewed. Then the representative explorations of 3D printed graphene-based metamaterials and multi-functionality that can be introduced with such a combination are further discussed. Subsequently, challenges and opportunities are provided, seeking to point out future directions of 3D printed graphene-based metamaterials.
Collapse
Affiliation(s)
- Junjie Du
- Frontiers Science Center for Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Gangwen Fu
- Frontiers Science Center for Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Xi Xu
- Frontiers Science Center for Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | | | - Cao Guan
- Frontiers Science Center for Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
41
|
Lee JY, Oh MH, Park JH, Kang SH, Kang SK. Three-Dimensionally Printed Expandable Structural Electronics Via Multi-Material Printing Room-Temperature-Vulcanizing (RTV) Silicone/Silver Flake Composite and RTV. Polymers (Basel) 2023; 15:2003. [PMID: 37177151 PMCID: PMC10181061 DOI: 10.3390/polym15092003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Three-dimensional (3D) printing has various applications in many fields, such as soft electronics, robotic systems, biomedical implants, and the recycling of thermoplastic composite materials. Three-dimensional printing, which was only previously available for prototyping, is currently evolving into a technology that can be utilized by integrating various materials into customized structures in a single step. Owing to the aforementioned advantages, multi-functional 3D objects or multi-material-designed 3D patterns can be fabricated. In this study, we designed and fabricated 3D-printed expandable structural electronics in a substrateless auxetic pattern that can be adapted to multi-dimensional deformation. The printability and electrical conductivity of a stretchable conductor (Ag-RTV composite) were optimized by incorporating a lubricant. The Ag-RTV and RTV were printed in the form of conducting voxels and frame voxels through multi-nozzle printing and were arranged in a negative Poisson's ratio pattern with a missing rib structure, to realize an expandable passive component. In addition, the expandable structural electronics were embedded in a soft actuator via one-step printing, confirming the possibility of fabricating stable interconnections in expanding deformation via a missing rib pattern.
Collapse
Affiliation(s)
- Ju-Yong Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; (J.-Y.L.); (M.-H.O.); (J.-H.P.); (S.-H.K.)
| | - Min-Ha Oh
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; (J.-Y.L.); (M.-H.O.); (J.-H.P.); (S.-H.K.)
| | - Joo-Hyeon Park
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; (J.-Y.L.); (M.-H.O.); (J.-H.P.); (S.-H.K.)
| | - Se-Hun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; (J.-Y.L.); (M.-H.O.); (J.-H.P.); (S.-H.K.)
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea; (J.-Y.L.); (M.-H.O.); (J.-H.P.); (S.-H.K.)
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
- Soft Foundry Nano Systems Institute (NSI), Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
42
|
Su R, Chen J, Zhang X, Wang W, Li Y, He R, Fang D. 3D-Printed Micro/Nano-Scaled Mechanical Metamaterials: Fundamentals, Technologies, Progress, Applications, and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206391. [PMID: 37026433 DOI: 10.1002/smll.202206391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/08/2023] [Indexed: 06/19/2023]
Abstract
Micro/nano-scaled mechanical metamaterials have attracted extensive attention in various fields attributed to their superior properties benefiting from their rationally designed micro/nano-structures. As one of the most advanced technologies in the 21st century, additive manufacturing (3D printing) opens an easier and faster path for fabricating micro/nano-scaled mechanical metamaterials with complex structures. Here, the size effect of metamaterials at micro/nano scales is introduced first. Then, the additive manufacturing technologies to fabricate mechanical metamaterials at micro/nano scales are introduced. The latest research progress on micro/nano-scaled mechanical metamaterials is also reviewed according to the type of materials. In addition, the structural and functional applications of micro/nano-scaled mechanical metamaterials are further summarized. Finally, the challenges, including advanced 3D printing technologies, novel material development, and innovative structural design, for micro/nano-scaled mechanical metamaterials are discussed, and future perspectives are provided. The review aims to provide insight into the research and development of 3D-printed micro/nano-scaled mechanical metamaterials.
Collapse
Affiliation(s)
- Ruyue Su
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jingyi Chen
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xueqin Zhang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wenqing Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ying Li
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Rujie He
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Daining Fang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
43
|
Hu Z, Niu Q, Hsiao BS, Yao X, Zhang Y. Bioactive polymer-enabled conformal neural interface and its application strategies. MATERIALS HORIZONS 2023; 10:808-828. [PMID: 36597872 DOI: 10.1039/d2mh01125e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neural interface is a powerful tool to control the varying neuron activities in the brain, where the performance can directly affect the quality of recording neural signals and the reliability of in vivo connection between the brain and external equipment. Recent advances in bioelectronic innovation have provided promising pathways to fabricate flexible electrodes by integrating electrodes on bioactive polymer substrates. These bioactive polymer-based electrodes can enable the conformal contact with irregular tissue and result in low inflammation when compared to conventional rigid inorganic electrodes. In this review, we focus on the use of silk fibroin and cellulose biopolymers as well as certain synthetic polymers to offer the desired flexibility for constructing electrode substrates for a conformal neural interface. First, the development of a neural interface is reviewed, and the signal recording methods and tissue response features of the implanted electrodes are discussed in terms of biocompatibility and flexibility of corresponding neural interfaces. Following this, the material selection, structure design and integration of conformal neural interfaces accompanied by their effective applications are described. Finally, we offer our perspectives on the evolution of desired bioactive polymer-enabled neural interfaces, regarding the biocompatibility, electrical properties and mechanical softness.
Collapse
Affiliation(s)
- Zhanao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Qianqian Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
44
|
Zhang Y, Zhao D, Cao L, Fan L, Lin A, Wang S, Gu F, Yu A. Droplets Patterning of Structurally Integrated 3D Conductive Networks-Based Flexible Strain Sensors for Healthcare Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:181. [PMID: 36616092 PMCID: PMC9824308 DOI: 10.3390/nano13010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Flexible strain sensors with significant extensibility, stability, and durability are essential for public healthcare due to their ability to monitor vital health signals noninvasively. However, thus far, the conductive networks have been plagued by the inconsistent interface states of the conductive components, which hampered the ultimate sensitivity performance. Here, we demonstrate structurally integrated 3D conductive networks-based flexible strain sensors of hybrid Ag nanorods/nanoparticles(AgNRs/NPs) by combining a droplet-based aerosol jet printing(AJP) process and a feasible transfer process. Structurally integrated 3D conductive networks have been intentionally developed by tweaking droplets deposition behaviors at multi-scale for efficient hybridization and ordered assembly of AgNRs/NPs. The hybrid AgNRs/NPs enhance interfacial conduction and mechanical properties during stretching. In a strain range of 25%, the developed sensor demonstrates an ideal gauge factor of 23.18. When real-time monitoring of finger bending, arm bending, squatting, and vocalization, the fabricated sensors revealed effective responses to human movements. Our findings demonstrate the efficient droplet-based AJP process is particularly capable of developing advanced flexible devices for optoelectronics and wearable electronics applications.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory of Advanced Materials and Manufacturing (LAMM), Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Danjiao Zhao
- Laboratory of Advanced Materials and Manufacturing (LAMM), Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Lei Cao
- Laboratory of Advanced Materials and Manufacturing (LAMM), Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Lanlan Fan
- Laboratory of Advanced Materials and Manufacturing (LAMM), Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Aiping Lin
- Laboratory of Advanced Materials and Manufacturing (LAMM), Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Shufen Wang
- Laboratory of Advanced Materials and Manufacturing (LAMM), Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Feng Gu
- Laboratory of Advanced Materials and Manufacturing (LAMM), Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
- Institute for Process Modelling and Optimization, Jiangsu Industrial Technology Research Institute, Suzhou 215123, China
| | - Aibing Yu
- Laboratory of Advanced Materials and Manufacturing (LAMM), Nanchang Key Laboratory for Advanced Manufacturing of Electronic Information Materials and Devices, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330013, China
- Department of Chemical Engineering, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
45
|
Liu X, Li H, Cui Q, Wang S, Ma C, Li N, Bu N, Yang T, Song X, Liu Y, Yang Z, Zhao K, Liu S(F. Molecular Doping of Flexible Lead‐Free Perovskite‐Polymer Thick Membranes for High‐Performance X‐Ray Detection. Angew Chem Int Ed Engl 2022; 61:e202209320. [DOI: 10.1002/anie.202209320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Xinmei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Haojin Li
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Qingyue Cui
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
- Dalian National Laboratory for Clean Energy iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- Department of Chemical Physics Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) University of Science and Technology of China (USTC) Hefei 230026 P. R. China
| | - Shumei Wang
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Chuang Ma
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Nan Li
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Nuo Bu
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Tinghuan Yang
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Xin Song
- Solar and Photovoltaic Engineering Research Center (SPERC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Yucheng Liu
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Zhou Yang
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
| | - Shengzhong (Frank) Liu
- Key Laboratory of Applied Surface and Colloid Chemistry National Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology Institute for Advanced Energy Materials School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 P. R. China
- Dalian National Laboratory for Clean Energy iChEM Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| |
Collapse
|
46
|
Liu X, Li H, Cui Q, Wang S, Ma C, Li N, Bu N, Yang T, Song X, Liu Y, Yang Z, Zhao K, Liu S(F. Molecular Doping of Flexible Lead‐Free Perovskite‐Polymer Thick Membranes for High‐Performance X‐Ray Detection. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinmei Liu
- Shaanxi Normal University School of Materials Science and Engineering No. 620, West Chang'an Street, Xi'an City, Shaanxi Province CHINA
| | - Haojin Li
- Shaanxi Normal University School of Materials Science and Engineering CHINA
| | - Qingyue Cui
- University of Science and Technology of China School of Chemistry and Materials CHINA
| | - Shumei Wang
- Shaanxi Normal University School of Materials Science and Engineering CHINA
| | - Chuang Ma
- Shaanxi Normal University School of Materials Science and Engineering CHINA
| | - Nan Li
- Shaanxi Normal University School of Materials Science and Engineering CHINA
| | - Nuo Bu
- Shaanxi Normal University School of Materials Science and Engineering CHINA
| | - Tinghuan Yang
- Shaanxi Normal University School of Materials Science and Engineering CHINA
| | - Xin Song
- King Abdullah University of Science and Technology Division of Physical Sciences and Engineering SAUDI ARABIA
| | - Yucheng Liu
- Shaanxi Normal University School of Materials Science and Engineering CHINA
| | - Zhou Yang
- Shaanxi Normal University School of Materials Science and Engineering CHINA
| | - Kui Zhao
- Shaanxi Normal University Materials Science and Engineering No. 620, West Chang'an Avenue, Chang'an District 710000 Xi'an CHINA
| | | |
Collapse
|
47
|
Jiang S, Liu J, Xiong W, Yang Z, Yin L, Li K, Huang Y. A Snakeskin-Inspired, Soft-Hinge Kirigami Metamaterial for Self-Adaptive Conformal Electronic Armor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204091. [PMID: 35680159 DOI: 10.1002/adma.202204091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/03/2022] [Indexed: 06/15/2023]
Abstract
A majority of soft-body creatures evolve armor or shells to protect themselves. Similar protection demand is for flexible electronics working in complex environments. Existing works mainly focus on improving the sensing capabilities such as electronic skin (E-skin). Inspired by snakeskin, a novel electronic armor (E-armor) is proposed, which not only possesses mechanical flexibility and electronic functions similar to E-skin, but is also able to protect itself and the underlying soft body from external physical damage. The geometry of the kirigami mechanical metamaterial (Kiri-MM) ensures auxetic stretchability and meanwhile large areal coverage for sufficient protection. Moreover, to suppress the inherent but undesired out-of-plane buckling of conventional Kiri-MMs for conformal applications, soft hinges are used to form a distinct soft (hinges)-rigid (tiles) configuration. Analytical, computational, and experimental studies of the mechanical behaviors of the soft-hinge Kiri-MM E-armor demonstrate the merits of this design, i.e., stretchability, conformability, and protectability, as applied to flexible electronics. Deploying a conductive soft material at the hinges enables facile wiring strategies for large-scale circuit arrays. Functional E-armor systems for controllable display and sensing purposes provide simple examples of a wide spectrum of applications of this concept.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianpeng Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wennan Xiong
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhaoxi Yang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liting Yin
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kan Li
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - YongAn Huang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|