1
|
Xu W, Tao Y, Zhang H, Zhu J, Shao W, Sun JS, Xia Y, Ha Y, Yang H, Cheng T, Sun X. Unraveling the Potential Dependence of Active Structures and Reaction Mechanism of Ni-based MOFs Electrocatalysts for Alkaline OER. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407328. [PMID: 39308212 DOI: 10.1002/smll.202407328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/07/2024] [Indexed: 12/06/2024]
Abstract
Nickel-based metal-organic frameworks (MOFs) with flexible structure units provide a broad platform for designing highly efficient electrocatalysts, especially for alkaline oxygen evolution reaction (OER). However, the stability of MOFs under harsh and dynamic reaction conditions poses significant challenges, resulting in ambiguous structure-activity relationships in MOFs-based OER research. Herein, Ni-benzenedicarboxylic acid-based MOF (NiBDC) is selected as prototypical catalyst to elucidate its real active sites for OER and reaction pathway under different reaction states. Electrochemical measurements combined with X-ray absorption spectroscopy (XAS) and Raman spectroscopy reveal that the complete reconstruction of NiBDC to β-NiOOH in the chronoamperometry activation process is responsible for significantly increased OER performance. In situ XAS and Raman results further demonstrate the electro-oxidation of β-NiOOH into γ-NiOOH at high-potential state (above 1.6 V vs RHE). Furthermore, the collective evidences from key reaction intermediates and isotope-labeled products definitely unravel the potential dependence of OER mechanism: OER process at low-potential state proceeds mainly through the lattice oxygen-mediated mechanism, while adsorbate evolution mechanism emerges as the predominant pathway at high-potential state. Interestingly, the dynamically changing OER mechanism can not only reduce the required overpotential at the low-potential state but also improve the electrochemical stability of catalysts at high-potential state.
Collapse
Affiliation(s)
- Wenxuan Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Yi Tao
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Hao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Jiarui Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Wenji Shao
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Joey Song Sun
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Dougherty Valley High School, San Ramon, CA, 94582, USA
| | - Yujian Xia
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yang Ha
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hao Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Tao Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
2
|
Ngo QP, Prabhakaran S, Kim DH, Kim BS. Rational Design of Ultrahigh-Loading Ir Single Atoms on Reconstructed Mn─NiOOH for Enhanced Catalytic Performance in Urea-Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406786. [PMID: 39467020 DOI: 10.1002/smll.202406786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Indexed: 10/30/2024]
Abstract
Investigating advanced electrocatalysts is crucial for improving the efficacy of water splitting to generate environmentally friendly fuel. The discovery of highly effective electrocatalysts, capable of driving oxygen evolution reaction (OER) and urea oxidation reaction (UOR) in urea-alkaline environments, is pivotal for advancing large-scale hydrogen production. This study aims to introduce a new method that involves creating nanosheets of high-loading iridium single atoms embedded in a manganese-containing nickel oxyhydroxide matrix (Ir@Mn─NiOOH). These nanostructures are derived from self-supported hydrate pre-catalyst nanosheets grown on nickel foam and then activated through electrochemical etching pretreatment. The Ir@Mn─NiOOH nanoarchitecture displays outstanding electrocatalytic activity, having a low overpotential of just 258 mV and a potential of 1.319 V (at 10 mA cm-2) for OER and UOR, respectively. Such extraordinary catalytic characteristics of Ir@Mn─NiOOH is mainly owing to the strong synthetic electronic interaction between Ir single atoms and Mn─NiOOH, which can change its electronic characteristics and boost electrochemical catalytic sites. This research presents a new way to produce exceptionally efficient catalysts by adding a synergistic effect to complex multi-electron processes.
Collapse
Affiliation(s)
- Quynh Phuong Ngo
- Department of Organic Materials and Textile Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Sampath Prabhakaran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Do Hwan Kim
- Division of Science Education, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Byoung-Suhk Kim
- Department of Organic Materials and Textile Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
3
|
Wang S, Su Y, Jiang Z, Meng Z, Wang T, Yang M, Zhao W, Chen H, Shakouri M, Pang H. Metal-Hydroxide Organic Frameworks for Aqueous Nickel-Zinc Batteries. NANO LETTERS 2024; 24:15101-15109. [PMID: 39540558 DOI: 10.1021/acs.nanolett.4c04414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hydroxides exhibit a high theoretical capacity for energy storage by ion release and are often intercalated with anions to enhance the ion migration kinetics. In this study, a series of metal-hydroxide organic frameworks (MHOFs) are synthesized by intercalating aromatic organic linkers into hydroxides using I-M/Ni(OH)2 (where M = Co2+, Cu2+, Mg2+, Fe2+). The coordination environment and layer spacing (1.09 nm) of I-M/Ni(OH)2 are explored by X-ray absorption fine structure and cryo-electron microscopy. The intercalation nanostructure improves the conductivity of the hydroxides and facilitates Zn2+ migration by increasing the interlayer spacing, while enhancing the rate capability and cycling stability. Consequently, the I-Co/Ni(OH)2 material exhibites a satisfactory specific capacity of 0.35 mAh cm-2 at 3 mA cm-2 and a high peak power density of 6.78 mW cm-2. This study offers a novel perspective on the design of intercalated hydroxide and provides new insights into high-performance nickel-zinc batteres.
Collapse
Affiliation(s)
- Shixian Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yichun Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Zhaocheng Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Zhenyang Meng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Tianyi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Meifang Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Weijie Zhao
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, Jiangsu, China
| | - Hanyi Chen
- Center for Reliability Science and Technologies Chang Gung University, Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Mohsen Shakouri
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon S7N 0X4, Saskatchewan, Canada
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
4
|
Shi J, Chen W, Wu Y, Zhu Y, Xie C, Jiang Y, Huang YC, Dong CL, Zou Y. Sulfur filling activates vacancy-induced C-C bond cleavage in polyol electrooxidation. Natl Sci Rev 2024; 11:nwae271. [PMID: 39301081 PMCID: PMC11409883 DOI: 10.1093/nsr/nwae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 09/22/2024] Open
Abstract
Using the electrochemical polyol oxidation reaction (POR) to produce formic acid over nickel-based oxides/hydroxides (NiO x H y ) is an attractive strategy for the electrochemical upgrading of biomass-derived polyols. The key step in the POR, i.e. the cleavage of the C-C bond, depends on an oxygen-vacancy-induced mechanism. However, a high-energy oxygen vacancy is usually ineffective for Schottky-type oxygen-vacancy-rich β-Ni(OH)2 (VSO-β-Ni(OH)2). As a result, both β-Ni(OH)2 and VSO-β-Ni(OH)2 cannot continuously catalyze oxygen-vacancy-induced C-C bond cleavage during PORs. Here, we report a strategy of oxygen-vacancy-filling with sulfur to synthesize a β-Ni(OH)2 (S-VO-β-Ni(OH)2) catalyst, whose oxygen vacancies are protected by filling with sulfur atoms. During PORs over S-VO-β-Ni(OH)2, the pre-electrooxidation-induced loss of sulfur and structural self-reconstruction cause the in-situ generation of stable Frenkel-type oxygen vacancies for activating vacancy-induced C-C bond cleavage, thus leading to excellent POR performances. This work provides an intelligent approach for guaranteeing the sustaining action of the oxygen-vacancy-induced catalytic mechanism in electrooxidation reactions.
Collapse
Affiliation(s)
- Jianqiao Shi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Wei Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Yandong Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Yanwei Zhu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Chao Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Yimin Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Yu-Cheng Huang
- Research Center for X-ray Science & Department of Physics, Tamkang University, New Taipei City 25137, China
| | - Chung-Li Dong
- Research Center for X-ray Science & Department of Physics, Tamkang University, New Taipei City 25137, China
| | - Yuqin Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
5
|
Wang X, Pi W, Hu S, Bao H, Yao N, Luo W. Boosting Oxygen Evolution Reaction Performance on NiFe-Based Catalysts Through d-Orbital Hybridization. NANO-MICRO LETTERS 2024; 17:11. [PMID: 39325091 PMCID: PMC11427650 DOI: 10.1007/s40820-024-01528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
Anion-exchange membrane water electrolyzers (AEMWEs) for green hydrogen production have received intensive attention due to their feasibility of using earth-abundant NiFe-based catalysts. By introducing a third metal into NiFe-based catalysts to construct asymmetrical M-NiFe units, the d-orbital and electronic structures can be adjusted, which is an important strategy to achieve sufficient oxygen evolution reaction (OER) performance in AEMWEs. Herein, the ternary NiFeM (M: La, Mo) catalysts featured with distinct M-NiFe units and varying d-orbitals are reported in this work. Experimental and theoretical calculation results reveal that the doping of La leads to optimized hybridization between d orbital in NiFeM and 2p in oxygen, resulting in enhanced adsorption strength of oxygen intermediates, and reduced rate-determining step energy barrier, which is responsible for the enhanced OER performance. More critically, the obtained NiFeLa catalyst only requires 1.58 V to reach 1 A cm-2 in an anion exchange membrane electrolyzer and demonstrates excellent long-term stability of up to 600 h.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory of New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Wei Pi
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory of New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Sheng Hu
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory of New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Haifeng Bao
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory of New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
| | - Na Yao
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory of New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China.
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
6
|
Peng P, Ren J, Wang S, Huang J, Zou L, Yang P, Pang X, Zhang M, Su Y, Luo W, Tao W, Xie J. Hybrid Overlayer of Defective Ni-MOF and NiO Nanoparticles toward Efficient TiO 2/CdS Type-II Heterojunction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19711-19721. [PMID: 39219090 DOI: 10.1021/acs.langmuir.4c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The severe photocorrosion of cadmium sulfide (CdS) restricts its practical application for solar hydrogen production. Although remarkable progress has been achieved with an overlayer strategy for isolating the CdS surface, the lifetime of CdS-based photoanodes is still far from the actual requirements. Herein, a hybrid overlayer of defective Ni-MOF and NiO nanoparticles has been developed through the chemical bath deposition method with postannealing. This hybrid overlayer of Ni-MOF-d is coated on the surface of the TiO2/CdS type-II heterojunction. The composite photoanode exhibits a photocurrent density of 4.41 mA cm-2 at 1.23 VRHE, which is 3.47- and 1.32-fold that of CdS and TiO2/CdS, respectively. The Ni-MOF-d overlayer gives rise to a negative shift of the onset potential by 59.51 mV. After a long-term stability test of 11 h, a photocurrent retention of 70% is observed, which is among the most robust CdS-based photoanodes. The kinetics studies reveal that the performance improvements can be attributed to the multiple functions of the Ni-MOF-d hybrid overlayer, including isolating the CdS surface from the electrolyte, cocatalyzing the electrode oxidation processes, passivating the surface defect states of CdS, and facilitating the charge injection from the photoanode to the electrolyte.
Collapse
Affiliation(s)
- Pai Peng
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Jie Ren
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Shuxiang Wang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Jing Huang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Li Zou
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Pingping Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Xiangui Pang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Youyi Su
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Wanqi Luo
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| | - Wenyan Tao
- Tongwei Solar Company, Chengdu 610299, Sichuan, China
| | - Jiale Xie
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China
| |
Collapse
|
7
|
Lv R, Luo C, Liu B, Hu K, Wang K, Zheng L, Guo Y, Du J, Li L, Wu F, Chen R. Unveiling Confinement Engineering for Achieving High-Performance Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400508. [PMID: 38452342 DOI: 10.1002/adma.202400508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/03/2024] [Indexed: 03/09/2024]
Abstract
The confinement effect, restricting materials within nano/sub-nano spaces, has emerged as an innovative approach for fundamental research in diverse application fields, including chemical engineering, membrane separation, and catalysis. This confinement principle recently presents fresh perspectives on addressing critical challenges in rechargeable batteries. Within spatial confinement, novel microstructures and physiochemical properties have been raised to promote the battery performance. Nevertheless, few clear definitions and specific reviews are available to offer a comprehensive understanding and guide for utilizing the confinement effect in batteries. This review aims to fill this gap by primarily summarizing the categorization of confinement effects across various scales and dimensions within battery systems. Subsequently, the strategic design of confinement environments is proposed to address existing challenges in rechargeable batteries. These solutions involve the manipulation of the physicochemical properties of electrolytes, the regulation of electrochemical activity, and stability of electrodes, and insights into ion transfer mechanisms. Furthermore, specific perspectives are provided to deepen the foundational understanding of the confinement effect for achieving high-performance rechargeable batteries. Overall, this review emphasizes the transformative potential of confinement effects in tailoring the microstructure and physiochemical properties of electrode materials, highlighting their crucial role in designing novel energy storage devices.
Collapse
Affiliation(s)
- Ruixin Lv
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chong Luo
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
| | - Bingran Liu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Kaikai Hu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ke Wang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Longhong Zheng
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yafei Guo
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiahao Du
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Li Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| |
Collapse
|
8
|
Sun L, Pan X, Xie YN, Zheng J, Xu S, Li L, Zhao G. Accelerated Dynamic Reconstruction in Metal-Organic Frameworks with Ligand Defects for Selective Electrooxidation of Amines to Azos Coupling with Hydrogen Production. Angew Chem Int Ed Engl 2024; 63:e202402176. [PMID: 38470010 DOI: 10.1002/anie.202402176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/13/2024]
Abstract
Electrosynthesis coupled hydrogen production (ESHP) mostly involves catalyst reconstruction in aqueous phase, but accurately identifying and controlling the process is still a challenge. Herein, we modulated the electronic structure and exposed unsaturated sites of metal-organic frameworks (MOFs) via ligand defect to promote the reconstruction of catalyst for azo electrosynthesis (ESA) coupled with hydrogen production overall reaction. The monolayer Ni-MOFs achieved 89.8 % Faraday efficiency and 90.8 % selectivity for the electrooxidation of 1-methyl-1H-pyrazol-3-amine (Pyr-NH2) to azo, and an 18.5-fold increase in H2 production compared to overall water splitting. Operando X-ray absorption fine spectroscopy (XAFS) and various in situ spectroscopy confirm that the ligand defect promotes the potential dependent dynamic reconstruction of Ni(OH)2 and NiOOH, and the reabsorption of ligand significantly lowers the energy barrier of rate-determining step (*Pyr-NH to *Pyr-N). This work provides theoretical guidance for modulation of electrocatalyst reconstruction to achieve highly selective ESHP.
Collapse
Affiliation(s)
- Lingzhi Sun
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Xun Pan
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Ya-Nan Xie
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Jingui Zheng
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Shaohan Xu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201800, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
9
|
Xu S, Feng S, Yu Y, Xue D, Liu M, Wang C, Zhao K, Xu B, Zhang JN. Dual-site segmentally synergistic catalysis mechanism: boosting CoFeS x nanocluster for sustainable water oxidation. Nat Commun 2024; 15:1720. [PMID: 38409270 PMCID: PMC10897303 DOI: 10.1038/s41467-024-45700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024] Open
Abstract
Efficient oxygen evolution reaction electrocatalysts are essential for sustainable clean energy conversion. However, catalytic materials followed the conventional adsorbate evolution mechanism (AEM) with the inherent scaling relationship between key oxygen intermediates *OOH and *OH, or the lattice-oxygen-mediated mechanism (LOM) with the possible lattice oxygen migration and structural reconstruction, which are not favorable to the balance between high activity and stability. Herein, we propose an unconventional Co-Fe dual-site segmentally synergistic mechanism (DSSM) for single-domain ferromagnetic catalyst CoFeSx nanoclusters on carbon nanotubes (CNT) (CFS-ACs/CNT), which can effectively break the scaling relationship without sacrificing stability. Co3+ (L.S, t2g6eg0) supplies the strongest OH* adsorption energy, while Fe3+ (M.S, t2g4eg1) exposes strong O* adsorption. These dual-sites synergistically produce of Co-O-O-Fe intermediates, thereby accelerating the release of triplet-state oxygen ( ↑ O = O ↑ ). As predicted, the prepared CFS-ACs/CNT catalyst exhibits less overpotential than that of commercial IrO2, as well as approximately 633 h of stability without significant potential loss.
Collapse
Affiliation(s)
- Siran Xu
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Sihua Feng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yue Yu
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Dongping Xue
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengli Liu
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Kaiyue Zhao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jia-Nan Zhang
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China.
- State Key Laboratory of Coking Coal Resources Green Exploitation, Zhengzhou, 450001, China.
| |
Collapse
|
10
|
Chen S, Zhou Y, Ma X. Homogeneous-like photocatalysis: covalent immobilization of an iridium(III) complex onto polystyrene brushes grafted on SiO 2 nanoparticles as a mass/charge transfer-enhanced platform. Dalton Trans 2024; 53:2731-2740. [PMID: 38226726 DOI: 10.1039/d3dt03903j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Current heterogeneous photocatalysis faces the major bottlenecks of limited mass transfer, charge recombination and tedious immobilization of expensive photocatalysts. In this work, fac-Ir(ppy)3 is directly anchored at a low cost via covalent linkage to poly(4-vinyl benzyl chloride) (PVBC) brushes grafted on SiO2 nanoparticles (PVBC@SiO2 NPs) via Friedel-Crafts alkylation, affording PVBC@SiO2 NP-supported fac-Ir(ppy)3 with high luminous efficacies such as emission lifetime and quantum yield. In the reductive cross-coupling of benzaldehydes/acetophenones with 1,4-dicyanobenzene (1,4-DCB), the as-fabricated photocatalyst affords benzhydrols in the same yields as homogeneous fac-Ir(ppy)3, except for o-substituted benzaldehydes/acetophenones. In terms of the same yields as homogeneous fac-Ir(ppy)3, a new catalytic model, named homogeneous-like photocatalysis, is proposed. In this catalytic model, the open stretching of PVBC brushes in DMSO enables the anchored fac-Ir(ppy)3 to catalyse the reaction in a similar manner as homogeneous fac-Ir(ppy)3, effectively avoiding charge recombination and mass transfer limitation. Furthermore, no significant decrease in yield (<5%) is observed over eight catalytic cycles, due to the good chemical and mechanical stabilities of PVBC@SiO2 NP-supported fac-Ir(ppy)3. Overall, the immobilization of fac-Ir(ppy)3 onto the PVBC brushes grafted on SiO2 NPs provides a mass/charge transfer-enhanced platform for supported photocatalysts.
Collapse
Affiliation(s)
- Shaoqi Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Yang Zhou
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Xuebing Ma
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
11
|
Han D, Hao L, Wang Y, Gao Y, Yan J, Zhang Y. Design of iron oxyhydroxide nanosheets coated on Co species embedded in nanoporous carbon for oxygen evolution reaction. J Colloid Interface Sci 2023; 652:1148-1155. [PMID: 37657215 DOI: 10.1016/j.jcis.2023.08.172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
There is still a tremendous challenge in designing environmentally friendly oxygen evolution reaction (OER) catalysts that are inexpensive and high-performing for practical applications. Herein, the self-sacrificing template zeolitic imidazolate framework-67 (ZIF-67) was pyrolyzed under N2 atmosphere to generate Co species embedded in nanoporous carbon (Co-NC). Then, iron oxyhydroxide (FeOOH) was wrapped onto the Co-NC surface via electrodeposition to shape the Co-NC@FeOOH composites. Benefiting from the core-shell structure, high conductivity, and distributed active sites, Co-NC@FeOOH presents distinguished OER performance with a low overpotential (336 mV) at 10 mA cm-2 and small Tafel slope (49.46 mV dec-1). This work furnishes a rosy passage for receiving cost-effective electrocatalysts with high efficiency for OER.
Collapse
Affiliation(s)
- Dongyu Han
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Lin Hao
- College of Science, Hebei Agricultural University, 071001 Baoding, PR China
| | - Yajing Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China
| | - Yongjun Gao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China.
| | - Jingli Yan
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China.
| | - Yufan Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China.
| |
Collapse
|
12
|
Akbari N, Najafpour MM. Decoding Natural Strategy: Oxygen-Evolution Reaction on the Surface of Nickel Oxyhydroxide at Extremely Low Overpotential. Inorg Chem 2023; 62:19107-19114. [PMID: 37922710 DOI: 10.1021/acs.inorgchem.3c03304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Although nickel (hydr)oxides in the absence of other metal ions are conventionally deemed inefficient catalysts for the oxygen-evolution reaction (OER) under alkaline conditions, this study reveals that nickel oxyhydroxide displays an OER activity at the associated peak for Ni(II) to Ni(III) oxidation postcharge accumulation. This occurs with only 90-120 mV overpotentials (at a low current density) and a Tafel slope of 297 mV/decade in a 0.10 M KOH solution. In the initial seconds, the Faraday efficiency lingers at a relatively low 20%, which can be attributed to charge storage. Nonetheless, as the duration extends to reach the 200 s mark, the efficiency notably escalates, exceeding 80%. Additionally, a mechanism for the OER in this low-overpotential zone is proposed, grounded in our investigation of the Ni(II) to Ni(III) peak and the OER region through in situ Raman spectroscopy. Taking into account the quantity of oxygen generated and the concentrations of redox-active Ni ions in the region of the redox peak, a turnover frequency of at a potential of 4.3 × 10-4 s-1 at 1.37 V was calculated. The documented reduction in overpotential during the OER may be ascribed to the complex interplay between the process of the OER and charge accumulation. The convergence of these reciprocally influencing factors facilitates a notably low overpotential in the OER. Our findings bear substantial implications for developing highly efficient and stable electrocatalysts for the OER in water-splitting applications.
Collapse
Affiliation(s)
- Nader Akbari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
13
|
Malek A, Xue Y, Lu X. Dynamically Restructuring Ni x Cr y O Electrocatalyst for Stable Oxygen Evolution Reaction in Real Seawater. Angew Chem Int Ed Engl 2023; 62:e202309854. [PMID: 37578684 DOI: 10.1002/anie.202309854] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/15/2023]
Abstract
In the pursuit of long-term stability for oxygen evolution reaction (OER) in seawater, retaining the intrinsic catalytic activity is essential but has remained challenging. Herein, we developed a Nix Cry O electrocatalyst that manifested exceptional OER stability in alkaline condition while improving the activity over time by dynamic self-restructuring. In 1 M KOH, Nix Cry O required overpotentials of only 270 and 320 mV to achieve current densities of 100 and 500 mA cm-2 , respectively, with excellent long-term stability exceeding 475 h at 100 mA cm-2 and 280 h at 500 mA cm-2 . The combination of electrochemical measurements and in situ studies revealed that leaching and redistribution of Cr during the prolonged electrolysis resulted in increased electrochemically active surface area. This eventually enhanced the catalyst porosity and improved OER activity. Nix Cry O was further applied in real seawater from the Red Sea (without purification, 1 M KOH added), envisaging that the dynamically evolving porosity can offset the adverse active site-blocking effect posed by the seawater impurities. Remarkably, Nix Cry O exhibited stable operation for 2000, 275 and 100 h in seawater at 10, 100 and 500 mA cm-2 , respectively. The proposed catalyst and the mechanistic insights represented a step towards realization of non-noble metal-based direct seawater splitting.
Collapse
Affiliation(s)
- Abdul Malek
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 (Kingdom of, Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST (Kingdom of, Saudi Arabia
| | - Yanrong Xue
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 (Kingdom of, Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST (Kingdom of, Saudi Arabia
| | - Xu Lu
- CCRC, Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 (Kingdom of, Saudi Arabia
- KAUST Solar Center (KSC), PSE, KAUST (Kingdom of, Saudi Arabia
| |
Collapse
|
14
|
Du M, Zhang Y, Kang S, Xu C, Ma Y, Cai L, Zhu Y, Chai Y, Qiu B. Electrochemical Production of Glycolate Fuelled By Polyethylene Terephthalate Plastics with Improved Techno-Economics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303693. [PMID: 37231558 DOI: 10.1002/smll.202303693] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Electrochemical valorization of polyethylene terephthalate (PET) waste streams into commodity chemicals offers a potentially sustainable route for creating a circular plastic economy. However, PET wastes upcycling into valuable C2 product remains a huge challenge by the lack of an electrocatalyst that can steer the oxidation economically and selectively. Here, it is reported a catalyst comprising Pt nanoparticles hybridized with γ-NiOOH nanosheets supported on Ni foam (Pt/γ-NiOOH/NF) that favors electrochemical transformation of real-word PET hydrolysate into glycolate with high Faradaic efficiency (> 90%) and selectivity (> 90%) across wide reactant (ethylene glycol, EG) concentration ranges under a marginal applied voltage of 0.55 V, which can be paired with cathodic hydrogen production. Computational studies combined with experimental characterizations elucidate that the Pt/γ-NiOOH interface with substantial charge accumulation gives rise to an optimized adsorption energy of EG and a decreased energy barrier of potential determining step. A techno-economic analysis demonstrates that, with the nearly same amount of resource investment, the electroreforming strategy towards glycolate production can raise revenue by up to 2.2 times relative to conventional chemical process. This work may thus serve as a framework for PET wastes valorization process with net-zero carbon footprint and high economic viability.
Collapse
Affiliation(s)
- Mengmeng Du
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Sailei Kang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Xu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingxin Ma
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lejuan Cai
- Songshan Lake Materials Laboratory, Guangdong, 523000, China
| | - Ye Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Yang Chai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Bocheng Qiu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|