1
|
Chekkar W, Lanteri J, Malvaux T, Sourice J, Lizzi L, Migliaccio C, Ferrero F. A 3D-Printed Bi-Material Bragg-Based Reflectarray Antenna. SENSORS (BASEL, SWITZERLAND) 2024; 24:6512. [PMID: 39459995 PMCID: PMC11511303 DOI: 10.3390/s24206512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
This paper presents a 3D-printed fully dielectric bi-material reflectarray with bandgap characteristics for multi-band applications. To achieve bandgap characteristics, a "1D Bragg reflector" unit cell is used. The latter is a layered structure characterized by a spatial distribution of refractive index that varies periodically along one dimension. By appropriately selecting the dimensions, the bandgap can be shifted to cover the desired frequency bands. To validate this bandgap characteristic, a (121.5 mm × 121.5 mm) with an f/D ratio of 0.5 reflectarray was fabricated. The measured gain at 27 GHz is 27.22 dBi, equivalent to an aperture efficiency of 35.05%, demonstrating good agreement between simulated and measured performances within the frequency range of 26-30 GHz. Additionally, the transparency of the reflectarray was verified by measuring the transmission coefficient, which exhibited a high level of transparency of 0.32 dB at 39 GHz. These features make the proposed reflectarray a good candidate for multi-band frequency applications.
Collapse
Affiliation(s)
- Walid Chekkar
- Laboratory of Electronics, Antennas and Telecommunications (LEAT), CNRS, Université Côte d’Azur, Sophia Antipolis, 06903 Valbonne, France; (W.C.); (J.L.); (C.M.)
| | - Jerome Lanteri
- Laboratory of Electronics, Antennas and Telecommunications (LEAT), CNRS, Université Côte d’Azur, Sophia Antipolis, 06903 Valbonne, France; (W.C.); (J.L.); (C.M.)
| | - Tom Malvaux
- Nanoe, 91160 Ballainvilliers, France; (T.M.); (J.S.)
| | | | - Leonardo Lizzi
- Department of Information Engineering and Computer Science, University of Trento, 38123 Trento, Italy;
| | - Claire Migliaccio
- Laboratory of Electronics, Antennas and Telecommunications (LEAT), CNRS, Université Côte d’Azur, Sophia Antipolis, 06903 Valbonne, France; (W.C.); (J.L.); (C.M.)
| | - Fabien Ferrero
- Laboratory of Electronics, Antennas and Telecommunications (LEAT), CNRS, Université Côte d’Azur, Sophia Antipolis, 06903 Valbonne, France; (W.C.); (J.L.); (C.M.)
| |
Collapse
|
2
|
Shin DI, Kim J, Im SG, Kang T, Wang K, Lee G, Kwon SJ, Park S, Yi GR. Proximal High-Index Metamaterials based on a Superlattice of Gold Nanohexagons Targeting the Near-Infrared Band. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405650. [PMID: 39169743 DOI: 10.1002/adma.202405650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Plasmonic nanoparticles can be assembled into a superlattice, to form optical metamaterials, particularly targeting precise control of optical properties such as refractive index (RI). The superlattices exhibit enhanced near-field, given the sufficiently narrow gap between nanoparticles supporting multiple plasmonic resonance modes only realized in proximal environments. Herein, the planar superlattice of plasmonic Au nanohexagons (AuNHs) with precisely controlled geometries such as size, shape, and edge-gaps is reported. The proximal AuNHs superlattice realized over a large area with selective edge-to-edge assembly exhibited the highest-ever-recorded RI values in the near-infrared (NIR) band, surpassing the upper limit of the RI of the natural intrinsic materials (up to 10.04 at λ = 1.5 µm). The exceptionally enhanced RI is derived from intensified in-plane surface plasmon coupling across the superlattices. Precise control of the edge-gap of neighboring AuNHs systematically tuned the RI as confirmed by numerical analysis based on the plasmonic percolation model. Furthermore, a 1D photonic crystal, composed of alternating layers of AuNHs superlattices and low-index polymers, is constructed to enhance the selectivity of the reflectivity operating in the NIR band. It is expected that the proximal AuNHs superlattices can be used as new optical metamaterials that can be extended to the NIR range.
Collapse
Affiliation(s)
- Dong-In Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Suwon, 16419, Republic of Korea
- Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University College of Natural Science, Suwon, 16419, Republic of Korea
| | - Seong-Gyun Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Taewoo Kang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ke Wang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Nam-Gu, Pohang, 37673, Republic of Korea
- School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430000, China
| | - Gaehang Lee
- Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Seok Joon Kwon
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science & Technology (SIEST), Department of Semiconductor Convergence Engineering and Department of Future Energy Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Nam-Gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
3
|
You K, Wang Z, Lin J, Guo X, Lin L, Liu Y, Li F, Huang W. On-Demand Picoliter-Level-Droplet Inkjet Printing for Micro Fabrication and Functional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402638. [PMID: 39149907 DOI: 10.1002/smll.202402638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/29/2024] [Indexed: 08/17/2024]
Abstract
With the advent of Internet of Things (IoTs) and wearable devices, manufacturing requirements have shifted toward miniaturization, flexibility, environmentalization, and customization. Inkjet printing, as a non-contact picoliter-level droplet printing technology, can achieve material deposition at the microscopic level, helping to achieve high resolution and high precision patterned design. Meanwhile, inkjet printing has the advantages of simple process, high printing efficiency, mask-free digital printing, and direct pattern deposition, and is gradually emerging as a promising technology to meet such new requirements. However, there is a long way to go in constructing functional materials and emerging devices due to the uncommercialized ink materials, complicated film-forming process, and geometrically/functionally mismatched interface, limiting film quality and device applications. Herein, recent developments in working mechanisms, functional ink systems, droplet ejection and flight process, droplet drying process, as well as emerging multifunctional and intelligence applications including optics, electronics, sensors, and energy storage and conversion devices is reviewed. Finally, it is also highlight some of the critical challenges and research opportunities. The review is anticipated to provide a systematic comprehension and valuable insights for inkjet printing, thereby facilitating the advancement of their emerging applications.
Collapse
Affiliation(s)
- Kejia You
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Zhen Wang
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Jiasong Lin
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xuan Guo
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Liangxu Lin
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yang Liu
- Strait Institute of Flexible Electronics (SIFE), Future Technologies, Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350117, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
4
|
Wang H, Cheng Y, Zhu J, Zhang L. Photon Management Enabled by Opal and Inverse Opal Photonic Crystals: from Photocatalysis to Photoluminescence Regulation. Chempluschem 2024; 89:e202400002. [PMID: 38527947 DOI: 10.1002/cplu.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Light is a promising renewable energy source and can be converted into heat, electricity, and chemical energy. However, the efficiency of light-energy conversion is largely hindered by limited light-absorption coefficients and the low quantum yield of current-generation materials. Photonic crystals (PCs) can adjust the propagation and distribution of photons because of their unique periodic structures, which offers a compelling platform for photon management. The periodicity of materials with an alternating refractive index can be used to manipulate the dispersion of photons to generate the photonic bandgap (PBG), in which light is reflected. The slow photon effect, i. e., photon propagation at a reduced group velocity near the edges of the PBG, is widely regarded as another valuable optical property for manipulating light. Furthermore, multiple light scattering can increase the optical path, which is a vital optical property for PCs. Recently, the light reflected by PBG, the slow photon effect, and multiple light scattering have been exploited to improve light utilization efficiency in photoelectrochemistry, materials chemistry, and biomedicine to enhance light-energy conversion efficiency. In this review, the fabrication of opal or inverse opal PCs and the theory for improving the light utilization efficiency of photocatalysis, solar cells, and photoluminescence regulation are discussed. We envision photon management of opal or inverse opal PCs may provide a promising avenue for light-assisted applications to improve light-energy-conversion efficiency.
Collapse
Affiliation(s)
- Hui Wang
- Key Lab of Material Chemistry for Energy Conversion &, Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yiyan Cheng
- Key Lab of Material Chemistry for Energy Conversion &, Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- Key Lab of Material Chemistry for Energy Conversion &, Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- Key Lab of Material Chemistry for Energy Conversion &, Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
5
|
Zhang Q, Schambach M, Jin Q, Heizmann M, Lemmer U. Compact multispectral light field camera based on an inkjet-printed microlens array and color filter array. OPTICS EXPRESS 2024; 32:23510-23523. [PMID: 39538812 DOI: 10.1364/oe.521646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/13/2024] [Indexed: 11/16/2024]
Abstract
With emerging advanced optical sensing technologies and their wide-ranging applications, gathering comprehensive optical data from real-world scenes is becoming increasingly crucial for their accurate reconstruction and analysis. In order to capture both three-dimensional (3D) spatial and spectral information from a scene, multiple devices or time-intensive scanning processes are often involved. Here, we demonstrate a multispectral light field camera that allows for the simultaneous acquisition of 3D information and spectral data in a single snapshot. By utilizing inkjet printing as the fabrication technology, the miniaturized optical components in the camera were manufactured with high precision and can be integrated into a standard camera housing. Furthermore, the microlens arrays and the color filter arrays were fabricated on the same substrate, and a precise alignment between the two arrays was achieved. The compact multispectral camera opens the door to a multitude of possibilities for mobile applications, ranging from autonomous driving and consumer electronics such as smartphones to medical technology such as endoscopes.
Collapse
|
6
|
Yuan Q, Zhang M, Wang D, Lv Y, Liu S, Mi HY, Han J, Liu C, Shen C. Solution-Processed One-Dimensional Photonic Crystals Based on Hollow Silica Exhibiting High Refractive Index Contrast. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29141-29152. [PMID: 38773701 DOI: 10.1021/acsami.4c02196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Poor interfacial quality and low refractive index contrast (Δn) are critical challenges for the development of high-performance one-dimensional photonic crystals (1DPhCs) via solution methods that impede their optical efficiency. Herein, we introduce an innovative approach by hybridizing hollow SiO2 with poly(vinyl alcohol), referred to as PHS, followed by alternate assembly with TiO2 via spin-coating, achieving a 1DPhC with Δn = 0.76 at the wavelength of 550 nm. This method circumvents the need for high-temperature treatment and complex curing conditions, resulting in a 1DPhC with superior interfacial and optical characteristics. By adjusting the thickness of the PHS layers, we can finely tune the reflectance spectrum, attaining over 99% reflectance at the photonic band gap. Furthermore, 1DPhC demonstrates excellent adhesion to polycarbonate substrates and retains its optimal optical performance even after rigorous environmental testing, including hygrothermal cycles, exposure to hot water, friction, and solvent sonication. This research paves the way for the facile fabrication of high-performance 1DPhCs under mild conditions, offering new perspectives for photonic material processing.
Collapse
Affiliation(s)
- Qi Yuan
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| | - Minglu Zhang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| | - Dongyu Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| | - Yan Lv
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| | - Shuqi Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| | - Hao-Yang Mi
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| | - Jian Han
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| | - Changyu Shen
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
7
|
Liao Q, Cheng H, Qu L. Droplet-Pen Writing of Ultra-Uniform Graphene Pattern for Multi-Spectral Applications. SMALL METHODS 2024:e2400384. [PMID: 38708684 DOI: 10.1002/smtd.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Artificial optical patterns bring wide benefits in applications like structural color display, photonic camouflage, and electromagnetic cloak. Their scalable coating on large-scale objects will greatly enrich the multimodal-interactive society. Here, a droplet-pen writing (DPW) method to directly write multi-spectral patterns of thin-film graphene is reported. By amphiphilicity regulations of 2D graphene nanosheets, ultra-uniform and ultrathin films can spontaneously form on droplet caps and pave to the substrate, thus inducing optical interference. This allows the on-surface patterning by pen writing of droplets. Specifically, drop-on-demand thin films are achieved with millimeter lateral size and uniformity up to 97% in subwavelength thickness (<100 nm), corresponding to an aspect ratio of over 30 000. The pixelated thin-film patterns of disks and lines in an 8-inch wafer scale are demonstrated, which enable low-emittance structural color paintings. Furthermore, the applications of these patterns for dual-band camouflage and infrared-to-visible encryption are investigated. This study highlights the potential of 2D material self-assembly in the large-scale preparation and multi-spectral application of thin film-based optical patterns.
Collapse
Affiliation(s)
- Qihua Liao
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- State Key Laboratory of Tribology in Advanced Equipment (SKLT), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Jin Q, Zhang Q, Rainer C, Hu H, Chen J, Gehring T, Dycke J, Singh R, Paetzold UW, Hernández-Sosa G, Kling R, Lemmer U. Inkjet-printed optical interference filters. Nat Commun 2024; 15:3372. [PMID: 38643198 PMCID: PMC11032308 DOI: 10.1038/s41467-024-47086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/15/2024] [Indexed: 04/22/2024] Open
Abstract
Optical interference filters (OIFs) are vital components for a wide range of optical and photonic systems. They are pivotal in controlling spectral transmission and reflection upon demand. OIFs rely on optical interference of the incident wave at multilayers, which are fabricated with nanometer precision. Here, we demonstrate that these requirements can be fulfilled by inkjet printing. This versatile technology offers a high degree of freedom in manufacturing, as well as cost-affordable and rapid-prototyping features from the micron to the meter scale. In this work, via rational ink design and formulation, OIFs were fully inkjet printed in ambient conditions. Longpass, shortpass, bandpass, and dichroic OIFs were fabricated, and precise control of the spectral response in OIFs was realized. Subsequently, customized lateral patterning of OIFs by inkjet printing was achieved. Furthermore, upscaling of the printed OIFs to A4 size (29.7 × 21.0 cm²) was demonstrated.
Collapse
Affiliation(s)
- Qihao Jin
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany.
| | - Qiaoshuang Zhang
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Christian Rainer
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
- InnovationLab, Speyerer Strasse 4, 69115, Heidelberg, Germany
| | - Hang Hu
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Junchi Chen
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Tim Gehring
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Jan Dycke
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Roja Singh
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Ulrich W Paetzold
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Gerardo Hernández-Sosa
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
- InnovationLab, Speyerer Strasse 4, 69115, Heidelberg, Germany
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Rainer Kling
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Uli Lemmer
- Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Engesserstrasse 13, 76131, Karlsruhe, Germany.
- InnovationLab, Speyerer Strasse 4, 69115, Heidelberg, Germany.
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
9
|
Liu Y, Zhang Q, Huang A, Zhang K, Wan S, Chen H, Fu Y, Zuo W, Wang Y, Cao X, Wang L, Lemmer U, Jiang W. Fully inkjet-printed Ag 2Se flexible thermoelectric devices for sustainable power generation. Nat Commun 2024; 15:2141. [PMID: 38459024 PMCID: PMC10923913 DOI: 10.1038/s41467-024-46183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
Flexible thermoelectric devices show great promise as sustainable power units for the exponentially increasing self-powered wearable electronics and ultra-widely distributed wireless sensor networks. While exciting proof-of-concept demonstrations have been reported, their large-scale implementation is impeded by unsatisfactory device performance and costly device fabrication techniques. Here, we develop Ag2Se-based thermoelectric films and flexible devices via inkjet printing. Large-area patterned arrays with microscale resolution are obtained in a dimensionally controlled manner by manipulating ink formulations and tuning printing parameters. Printed Ag2Se-based films exhibit (00 l)-textured feature, and an exceptional power factor (1097 μWm-1K-2 at 377 K) is obtained by engineering the film composition and microstructure. Benefiting from high-resolution device integration, fully inkjet-printed Ag2Se-based flexible devices achieve a record-high normalized power (2 µWK-2cm-2) and superior flexibility. Diverse application scenarios are offered by inkjet-printed devices, such as continuous power generation by harvesting thermal energy from the environment or human bodies. Our strategy demonstrates the potential to revolutionize the design and manufacture of multi-scale and complex flexible thermoelectric devices while reducing costs, enabling them to be integrated into emerging electronic systems as sustainable power sources.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Qihao Zhang
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany.
| | - Aibin Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Keyi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Shun Wan
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), 201203, Shanghai, China
| | - Hongyi Chen
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Yuntian Fu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Wusheng Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China
| | - Yongzhe Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xun Cao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China.
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, 201620, Shanghai, China.
| | - Uli Lemmer
- Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
- Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 201620, Shanghai, China.
- Institute of Functional Materials, Donghua University, 201620, Shanghai, China.
| |
Collapse
|
10
|
Chang L, Liu X, Luo J, Lee CY, Zhang J, Fan X, Zhang W. Physiochemical Coupled Dynamic Nanosphere Lithography Enabling Multiple Metastructures from Single Mask. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2310469. [PMID: 38193751 DOI: 10.1002/adma.202310469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Metastructures are widely used in photonic devices, energy conversion, and biomedical applications. However, to fabricate multiple patterns continuously in single etching protocol with highly tunable photonic properties is challenging. Here, a simple and robust dynamic nanosphere lithography is proposed by inserting a spacer between the nanosphere assembly and the wafer. The nanosphere diameter decrease and uneven penetration of the spacer during etching lead to a dynamic masking process. Coupled anisotropic physical ion sputtering and ricocheting with isotropic chemical radical etching achieve highly tunable structures with various 3D patterns continuously forming through a single etching process. Specifically, the nanosphere diameters define the periodicity, the etched spacer forms the upper parts, and the wafer forms the lower parts. Each part of the structure is highly tunable through changing nanosphere diameter, spacer thickness, and etch conditions. Using this protocol, numerous structures of varying sizes including nanomushrooms, nanocones, nanopencils, and nanoneedles with diverse shapes are realized as proof of concepts. The broadband antireflection ability of the nanostructures and their use in surface-enhanced Raman spectroscopy are also demonstrated for practical application. This method substantially simplifies the fabrication procedure of various metastructures, paving the way for its application in multiple disciplines especially in photonic devices.
Collapse
Affiliation(s)
- Lin Chang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Liu
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, China
| | - Jie Luo
- College of Advanced Interdisciplinary Studies & Hunan Provincial, Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, 410073, China
| | - Chong-Yew Lee
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Jianfa Zhang
- College of Advanced Interdisciplinary Studies & Hunan Provincial, Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, 410073, China
| | - Xing Fan
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Chen J, Song G, Cong S, Zhao Z. Resonant-Cavity-Enhanced Electrochromic Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300179. [PMID: 36929668 DOI: 10.1002/adma.202300179] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
With rapid advances in optoelectronics, electrochromic materials and devices have received tremendous attentions from both industry and academia for their strong potentials in wearable and portable electronics, displays/billboards, adaptive camouflage, tunable optics, and intelligent devices, etc. However, conventional electrochromic materials and devices typically present some serious limitations such as undesirable dull colors, and long switching time, hindering their deeper development. Optical resonators have been proven to be the most powerful platform for providing strong optical confinement and controllable lightmatter interactions. They generate locally enhanced electromagnetic near-fields that can convert small refractive index changes in electrochromic materials into high-contrast color variations, enabling multicolor or even panchromatic tuning of electrochromic materials. Here, resonant-cavity-enhanced electrochromic materials and devices, an advanced and emerging trend in electrochromics, are reviewed. In this review, w e will focus on the progress in multicolor electrochromic materials and devices based on different types of optical resonators and their advanced and emerging applications, including multichromatic displays, adaptive visible camouflage, visualized energy storage, and applications of multispectral tunability. Among these topics, principles of optical resonators, related materials/devices and multicolor electrochromic properties are comprehensively discussed and summarized. Finally, the challenges and prospects for resonant-cavity-enhanced electrochromic materials and devices are presented.
Collapse
Affiliation(s)
- Jian Chen
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ge Song
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shan Cong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhigang Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
12
|
Li DY, Wang W, Chu LY, Deng NN. Tunable Structural Coloration in Eccentric Water-in-Oil-in-Water Droplets. NANO LETTERS 2023; 23:9657-9663. [PMID: 37548909 DOI: 10.1021/acs.nanolett.3c02119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Structural colors show diverse advantages such as fade resistance, eco-friendliness, iridescence, and high saturation in comparison with chemical pigments. In this paper, we show tunable structural coloration in colorless water-in-oil-in-water double emulsion droplets via total internal reflection and interference at the microscale concave interfaces. Through experimental work and simulations, we demonstrate that the shell thickness and the eccentricity of the core-shell structures are key to the successful formation of iridescent structural colors. Only eccentric thin-shell water-in-oil-in-water droplets show structural colors. Importantly, structural colors based on water-oil interfaces are readily responsive to a variety of environmental stimuli, such as osmotic pressure, temperature, magnetic fields, and light composition. This work highlights an alternative structural coloration that expands the applications of droplet-based structural colors to aqueous systems.
Collapse
Affiliation(s)
- Dong-Yu Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Nan-Nan Deng
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, Sichuan 610213, China
| |
Collapse
|
13
|
Palo E, Papachatzakis MA, Abdelmagid A, Qureshi H, Kumar M, Salomäki M, Daskalakis KS. Developing Solution-Processed Distributed Bragg Reflectors for Microcavity Polariton Applications. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14255-14262. [PMID: 37529668 PMCID: PMC10388359 DOI: 10.1021/acs.jpcc.3c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/26/2023] [Indexed: 08/03/2023]
Abstract
Improving the performance of organic optoelectronics has been under vigorous research for decades. Recently, polaritonics has been introduced as a technology that has the potential to improve the optical, electrical, and chemical properties of materials and devices. However, polaritons have been mainly studied in optical microcavities that are made by vacuum deposition processes, which are costly, unavailable to many, and incompatible with printed optoelectronics methods. Efforts toward the fabrication of polariton microcavities with solution-processed techniques have been utterly absent. Herein, we demonstrate for the first time strong light-matter coupling and polariton photoluminescence in an organic microcavity consisting of an aluminum mirror and a distributed Bragg reflector (DBR) made by sequential dip coating of titanium hydroxide/poly(vinyl alcohol) (TiOH/PVA) and Nafion films. To fabricate and develop the solution-processed DBRs and microcavities, we automatized a dip-coating device that allowed us to produce sub-100 nm films consistently over many dip-coating cycles. Owning to the solution-based nature of our DBRs, our results pave the way to the realization of polariton optoelectronic devices beyond physical deposition methods.
Collapse
Affiliation(s)
- Emilia Palo
- Department
of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
| | - Michael A. Papachatzakis
- Department
of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
| | - Ahmed Abdelmagid
- Department
of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
| | - Hassan Qureshi
- Department
of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
| | - Manish Kumar
- Department
of Mechanical and Materials Engineering, University of Turku, FI-20014 Turku, Finland
| | - Mikko Salomäki
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
| | | |
Collapse
|
14
|
Brodie CH, Spotts I, Collier CM. THz Bragg structures fabricated with additive manufacturing. APPLIED OPTICS 2023; 62:4465-4473. [PMID: 37707138 DOI: 10.1364/ao.489529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/10/2023] [Indexed: 09/15/2023]
Abstract
The advancement of THz science and technology is desirable to facilitate the application of THz technologies in many sectors. Specialized THz photonic elements for these applications require desirable absorption and refractive characteristics in the THz regime. THz photonic elements can be created with additive manufacturing, and specifically 3D printing, forgoing the need for complex fabrication procedures and methodologies. Such THz photonic elements include periodic Bragg structures, which are capable of filtering specific THz frequencies. The authors present a THz Bragg structure fabricated with 3D printing via fused filament fabrication. The THz Bragg structure is made from high-impact polystyrene filament material, which is characterized in this paper with THz time-domain spectroscopy. The geometry and theoretical operation of the THz Bragg structure is investigated with finite-difference time-domain electromagnetic simulations. The THz Bragg structure is evaluated using a THz experimental test bed. There is agreement between the theoretical and the experimental filtering placement within the frequency domain for the THz Bragg structure. The capability of tunable frequency filtering of the presented THz Bragg structure, fabricated with 3D printing, is established and facilitates future advancements in applications of THz science and technology.
Collapse
|
15
|
Guo D, Xu Y, Ruan J, Tong J, Li Y, Zhai T, Song Y. Nonpolar Solvent Modulated Inkjet Printing of Nanoparticle Self-Assembly Morphologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208161. [PMID: 37191293 DOI: 10.1002/smll.202208161] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Patterning of luminescent nanomaterials is critical in the fields of display and information encryption, and inkjet printing technology have shown remarkable significance with the advantage of fast, large-scalable and integrative. However, inkjet printing nanoparticle deposits with high-resolution and well controlled morphology from nonpolar solvent droplets is still challenging. Herein, a facile approach of nonpolar solvent modulated inkjet printing of nanoparticles self-assembly patterns driven by the shrinkage of the droplet and inner solutal convection is proposed. Through regulating the solvent composition and nanoparticle concentration, multicolor light-emissive upconversion nanoparticle self-assembly microarrays with tunable morphologies are achieved, showing the integration of designable microscale morphologies and photoluminescences for multimodal anti-counterfeit. Furthermore, inkjet printing of nanoparticles self-assembled continuous lines with adjustable morphologies by controlling the coalescence and drying of the ink droplets is achieved. The high resolution of inkjet printing microarrays and continuous lines' width < 5 and 10 µm is realized, respectively. This nonpolar solvent-modulated inkjet printing of nanoparticle deposits approach facilitates the patterning and integration of different nanomaterials, and is expected to provide a versatile platform for fabricating advanced devices applied in photonics integration, micro-LED, and near-field display.
Collapse
Affiliation(s)
- Dan Guo
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yanan Xu
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jun Ruan
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Junhua Tong
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yixuan Li
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Tianrui Zhai
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, P. R. China
| |
Collapse
|
16
|
Lee D, Cho H, Yoon I. Zirconia nanocomposites and their applications as transparent advanced optical materials with
high refractive index. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Deunchan Lee
- Department of Chemistry Chungnam National University Daejeon Republic of Korea
| | - Hanjun Cho
- Department of Chemistry Chungnam National University Daejeon Republic of Korea
| | - Ilsun Yoon
- Department of Chemistry Chungnam National University Daejeon Republic of Korea
| |
Collapse
|
17
|
Xue P, Chen Y, Xu Y, Valenzuela C, Zhang X, Bisoyi HK, Yang X, Wang L, Xu X, Li Q. Bioinspired MXene-Based Soft Actuators Exhibiting Angle-Independent Structural Color. NANO-MICRO LETTERS 2022; 15:1. [PMID: 36441443 PMCID: PMC9705670 DOI: 10.1007/s40820-022-00977-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/22/2022] [Indexed: 05/29/2023]
Abstract
In nature, many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots. However, it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird. Herein, we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO2 nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices. The resulting soft actuators are found to exhibit brilliant, angle-independent structural color, as well as ultrafast actuation and recovery speeds (a maximum curvature of 0.52 mm-1 can be achieved within 1.16 s, and a recovery time of ~ 0.24 s) in response to acetone vapor. As proof-of-concept illustrations, structural colored soft actuators are applied to demonstrate a blue gripper-like bird's claw that can capture the target, artificial green tendrils that can twine around tree branches, and an artificial multicolored butterfly that can flutter its wings upon cyclic exposure to acetone vapor. The strategy is expected to offer new insights into the development of biomimetic multifunctional soft actuators for somatosensory soft robotics and next-generation intelligent machines.
Collapse
Affiliation(s)
- Pan Xue
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Yiyi Xu
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Tech Key Laboratory for Biomedical Research, Southeast University, and Jiangsu Province Hi, Nanjing, 211189, People's Republic of China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Xiao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China.
| | - Xinhua Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China.
| | - Quan Li
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, Tech Key Laboratory for Biomedical Research, Southeast University, and Jiangsu Province Hi, Nanjing, 211189, People's Republic of China.
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|