1
|
Fanaee S, Austin W, Filiaggi M, Adibnia V. External Bleeding and Advanced Biomacromolecules for Hemostasis. Biomacromolecules 2024. [PMID: 39463174 DOI: 10.1021/acs.biomac.4c00952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Hemorrhage is a significant medical problem that has been an active area of research over the past few decades. The human body has a complex response to bleeding that leads to blood clot formation and hemostasis. Many biomaterials based on various biomacromolecules have been developed to either accelerate or improve the body's natural response to bleeding. This review examines the mechanisms of hemostasis, types of bleeding, and the in vitro or in vivo models and techniques used to study bleeding and hemostatic materials. It provides a detailed overview of the diverse hemostatic materials, including those that are highly absorbent, wet adhesives, and those that accelerate the biochemical cascade of blood clotting. These materials are currently marketed, under preclinical testing, or being researched. In exploring the latest advancements in hemostatic technologies, this paper highlights the potential of these materials to significantly improve bleeding control in clinical and emergency situations.
Collapse
Affiliation(s)
- Sajjad Fanaee
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - William Austin
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Mark Filiaggi
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Vahid Adibnia
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
2
|
He PY, Zhou Y, Chen PG, Zhang MQ, Hu JJ, Lim YJ, Zhang H, Liu K, Li YM. A Hydroxylamine-Mediated Amidination of Lysine Residues That Retains the Protein's Positive Charge. Angew Chem Int Ed Engl 2024; 63:e202402880. [PMID: 38758629 DOI: 10.1002/anie.202402880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Lysine-specific peptide and protein modification strategies are widely used to study charge-related functions and applications. However, these strategies often result in the loss of the positive charge on lysine, significantly impacting the charge-related properties of proteins. Herein, we report a strategy to preserve the positive charge and selectively convert amines in lysine side chains to amidines using nitriles and hydroxylamine under aqueous conditions. Various unprotected peptides and proteins were successfully modified with a high conversion rate. Moreover, the reactive amidine moiety and derived modification site enable subsequent secondary modifications. Notably, positive charges were retained during the modification. Therefore, positive charge-related protein properties, such as liquid-liquid phase separation behaviour of α-synuclein, were not affected. This strategy was subsequently applied to a lysine rich protein to develop an amidine-containing coacervate DNA complex with outstanding mechanical properties. Overall, our innovative strategy provides a new avenue to explore the characteristics of positively charged proteins.
Collapse
Affiliation(s)
- Pei-Yang He
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yusai Zhou
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Pu-Guang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Meng-Qian Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jin-Jian Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yeh-Jun Lim
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Beijing Institute for Brain Disorders, Beijing, 100069, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Wang W, An Z, Wang Z, Wang S. Chemical Design of Supramolecular Reversible Adhesives for Promising Applications. Chemistry 2024; 30:e202304349. [PMID: 38308610 DOI: 10.1002/chem.202304349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Supramolecular reversible adhesives have garnered significant attention due to their potential applications in various fields. These adhesives exhibit remarkable properties such as reversible adhesion, self-healing, and high flexibility. This concept aims to present a comprehensive overview of the current research progress in developing supramolecular reversible adhesives. Firstly, the fundamentals of supramolecular chemistry and the principles underlying the design and synthesis of reversible adhesive systems are discussed. Next, the concept focuses on characterizing the reversible adhesion strength of supramolecular adhesive systems that have been developed. The adhesion performance of supramolecular reversible adhesives is summarized, highlighting their unique characteristics and promising applications. Finally, the challenges and future perspectives in the field of supramolecular reversible adhesives are discussed. The comprehensive overview provided in this concept aims to inspire further research and innovation in this exciting field.
Collapse
Affiliation(s)
- Wenbo Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zixin An
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
4
|
Li M, Li J, Liu K, Zhang H. Artificial structural proteins: Synthesis, assembly and material applications. Bioorg Chem 2024; 144:107162. [PMID: 38308999 DOI: 10.1016/j.bioorg.2024.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Structural proteins have evolved over billions of years and offer outstanding mechanical properties, such as resilience, toughness and stiffness. Advances in modular protein engineering, polypeptide modification, and synthetic biology have led to the development of novel biomimetic structural proteins to perform in biomedical and military fields. However, the development of customized structural proteins and assemblies with superior performance remains a major challenge, due to the inherent limitations of biosynthesis, difficulty in mimicking the complexed macroscale assembly, etc. This review summarizes the approaches for the design and production of biomimetic structural proteins, and their chemical modifications for multiscale assembly. Furthermore, we discuss the function tailoring and current applications of biomimetic structural protein assemblies. A perspective of future research is to reveal how the mechanical properties are encoded in the sequences and conformations. This review, therefore, provides an important reference for the development of structural proteins-mimetics from replication of nature to even outperforming nature.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Nakipoglu M, Tezcaner A, Contag CH, Annabi N, Ashammakhi N. Bioadhesives with Antimicrobial Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300840. [PMID: 37269168 DOI: 10.1002/adma.202300840] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Indexed: 06/04/2023]
Abstract
Bioadhesives with antimicrobial properties enable easier and safer treatment of wounds as compared to the traditional methods such as suturing and stapling. Composed of natural or synthetic polymers, these bioadhesives seal wounds and facilitate healing while preventing infections through the activity of locally released antimicrobial drugs, nanocomponents, or inherently antimicrobial polers. Although many different materials and strategies are employed to develop antimicrobial bioadhesives, the design of these biomaterials necessitates a prudent approach as achieving all the required properties including optimal adhesive and cohesive properties, biocompatibility, and antimicrobial activity can be challenging. Designing antimicrobial bioadhesives with tunable physical, chemical, and biological properties will shed light on the path for future advancement of bioadhesives with antimicrobial properties. In this review, the requirements and commonly used strategies for developing bioadhesives with antimicrobial properties are discussed. In particular, different methods for their synthesis and their experimental and clinical applications on a variety of organs are reviewed. Advances in the design of bioadhesives with antimicrobial properties will pave the way for a better management of wounds to increase positive clinical outcomes.
Collapse
Affiliation(s)
- Mustafa Nakipoglu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Engineering Sciences, School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
- Department of Molecular Biology and Genetics, Faculty of Sciences, Bartin University, Bartin, 74000, Turkey
| | - Ayşen Tezcaner
- Department of Engineering Sciences, School of Natural and Applied Sciences, Middle East Technical University, Ankara, 06800, Turkey
- BIOMATEN, CoE in Biomaterials & Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
6
|
Chen J, Shi W, Ren Y, Zhao K, Liu Y, Jia B, Zhao L, Li M, Liu Y, Su J, Ma C, Wang F, Sun J, Tian Y, Li J, Zhang H, Liu K. Strong Protein Adhesives through Lanthanide-enhanced Structure Folding and Stack Density. Angew Chem Int Ed Engl 2023; 62:e202304483. [PMID: 37670725 DOI: 10.1002/anie.202304483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Generating strong adhesion by engineered proteins has the potential for high technical applications. Current studies of adhesive proteins are primarily limited to marine organisms, e.g., mussel adhesive proteins. Here, we present a modular engineering strategy to generate a type of exotic protein adhesives with super strong adhesion behaviors. In the protein complexes, the lanmodulin (LanM) underwent α-helical conformational transition induced by lanthanides, thereby enhancing the stacking density and molecular interactions of adhesive protein. The resulting adhesives exhibited outstanding lap-shear strength of ≈31.7 MPa, surpassing many supramolecular and polymer adhesives. The extreme temperature (-196 to 200 °C) resistance capacity and underwater adhesion performance can significantly broaden their practical application scenarios. Ex vivo and in vivo experiments further demonstrated the persistent adhesion performance for surgical sealing and healing applications.
Collapse
Affiliation(s)
- Jing Chen
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Weiwei Shi
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yubin Ren
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kelu Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yangyi Liu
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Jia
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lai Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ming Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Juanjuan Su
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Xiangfu Laboratory, Jiaxing, 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Xiangfu Laboratory, Jiaxing, 314102, China
| |
Collapse
|
7
|
Zhang X, Li J, Ma C, Zhang H, Liu K. Biomimetic Structural Proteins: Modular Assembly and High Mechanical Performance. Acc Chem Res 2023; 56:2664-2675. [PMID: 37738227 DOI: 10.1021/acs.accounts.3c00372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Protein-based biomaterials attract growing interests due to their encoded and programmable robust mechanical properties, superelasticity, plasticity, shape adaptability, excellent interfacial behavior, etc., derived from sequence-guided backbone structures, particularly compared to chemically synthetic counterparts in materials science and biomedical engineering. For example, protein materials have been successfully fabricated as (1) artificial implants (man-made tendons, cartilages, or dental tissues), due to programmable chemistry and biocompatibility; (2) smart biodevices with temperature/light-response and self-healing effects; and (3) impact resistance materials having great mechanical performance due to biomimetics. However, the existing method of regenerating protein materials from natural sources has two critical issues, low yield and structural damage, making it unable to meet demands. Therefore, it is crucial to develop an alternative strategy for fabricating protein materials. Heterologous expression of natural proteins with a modular assembly approach is an effective strategy for material preparation. Standardized, easy-to-assemble protein modules with specific structures and functions are developed through experimental and computational tools based on natural functional protein sequences. Through recombination and heterologous expression, these artificial protein modules become keys to material fabrication. Undergoing an assembly process similar to supramolecular self-assembly of proteins in cells, biomimetic modules can be fabricated for formation of macroscopic materials such as fibers and adhesives. This strategy inspired by synthetic biology and supramolecular chemistry is important for improving target protein yields and assembly integrity. It also preserves and optimizes the mechanical functions of structural proteins, accelerating the design and fabrication of artificial protein materials.In this Account, we overview recent studies on fabricating biomimetic protein materials to elucidate the concept of modular assembly. We discuss the design of biomimetic structural proteins at the molecular level, providing a wealth of details determining the bulk properties of materials. Additinally, we describe the modular self-assembly and assembly driven by inducing molecules, and mechanical properties and applications of resulting fibers. We used these strategies to develop fiber materials with high tensile strength, high toughness, and properties such as anti-icing and high-temperature resistance. We also extended this approach to design protein-based adhesives with ultra-strong adhesion, biocompatibility, and biodegradability for surgical applications such as wound sealing and healing. Other protein materials, including films and hydrogels, have been developed through chemical assembly routes. Finally, we describe exploiting synthetic biology and chemistry to overcome bottlenecks in structural protein modular design, biosynthesis, and material assembly and our perspectives for future development in structural biomaterials.
Collapse
Affiliation(s)
- Xin Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| |
Collapse
|
8
|
Zhao K, Li B, Sun Y, Jia B, Chen J, Cheng W, Zhao L, Li J, Wang F, Su J, Sun J, Han B, Liu Y, Zhang H, Liu K. Engineered Bicomponent Adhesives with Instantaneous and Superior Adhesion Performance for Wound Sealing and Healing Applications. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202303509] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Indexed: 10/05/2024]
Abstract
AbstractSurgical adhesives are playing an important role in wound repair and emergency hemostasis in clinical treatment. However, the development of strong bioglue with rapid in situ adhesion, durable adhesiveness, and flexibility in dynamic and moist physiological environments is still challenging. Herein, a new type of biosynthetic protein bioadhesives with superior adhesion performance is reported by developing a protein aldimine condensation strategy. Lysine‐rich recombinant proteins are designed and massively biosynthesized to instantaneously react with aldehyde cross‐linkers to realize in situ strong adhesion. The obtained bioadhesives show an ultra‐high adhesion strength of ≈101.6 kPa on porcine skin, outperforming extant clinical bioglues. In addition, they possess super biocompatibility, flexibility, biodegradability, and compliance with the tissues. Owing to the strong and instantaneous adhesion properties, the bioadhesives are qualified for dynamic wound closure, facilitating wound repair, and noncompressible hemorrhage. Importantly, they can be industrially encapsulated into custom‐made cartridge delivery tubes at low cost for clinical use. Therefore, biosynthetic bioadhesives have great potential for biological applications and are capable of scaling up to the industrial level for clinical transformation, which will be a successful paradigm for reforming existing clinical products.
Collapse
Affiliation(s)
- Kelu Zhao
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Bo Li
- Engineering Research Center of Advanced Rare Earth Materials Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yao Sun
- Engineering Research Center of Advanced Rare Earth Materials Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- Xiangfu Laboratory Jiaxing Zhejiang 314102 China
| | - Bo Jia
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Jing Chen
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Wenhao Cheng
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Lai Zhao
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Juanjuan Su
- College of Materials Science and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Jing Sun
- School of Chemistry and Molecular Engineering Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University Shanghai 200062 China
| | - Bing Han
- Department of Orthodontics Cranial‐Facial Growth, and Development Center Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
- Engineering Research Center of Advanced Rare Earth Materials Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- Xiangfu Laboratory Jiaxing Zhejiang 314102 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
- Engineering Research Center of Advanced Rare Earth Materials Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- Xiangfu Laboratory Jiaxing Zhejiang 314102 China
| |
Collapse
|
9
|
He B, Chen L, Biehl P, Meng X, Chen W, Xu D, Ren J, Zhang K. Scale-Spanning Strong Adhesion Using Cellulose-Based Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300865. [PMID: 37162453 DOI: 10.1002/smll.202300865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Indexed: 05/11/2023]
Abstract
Adhesive gels derived from biobased sustainable materials have extremely broad application prospects, such as in flexible smart materials and biomedicine fields. Combining high toughness and strong, persisting repeatable adhesion has always been a daunting challenge for adhesive gels. However, bulk gels based on polysaccharides as the most abundant bio-based compounds usually possess a high toughness but weak interfacial adhesion due to the strong hydration potential. Herein, a novel kind of highly tough microgel membranes with rough surfaces is fabricated using loosely chemically cross-linked dihydroxypropyl cellulose (cDHPC) microgels (average size = 1.25 ± 0.03 µm). Such microgel membranes exhibit strong, instant, and persisting adhesion to various substrates with different surface roughness. Slight chemical cross-linking and multiple physical interactions within microgels and resulting microgel membranes lead to high tensile strength and toughness of 0.23 ± 0.03 MPa and 73.8 ± 9.3 KJ m-3 , respectively. The maximum adhesive strength and debonding work exceed 320 ± 0.50 KPa and 160.97 ± 0.20 J m-2 , respectively. After five cycles (re-lap after detaching), the adhesive strength still remains above 200 KPa. Their adhesive properties outperform most bio-based adhesive gels and even petroleum-based gels, which are based on synergistic molecular and microscaled topological interactions.
Collapse
Affiliation(s)
- Bei He
- Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Lizhen Chen
- Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Philip Biehl
- Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Xintong Meng
- Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Wenbo Chen
- Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Dan Xu
- Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kai Zhang
- Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| |
Collapse
|
10
|
Cui H, Zhang X, Chen J, Qian X, Zhong Y, Ma C, Zhang H, Liu K. The Construction of a Microbial Synthesis System for Rare Earth Enrichment and Material Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303457. [PMID: 37243571 DOI: 10.1002/adma.202303457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Rare earth materials play an irreplaceable role in biomedical and high technology fields. However, typical mining and extraction approaches to rare earth elements (REEs) often lead to severe environmental problems and resource wastage due to the involvement of hazardous chemicals. Although biomining shows elegant alternatives, there are still grand challenges to sustainably isolate and recover REEs in nature because of insufficient metal-extracting microbes and RE-scavenging macromolecular tools. To obtain high-performance rare earth materials directly from rare earth ore, a new generation of biological synthesis strategies needs to be developed for the efficient preparation of REEs. The microbial synthesis system established here has achieved active biomanufacturing of high-purity rare earth products. Further, through employing robust affinity columns bioconjugated with structurally engineered proteins, outstanding separation of Eu/Lu and Dy/La is acquired with the purity of 99.9% (Eu), 97.1% (La), and 92.7% (Dy). More importantly, in situ one-pot synthesis of lanthanide-dependent methanol dehydrogenase is well harnessed and exclusively adsorbs La, Ce, Pr, and Nd in RE tailing for advanced biocatalysis, indicating high value-added application. Therefore, this novel biosynthetic platform provides an insightful roadmap to expand the scope of chassis engineering in terms of biofoundry and to manufacture valuable bioproducts related to REEs.
Collapse
Affiliation(s)
- Huijing Cui
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xin Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jing Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xining Qian
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuewen Zhong
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Li Y, Li B, Wang G, Su J, Qiao Y, Ma C, Wang F, Zhu J, Li J, Zhang H, Liu K, Xu H. Engineered protein and Jakinib nanoplatform with extraordinary rheumatoid arthritis treatment. NANO RESEARCH 2023; 16:1-9. [PMID: 37359076 PMCID: PMC10256963 DOI: 10.1007/s12274-023-5838-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023]
Abstract
Rheumatoid arthritis (RA) is a relatively common inflammatory disease that affects the synovial tissue, eventually results in joints destruction and even long-term disability. Although Janus kinase inhibitors (Jakinibs) show a rapid efficacy and are becoming the most successful agents in RA therapy, high dosing at frequent interval and severe toxicities cannot be avoided. Here, we developed a new type of fully compatible nanocarriers based on recombinant chimeric proteins with outstanding controlled release of upadacitinib. In addition, the fluorescent protein component of the nanocarriers enabled noninvasive fluorescence imaging of RA lesions, thus allowing real-time detection of RA therapy. Using rat models, the nanotherapeutic is shown to be superior to free upadacitinib, as indicated by extended circulation time and sustained bioefficacy. Strikingly, this nanosystem possesses an ultralong half-life of 45 h and a bioavailability of 4-times higher than pristine upadacitinib, thus extending the dosing interval from one day to 2 weeks. Side effects such as over-immunosuppression and leukocyte levels reduction were significantly mitigated. This smart strategy boosts efficacy, safety and visuality of Jakinibs in RA therapy, and potently enables customized designs of nanoplatforms for other therapeutics. Electronic Supplementary Material Supplementary material (further details of DLS analysis, biocompatibility of PCP-UPA, CIA models construction, etc.) is available in the online version of this article at 10.1007/s12274-023-5838-0.
Collapse
Affiliation(s)
- Yuanxin Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- University of Science and Technology of China, Hefei, 230026 China
| | - Bo Li
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Gang Wang
- School of Clinical Medicine, Tsinghua University, Beijing, 100084 China
| | - Juanjuan Su
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yilin Qiao
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Jian Zhu
- First Medical Centre, Chinese PLA General Hospital, Beijing, 100853 China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 China
| | - Huji Xu
- School of Clinical Medicine, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
12
|
Mao C, Jin W, Xiang Y, Zhu Y, Wu J, Liu X, Wu S, Zheng Y, Cheung KMC, Yeung KWK. Realizing Highly Efficient Sonodynamic Bactericidal Capability through the Phonon-Electron Coupling Effect Using Two-Dimensional Catalytic Planar Defects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208681. [PMID: 36524686 DOI: 10.1002/adma.202208681] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Conferring catalytic defects in sonosensitizers is of paramount importance in reinforcing sonodynamic therapy. However, the formation of such 0D defects is governed by the Schottky defect principle. Herein, 2D catalytic planar defects are designed within Ti3 C2 sheets to address this challenge. These specific planar slip dislocations with abundant Ti3+ species (Ti3 C2 -SD(Ti3+ )) can yield surface-bound O due to the effective activation of O2 , thus resulting in a substantial amount of 1 O2 generation and the 99.72% ± 0.03% bactericidal capability subject to ultrasound (US) stimulation. It is discovered that the 2D catalytic planar defects can intervene in electron transfer through the phonon drag effect-a coupling effect between surface electrons and US-triggered phonons-that simultaneously contributes to a dramatic decrease in O2 activation energy from 1.65 to 0.06 eV. This design has achieved a qualitative leap in which the US catalytic site has transformed from 0D to 2D. Moreover, it is revealed that the electron origin, electron transfer, and visible O2 activation pathway triggered by US can be attributed to the phonon-electron coupling effect. After coating with neutrophil membrane (NM) proteins, the NM-Ti3 C2 -SD(Ti3+ ) sheets further demonstrate a 6-log10 reduction in methicillin-resistant Staphylococcus aureus burden in the infected bony tissue.
Collapse
Affiliation(s)
- Congyang Mao
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Wanyu Jin
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Yiming Xiang
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Yizhou Zhu
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Jun Wu
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Xiangmei Liu
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kenneth M C Cheung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Kelvin Wai Kwok Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| |
Collapse
|
13
|
Zhao Z, Pan M, Qiao C, Xiang L, Liu X, Yang W, Chen XZ, Zeng H. Bionic Engineered Protein Coating Boosting Anti-Biofouling in Complex Biological Fluids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208824. [PMID: 36367362 DOI: 10.1002/adma.202208824] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Implantable medical devices have been widely applied in diagnostics, therapeutics, organ restoration, and other biomedical areas, but often suffer from dysfunction and infections due to irreversible biofouling. Inspired by the self-defensive "vine-thorn" structure of climbing thorny plants, a zwitterion-conjugated protein is engineered via grafting sulfobetaine methacrylate (SBMA) segments on native bovine serum albumin (BSA) protein molecules for surface coating and antifouling applications in complex biological fluids. Unlike traditional synthetic polymers of which the coating operation requires arduous surface pretreatments, the engineered protein BSA@PSBMA (PolySBMA conjugated BSA) can achieve facile and surface-independent coating on various substrates through a simple dipping/spraying method. Interfacial molecular force measurements and adsorption tests demonstrate that the substrate-foulant attraction is significantly suppressed due to strong interfacial hydration and steric repulsion of the bionic structure of BSA@PSBMA, enabling coating surfaces to exhibit superior resistance to biofouling for a broad spectrum of species including proteins, metabolites, cells, and biofluids under various biological conditions. This work provides an innovative paradigm of using native proteins to generate engineered proteins with extraordinary antifouling capability and desired surface properties for bioengineering applications.
Collapse
Affiliation(s)
- Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
- School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Xiong Liu
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Wenshuai Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xing-Zhen Chen
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| |
Collapse
|
14
|
Engineering Mechanical Strong Biomaterials Inspired by Structural Building Blocks in Nature. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|