1
|
Zhang J, Xiao TF, Zhao H, Kong J, Kuang Z, Zhou M, Xu GQ, Li Y, Xia A. Photocatalytic Mechanisms of Organic Thermally Activated Delayed Fluorescence Compounds. J Phys Chem Lett 2024; 15:11784-11791. [PMID: 39556232 DOI: 10.1021/acs.jpclett.4c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Reverse intersystem crossing (RISC) has become possible by minimizing the energy gap between the first excited singlet (S1) and triplet state (T1), which facilitates the thermally activated delayed fluorescence (TADF). Due to the small singlet-triplet energy gap, the S1 and T1 states exhibit comparable redox reactivity, leading organic TADF compounds to be potent photocatalysts. Here, we report such TADF compounds with multiple donor units designed as an efficient photocatalyst for the direct C(sp3)-H carbamoylation of saturated aza-heterocycles. The results obtained by photophysical investigations and chemical calculations confirm that both the S1 and T1 states are involved in the photocatalysis cycle, with the fast spin-flip from the S1 to triplet states being a crucial factor in the enhancement of catalytic performance. The findings will be beneficial for the design of novel, efficient organic photocatalysis with TADF characteristics and aid in the development of organic photocatalysis.
Collapse
Affiliation(s)
- Jiawen Zhang
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Teng-Fei Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Hongmei Zhao
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Jie Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhuoran Kuang
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Yang Li
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Andong Xia
- State Key Laboratory of Information Photonic and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| |
Collapse
|
2
|
Back JH, Kim JS, Kim Y, Kim HJ. Heterogeneous Acrylic Resins with Bicontinuous Nanodomains as Low-Modulus Flexible Adhesives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403497. [PMID: 38924649 DOI: 10.1002/smll.202403497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Adhesives play a critical role in the assembly of electronic devices, particularly as devices become more diverse in form factors. Flexible displays require highly transparent and rapidly recoverable adhesives with a certain stiffness. In this study, novel structured adhesives are developed that incorporate bicontinuous nanodomains to fabricate flexible adhesives with low moduli. This structure is obtained via polymerization-induced microphase separation using a macro chain transfer agent (CTA). Phase separation is characterized using small-angle X-ray scattering, transmission electron microscopy, and dynamic mechanical analysis. By optimizing the length of the macro CTA, an adhesive with both hard and soft nanodomains is produced, resulting in exceptional flexibility (strain recovery = 93%) and minimal modulus (maximum stress/applied strain = 7 kPa), which overperforms traditional adhesives. The optimized adhesive exhibits excellent resilience under extensive strain, as well as strong adhesion and transparency. Furthermore, dynamic folding tests demonstrate the exceptional stability of the adhesive under various temperature and humidity conditions, which is attributed to its unique structure. In summary, the distinct bicontinuous phase structure confers excellent transparency, flexibility, and reduced stiffness to the adhesive, rendering it well-suited for commercial foldable displays and suggesting potential applications in stretchable displays and wearable electronics.
Collapse
Affiliation(s)
- Jong-Ho Back
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Soo Kim
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngdo Kim
- Samsung Display Co. Ltd., Cheonan, 31086, Republic of Korea
| | - Hyun-Joong Kim
- Program in Environmental Materials Science, Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Park Y, Kim J, Ahn D, Yu Y, Lee W, Kwon MS. Biomass-Derived Optically Clear Adhesives for Foldable Displays. CHEMSUSCHEM 2024; 17:e202301795. [PMID: 38551333 DOI: 10.1002/cssc.202301795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/13/2024] [Indexed: 05/24/2024]
Abstract
Novel acrylate monomers, derived from terpenes are synthesized for use in optically clear adhesives (OCAs) suitable for foldable displays. These OCAs are prepared using visible-light-driven polymerization, an eco-friendly method. Through physical, rheological, and mechanical characterization, the prepared OCAs possess low modulus and exhibit outstanding creep and recovery properties, making them suitable for foldable devices.
Collapse
Affiliation(s)
- Youngjoo Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junkyu Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dowon Ahn
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Youngchang Yu
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Wonjoo Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan, 44412, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Min H, Kwon Y, Shin S, Choi M, Mehra MK, Jeon W, Kwon MS, Lee CW. Tailoring the Degradation of Cyanoarene-Based Photocatalysts for Enhanced Visible-Light-Driven Halogen Atom Transfer. Angew Chem Int Ed Engl 2024; 63:e202406880. [PMID: 38842479 DOI: 10.1002/anie.202406880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/07/2024]
Abstract
We present the strategic design of donor-acceptor cyanoarene-based photocatalysts (PCs) aiming to augment beneficial PC degradation for halogen atom transfer (XAT)-induced dehalogenation reactions. Our investigation reveals a competitive nature between the catalytic cycle and the degradation pathway, with the degradation becoming dominant, particularly for less activated alkyl halides. The degradation behavior of PCs significantly impacts the efficiency of the XAT process, leading to exploration into manipulating the degradation behavior in a desirable direction. Recognizing the variation in the nature and rate of PC degradation, as well as its influence on the reaction across the range of PC structures, we carefully engineered the PCs to develop a pre-catalyst, named 3DP-DCDP-IPN. This pre-catalyst undergoes rapid degradation into an active form, 3DP-DCDP-Me-BN, exhibited an enhanced reducing ability in its radical anion form to induce better PC regeneration and consequently effectively catalyzes the XAT reaction, even with a challenging substrate.
Collapse
Affiliation(s)
- Hyunji Min
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Yonghwan Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sukhyun Shin
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Miseon Choi
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
| | - Manish Kumar Mehra
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
- Present address, The Wistar Institute, Philadelphia, 19104, PA, United States
| | - Woojin Jeon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chung Whan Lee
- Department of Chemistry, Gachon University, 1342 Seongnamdaero, Seongnam, Gyeonggi, 13120, Republic of Korea
| |
Collapse
|
5
|
Jeon W, Kwon Y, Kwon MS. Highly efficient dual photoredox/copper catalyzed atom transfer radical polymerization achieved through mechanism-driven photocatalyst design. Nat Commun 2024; 15:5160. [PMID: 38886349 PMCID: PMC11183263 DOI: 10.1038/s41467-024-49509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Atom transfer radical polymerization (ATRP) with dual photoredox/copper catalysis combines the advantages of photo-ATRP and photoredox-mediated ATRP, utilizing visible light and ensuring broad monomer scope and solvent compatibility while minimizing side reactions. Despite its popularity, challenges include high photocatalyst (PC) loadings (10 to 1000 ppm), requiring additional purification and increasing costs. In this study, we discover a PC that functions at the sub-ppm level for ATRP through mechanism-driven PC design. Through studying polymerization mechanisms, we find that the efficient polymerizations are driven by PCs whose ground state oxidation potential-responsible for PC regeneration-play a more important role than their excited state reducing power, responsible for initiation. This is verified by screening PCs with varying redox potentials and triplet excited state generation capabilities. Based on these findings, we identify a highly efficient PC, 4DCDP-IPN, featuring moderate excited state reducing power and a maximized ground state oxidation potential. Employing this PC at 50 ppb, we synthesize poly(methyl methacrylate) with high conversion, narrow molecular weight distribution, and high chain-end fidelity. This system exhibits oxygen tolerance and supports large-scale reactions under ambient conditions. Our findings, driven by the systematic PC design, offer meaningful insights for controlled radical polymerizations and metallaphotoredox-mediated syntheses beyond ATRP.
Collapse
Affiliation(s)
- Woojin Jeon
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
| | - Yonghwan Kwon
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea.
| | - Min Sang Kwon
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Zhang G, Liu X, Liu H, Wang X, Duan F, Yu H, Nie Z, Wei D, Zhang Y, Pan H, Duan H. Customizable Metal Micromesh Electrode Enabling Flexible Transparent Zn-Ion Hybrid Supercapacitors with High Energy Density. SMALL METHODS 2024; 8:e2300792. [PMID: 37802968 DOI: 10.1002/smtd.202300792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/22/2023] [Indexed: 10/08/2023]
Abstract
Emerging flexible and wearable electronic products are placing a compelling demand on lightweight transparent energy storage devices. Owing to their distinguishing features of safety, high specific energy, cycling stability, and rapid charge/discharge advantages, Zn-ion hybrid supercapacitors are a current topic of discussion. However, the trade-off for optical transmittance and energy density remains a great challenge. Here, a high-performance Zn-ion hybrid supercapacitor based on the customizable ultrathin (5 µm), ultralight (0.45 mg cm-2), and ultra-transparent (87.6%) Ni micromesh based cathode and Zn micromesh anode with the highest figure of merit (84 843) is proposed. The developed flexible transparent Zn-ion hybrid supercapacitors reveal excellent cycle stability (no decline after 20 000 cycles), high areal energy density (31.69 µWh cm-2), and high power density (512 µW cm-2). In addition, the assembled solid flexible and transparent Zn-ion hybrid supercapacitor with polyacrylamide gel electrolyte shows extraordinary mechanical properties even under extreme bending and twisting operation. Furthermore, the full device displays a high optical transmittance over 55.04% and can be conformally integrated with diverse devices as a flexible transparent power supply. The fabrication technology offers seamless compatibility with industrial manufacturing, making it an ideal model for the advancement of portable and wearable devices.
Collapse
Affiliation(s)
- Guanhua Zhang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| | - Xiuxue Liu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Huaizhi Liu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xiaohu Wang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Fuqing Duan
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Huihuang Yu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Zeqi Nie
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Donghai Wei
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Yapeng Zhang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Huihuang Pan
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Huigao Duan
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511300, China
| |
Collapse
|
7
|
Shin S, Kwon Y, Hwang C, Jeon W, Yu Y, Paik HJ, Lee W, Kwon MS, Ahn D. Visible-Light-Driven Rapid 3D Printing of Photoresponsive Resins for Optically Clear Multifunctional 3D Objects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311917. [PMID: 38288894 DOI: 10.1002/adma.202311917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Light-driven 3D printing is gaining significant attention for its unparalleled build speed and high-resolution in additive manufacturing. However, extending vat photopolymerization to multifunctional, photoresponsive materials poses challenges, such as light attenuation and interference between the photocatalysts (PCs) and photoactive moieties. This study introduces novel visible-light-driven acrylic resins that enable rapid, high-resolution photoactive 3D printing. The synergistic combination of a cyanine-based PC, borate, and iodonium coinitiators (HNu 254) achieves an excellent printing rate and feature resolution under low-intensity, red light exposure. The incorporation of novel hexaarylbiimidazole (HABI) crosslinkers allows for spatially-resolved photoactivation upon exposure to violet/blue light. Furthermore, a photobleaching mechanism inhibited by HNu 254 during the photopolymerization process results in the production of optically-clear 3D printed objects. Real-time Fourier transform infrared spectroscopy validates the rapid photopolymerization of the HABI-containing acrylic resin, whereas mechanistic evaluations reveal the underlying dynamics that are responsible for the rapid photopolymerization rate, wavelength-orthogonal photoactivation, and observed photobleaching phenomenon. Ultimately, this visible-light-based printing method demonstrates: (i) rapid printing rate of 22.5 mm h-1, (ii) excellent feature resolution (≈20 µm), and (iii) production of optically clear object with self-healing capability and spatially controlled cleavage. This study serves as a roadmap for developing next-generation "smart" 3D printing technologies.
Collapse
Affiliation(s)
- Sangbin Shin
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Yonghwan Kwon
- Department of Materials Science and Engineering, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Chiwon Hwang
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Woojin Jeon
- Department of Materials Science and Engineering, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Youngchang Yu
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Wonjoo Lee
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Dowon Ahn
- Center for Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| |
Collapse
|
8
|
Kwon Y, Lee S, Kim J, Jun J, Jeon W, Park Y, Kim HJ, Gierschner J, Lee J, Kim Y, Kwon MS. Ultraviolet light blocking optically clear adhesives for foldable displays via highly efficient visible-light curing. Nat Commun 2024; 15:2829. [PMID: 38565557 PMCID: PMC10987679 DOI: 10.1038/s41467-024-47104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
In developing an organic light-emitting diode (OLED) panel for a foldable smartphone (specifically, a color filter on encapsulation) aimed at reducing power consumption, the use of a new optically clear adhesive (OCA) that blocks UV light was crucial. However, the incorporation of a UV-blocking agent within the OCA presented a challenge, as it restricted the traditional UV-curing methods commonly used in the manufacturing process. Although a visible-light curing technique for producing UV-blocking OCA was proposed, its slow curing speed posed a barrier to commercialization. Our study introduces a highly efficient photo-initiating system (PIS) for the rapid production of UV-blocking OCAs utilizing visible light. We have carefully selected the photocatalyst (PC) to minimize electron and energy transfer to UV-blocking agents and have chosen co-initiators that allow for faster electron transfer and more rapid PC regeneration compared to previously established amine-based co-initiators. This advancement enabled a tenfold increase in the production speed of UV-blocking OCAs, while maintaining their essential protective, transparent, and flexible properties. When applied to OLED devices, this OCA demonstrated UV protection, suggesting its potential for broader application in the safeguarding of various smart devices.
Collapse
Affiliation(s)
- Yonghwan Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seokju Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Junkyu Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jinwon Jun
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Woojin Jeon
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Youngjoo Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Joong Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, Republic of Korea
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, 28049, Madrid, Spain
| | - Jaesang Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Youngdo Kim
- Samsung Display Co., Ltd., Cheonan, Republic of Korea.
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Kim D, Kim H, Jeon W, Kim HJ, Choi J, Kim Y, Kwon MS. Ultraviolet Light Debondable Optically Clear Adhesives for Flexible Displays through Efficient Visible-Light Curing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309891. [PMID: 38146993 DOI: 10.1002/adma.202309891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/19/2023] [Indexed: 12/27/2023]
Abstract
With growing sustainability concerns, the need for products that facilitate easy disassembly and reuse has increased. Adhesives, initially designed for bonding, now face demands for selective removal, enabling rapid assembly-disassembly and efficient maintenance across industries. This need is particularly evident in the display industry, with the rise of foldable devices necessitating specialized adhesives. A novel optically clear adhesive (OCA) is presented for foldable display, featuring a unique UV-stimulated selective removal feature. This approach incorporates benzophenone derivatives into the polymer network, facilitating rapid debonding under UV irradiation. A key feature of this method is the adept use of visible-light-driven radical polymerization for OCA film fabrication. This method shows remarkable compatibility with various monomers and exhibits orthogonal reactivity to benzophenone, rendering it ideal for large-scale production. The resultant OCA not only has high transparency and balanced elasticity, along with excellent resistance to repeated folding, but it also exhibits significantly reduced adhesion when exposed to UV irradiation. By merging this customized formulation with strategically integrated UV-responsive elements, an effective solution is offered that enhances manufacturing efficiency and product reliability in the rapidly evolving field of sustainable electronics and displays. This research additionally contributes to eco-friendly device fabrication, aligning with emerging technology demands.
Collapse
Affiliation(s)
- Daewhan Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongdeok Kim
- Department of Mechanical Design Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, 15588, Republic of Korea
| | - Woojin Jeon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Joong Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joonmyung Choi
- Department of Mechanical Design Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan, 15588, Republic of Korea
| | - Youngdo Kim
- Mobile Display Module Development Team, Samsung Display Co., Ltd., Cheonan, 31086, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
10
|
Xia B, Zeng X, Lan W, Zhang M, Huang W, Wang H, Liu C. Cellulose nanocrystal/graphene oxide one-dimensional photonic crystal film with excellent UV-blocking and transparency. Carbohydr Polym 2024; 327:121646. [PMID: 38171671 DOI: 10.1016/j.carbpol.2023.121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Abstract
Achieving excellent ultraviolet (UV) blocking properties and maintaining high light transmittance are highly challenging. In this study, a facile and green polymer-assisted vacuum filtration strategy was used to prepare cellulose nanocrystal (CNC) one-dimensional photonic crystal (1DPhC) films with excellent UV-blocking performance and good transparency. The polymer-assisted self-assembly behaviors of CNC and the hydrogen bonding interaction between CNC, polyethylene glycol (PEG), and graphene oxide (GO) drive the homogeneous distribution and parallel alignment of GO. The UV absorption of GO and high reflection of UV resulting from the chiral nematic structure of CNCs result in excellent UV-blocking and high visible light transmission. Besides, the strong hydrogen bonding interaction among CNC, PEG, and GO endows the films with obviously increased mechanical properties. The UV-blocking and the transparency of the CNC composite films could reach 98.3 % and 60.5 %, respectively. Besides, the strain at break of the composite film reached 1.72 ± 0.11 %, which was 535.94 % of neat CNC films. The CNC composite films present great potential in the field of UV-blocking glass, sensors, anti-counterfeiting measures, radiation protection, and so on.
Collapse
Affiliation(s)
- Bingyu Xia
- State Key Lab Pulp & Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Xu Zeng
- State Key Lab Pulp & Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Wu Lan
- State Key Lab Pulp & Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Mingxin Zhang
- School of Chemistry and Chemical Engineering, School of Marine Science and Engineering, Hainan University, Haikou, Hainan 570228, PR China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, School of Marine Science and Engineering, Hainan University, Haikou, Hainan 570228, PR China
| | - Huihui Wang
- School of Chemistry and Chemical Engineering, School of Marine Science and Engineering, Hainan University, Haikou, Hainan 570228, PR China.
| | - Chuanfu Liu
- State Key Lab Pulp & Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, PR China.
| |
Collapse
|
11
|
Whitaker W, Sazanovich IV, Kwon Y, Jeon W, Kwon MS, Orr-Ewing AJ. Characterization of the Reversible Intersystem Crossing Dynamics of Organic Photocatalysts Using Transient Absorption Spectroscopy and Time-Resolved Fluorescence Spectroscopy. J Phys Chem A 2023; 127:10775-10788. [PMID: 38096377 PMCID: PMC10758116 DOI: 10.1021/acs.jpca.3c04780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023]
Abstract
Thermally activated delayed fluorescence (TADF) emitters are molecules of interest as homogeneous organic photocatalysts (OPCs) for photoredox chemistry. Here, three classes of OPC candidates are studied in dichloromethane (DCM) or N,N-dimethylformamide (DMF) solutions, using transient absorption spectroscopy and time-resolved fluorescence spectroscopy. These OPCs are benzophenones with either carbazole (2Cz-BP and 2tCz-BP) or phenoxazine/phenothiazine (2PXZ-BP and 2PTZ-BP) appended groups and the dicyanobenzene derivative 4DP-IPN. Dual lifetimes of the S1 state populations are observed, consistent with reverse intersystem crossing (RISC) and TADF emission. Example fluorescence lifetimes in DCM are (5.18 ± 0.01) ns and (6.22 ± 1.27) μs for 2Cz-BP, (1.38 ± 0.01) ns and (0.32 ± 0.01) μs for 2PXZ-BP, and (2.97 ± 0.01) ns and (62.0 ± 5.8) μs for 4DP-IPN. From ground state bleach recoveries and time-correlated single photon counting measurements, triplet quantum yields in DCM are estimated to be 0.62 ± 0.16, 0.04 ± 0.01, and 0.83 ± 0.02 for 2Cz-BP, 2PXZ-BP, and 4DP-IPN, respectively. 4DP-IPN displays similar photophysical behavior to the previously studied OPC 4Cz-IPN. Independent of the choice of solvent, 4DP-IPN, 2Cz-BP, and 2tCz-BP are shown to be TADF emitters, whereas emission by 2PXZ-BP and 2PTZ-BP depends on the molecular environment, with TADF emission enhanced in aggregates compared to monomers. Behavior of this type is representative of aggregation-induced emission luminogens (AIEgens).
Collapse
Affiliation(s)
- William Whitaker
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Igor V. Sazanovich
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Yonghwan Kwon
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic
of Korea
| | - Woojin Jeon
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic
of Korea
| | - Min Sang Kwon
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic
of Korea
| | - Andrew J. Orr-Ewing
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
12
|
Hwang C, Shin S, Ahn D, Paik HJ, Lee W, Yu Y. Realizing Cross-linking-free Acrylic Pressure-Sensitive Adhesives with Intensive Chain Entanglement through Visible-Light-Mediated Photoiniferter-Reversible Addition-Fragmentation Chain-Transfer Polymerization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58905-58916. [PMID: 38062761 DOI: 10.1021/acsami.3c15002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
A versatile and simplified synthesis scheme for intensively entangled acrylic pressure-sensitive adhesives (PSAs) was developed in this study by leveraging visible-light-driven controlled radical polymerization (photoiniferter/reversible addition-fragmentation chain-transfer polymerization) of acrylic copolymers under a controlled manner; the approach was differentiated by a single factor; molecular weight (Mw up to 2.8 MDa) with identical compositions. By manipulating Mw up to ultra-high ranges, PSAs with diversified viscoelastic properties were prepared and then assessed with a focus on realizing PSAs with a maximized degree of entanglement per chain through domination of high Mw contents, to help achieve excellent cohesiveness without a reinforcing cross-linking network. Moreover, fully linear solvent-soluble poly(acrylate)s were synthesized to facilitate reprocessing and reuse, highlighting the sustainability of the devised method and, consequently, its potential to be applied for effectively reducing industrial or daily waste.
Collapse
Affiliation(s)
- Chiwon Hwang
- Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sangbin Shin
- Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Dowon Ahn
- Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
| | - Hyun-Jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wonjoo Lee
- Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
| | - Youngchang Yu
- Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
| |
Collapse
|
13
|
Kwon Y, Lee J, Noh Y, Kim D, Lee Y, Yu C, Roldao JC, Feng S, Gierschner J, Wannemacher R, Kwon MS. Formation and degradation of strongly reducing cyanoarene-based radical anions towards efficient radical anion-mediated photoredox catalysis. Nat Commun 2023; 14:92. [PMID: 36609499 PMCID: PMC9822901 DOI: 10.1038/s41467-022-35774-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Cyanoarene-based photocatalysts (PCs) have attracted significant interest owing to their superior catalytic performance for radical anion mediated photoredox catalysis. However, the factors affecting the formation and degradation of cyanoarene-based PC radical anion (PC•‒) are still insufficiently understood. Herein, we therefore investigate the formation and degradation of cyanoarene-based PC•‒ under widely-used photoredox-mediated reaction conditions. By screening various cyanoarene-based PCs, we elucidate strategies to efficiently generate PC•‒ with adequate excited-state reduction potentials (Ered*) via supra-efficient generation of long-lived triplet excited states (T1). To thoroughly investigate the behavior of PC•‒ in actual photoredox-mediated reactions, a reductive dehalogenation is carried out as a model reaction and identified the dominant photodegradation pathways of the PC•‒. Dehalogenation and photodegradation of PC•‒ are coexistent depending on the rate of electron transfer (ET) to the substrate and the photodegradation strongly depends on the electronic and steric properties of the PCs. Based on the understanding of both the formation and photodegradation of PC•‒, we demonstrate that the efficient generation of highly reducing PC•‒ allows for the highly efficient photoredox catalyzed dehalogenation of aryl/alkyl halides at a PC loading as low as 0.001 mol% with a high oxygen tolerance. The present work provides new insights into the reactions of cyanoarene-based PC•‒ in photoredox-mediated reactions.
Collapse
Affiliation(s)
- Yonghwan Kwon
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea ,grid.42687.3f0000 0004 0381 814XDepartment of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Jungwook Lee
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yeonjin Noh
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea ,grid.42687.3f0000 0004 0381 814XDepartment of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Doyon Kim
- grid.42687.3f0000 0004 0381 814XDepartment of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Republic of Korea
| | - Yungyeong Lee
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Changhoon Yu
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Juan Carlos Roldao
- grid.482876.70000 0004 1762 408XMadrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, Madrid, 28049 Spain ,grid.452382.a0000 0004 1768 3100Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, San Sebastián, 20018 Spain
| | - Siyang Feng
- grid.482876.70000 0004 1762 408XMadrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, Madrid, 28049 Spain
| | - Johannes Gierschner
- grid.482876.70000 0004 1762 408XMadrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, Madrid, 28049 Spain
| | - Reinhold Wannemacher
- grid.482876.70000 0004 1762 408XMadrid Institute for Advanced Studies, IMDEA Nanoscience, Calle Faraday 9, Campus Cantoblanco, Madrid, 28049 Spain
| | - Min Sang Kwon
- grid.31501.360000 0004 0470 5905Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
14
|
Yu C, Song J, Kim TI, Lee Y, Kwon Y, Kim J, Park J, Choi J, Doh J, Min SK, Cho S, Kwon MS. Silver Sulfide Nanocrystals as a Biocompatible and Full-Spectrum Photocatalyst for Efficient Light-Driven Polymerization under Aqueous and Ambient Conditions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Changhoon Yu
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaejung Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae In Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yungyeong Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Yonghwan Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jongkyoung Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeehun Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinho Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seungho Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|