1
|
Feng X, Liu J, Kong Y, Zhang Z, Zhang Z, Li S, Tong L, Gao X, Zhang J. Cu/Cu xO/Graphdiyne Tandem Catalyst for Efficient Electrocatalytic Nitrate Reduction to Ammonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405660. [PMID: 38884637 DOI: 10.1002/adma.202405660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/23/2024] [Indexed: 06/18/2024]
Abstract
The electrocatalytic reduction reaction of nitrate (NO3 -) to ammonia (NH3) is a feasible way to achieve artificial nitrogen cycle. However, the low yield rate and poor selectivity toward NH3 product is a technical challenge. Here a graphdiyne (GDY)-based tandem catalyst featuring Cu/CuxO nanoparticles anchored to GDY support (termed Cu/CuxO/GDY) for efficient electrocatalytic NO3 - reduction is presented. A high NH3 yield rate of 25.4 mg h-1 mgcat. -1 (25.4 mg h-1 cm-2) with a Faradaic efficiency of 99.8% at an applied potential of -0.8 V versus RHE using the designed catalyst is achieved. These performance metrics outperform most reported NO3 - to NH3 catalysts in the alkaline media. Electrochemical measurements and density functional theory reveal that the NO3 - preferentially attacks Cu/CuxO, and the GDY can effectively catalyze the reduction of NO2 - to NH3. This work highlights the efficacy of GDY as a new class of tandem catalysts for the artificial nitrogen cycle and provides powerful guidelines for the design of tandem electrocatalysts.
Collapse
Affiliation(s)
- Xueting Feng
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiyuan Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ya Kong
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zixuan Zhang
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zedong Zhang
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Lianming Tong
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xin Gao
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jin Zhang
- Beijing National Laboratory for Molecular Sciences, Beijing Science and Engineering Center for Nanocarbons, College of Chemistry and Molecular Engineering, School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
2
|
Zhai Q, Huang H, Lawson T, Xia Z, Giusto P, Antonietti M, Jaroniec M, Chhowalla M, Baek JB, Liu Y, Qiao S, Dai L. Recent Advances on Carbon-Based Metal-Free Electrocatalysts for Energy and Chemical Conversions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405664. [PMID: 39049808 DOI: 10.1002/adma.202405664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Over the last decade, carbon-based metal-free electrocatalysts (C-MFECs) have become important in electrocatalysis. This field is started thanks to the initial discovery that nitrogen atom doped carbon can function as a metal-free electrode in alkaline fuel cells. A wide variety of metal-free carbon nanomaterials, including 0D carbon dots, 1D carbon nanotubes, 2D graphene, and 3D porous carbons, has demonstrated high electrocatalytic performance across a variety of applications. These include clean energy generation and storage, green chemistry, and environmental remediation. The wide applicability of C-MFECs is facilitated by effective synthetic approaches, e.g., heteroatom doping, and physical/chemical modification. These methods enable the creation of catalysts with electrocatalytic properties useful for sustainable energy transformation and storage (e.g., fuel cells, Zn-air batteries, Li-O2 batteries, dye-sensitized solar cells), green chemical production (e.g., H2O2, NH3, and urea), and environmental remediation (e.g., wastewater treatment, and CO2 conversion). Furthermore, significant advances in the theoretical study of C-MFECs via advanced computational modeling and machine learning techniques have been achieved, revealing the charge transfer mechanism for rational design and development of highly efficient catalysts. This review offers a timely overview of recent progress in the development of C-MFECs, addressing material syntheses, theoretical advances, potential applications, challenges and future directions.
Collapse
Affiliation(s)
- Qingfeng Zhai
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Hetaishan Huang
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Tom Lawson
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Zhenhai Xia
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Paolo Giusto
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, 44240, OH, USA
| | - Manish Chhowalla
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Jong-Beom Baek
- Ulsan National Institute of Science & Technology (UNIST), Ulsan, 44919, South Korea
| | - Yun Liu
- Research School of Chemistry, The Australian National University, Canberra, 2601, Australia
| | - Shizhang Qiao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, 5005, SA, Australia
| | - Liming Dai
- Australian Research Council Centre of Excellence for Carbon Science and Innovation, Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| |
Collapse
|
3
|
Feng Y, Sun M, Ji Y, Fan T. Is Fe the Most Active Site for Fe/N-Doped Graphdiyne? ACS OMEGA 2024; 9:17389-17397. [PMID: 38645330 PMCID: PMC11025103 DOI: 10.1021/acsomega.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Abstract
We performed a systematic study on the activity of pristine, Fe-doped, N-doped, and Fe/N-codoped graphdiyne (GDY) for oxygen reduction reactions (ORRs). We found that the pristine GDY has a high overpotential because of the weak binding of the intermediates. The sp-hybridized N-doped GDY enhances the binding of the intermediates at the adjacent sp-hybridized C site, which greatly enhances its ORR activities with a low overpotential of 0.45 V. On the other hand, on Fe-doped GDY, the binding of the intermediates at the Fe site and its neighboring C sites becomes too strong, while the C site at the second nearest acetylene chain becomes the most active site with an overpotential of 0.43 V. In the case of Fe and N codoping, Fe and the C sites near Fe and N still bind the intermediates too strongly, and the most active site is located at the C with an optimal distance. The binding energy of OH* is an activity descriptor for Fe- and/or N-doped GDY. Based on the machine learning analysis of ΔG(OH*), both the properties of the active center (electronic and geometric properties) and its environment, especially the latter, play important roles in determining its activity. The scaling relation analysis and volcano plot suggest that Fe and N doping enhance the binding of the intermediates to different extents, and the C atom, which is bonded neither to N nor to Fe atom, with an optimal binding strength, becomes the most active site.
Collapse
Affiliation(s)
- Yuanyi Feng
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510641, P. R. China
| | - Mingying Sun
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510641, P. R. China
| | - Yongfei Ji
- School
of Chemistry and Chemical Engineering, Guangzhou
University, Guangzhou 510006, P. R. China
| | - Ting Fan
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Guangzhou 510641, P. R. China
| |
Collapse
|
4
|
Wan W, Zhao Y, Meng J, Allen CS, Zhou Y, Patzke GR. Tailoring C─N Containing Compounds into Carbon Nanomaterials with Tunable Morphologies for Electrocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304663. [PMID: 37821413 DOI: 10.1002/smll.202304663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/26/2023] [Indexed: 10/13/2023]
Abstract
Carbon materials with unique sp2 -hybridization are extensively researched for catalytic applications due to their excellent conductivity and tunable physicochemical properties. However, the development of economic approaches to tailoring carbon materials into desired morphologies remains a challenge. Herein, a convenient "bottom-up" strategy by pyrolysis of graphitic carbon nitride (g-C3 N4 ) (or other carbon/nitrogen (C, N)-enriched compounds) together with selected metal salts and molecules is reported for the construction of different carbon-based catalysts with tunable morphologies, including carbon nano-balls, carbon nanotubes, nitrogen/sulfur (S, N) doped-carbon nanosheets, and single-atom catalysts, supported by carbon layers. The catalysts are systematically investigated through various microscopic, spectroscopic, and diffraction methods and they demonstrate promising and broad applications in electrocatalysis such as in the oxygen reduction reaction and water splitting. Mechanistic monitoring of the synthesis process through online thermogravimetric-gas chromatography-mass spectrometry measurements indicates that the release of C─N-related moieties, such as dicyan, plays a key role in the growth of carbon products. This enables to successfully predict other widely available precursor compounds beyond g-C3 N4 such as caffeine, melamine, and urea. This work develops a novel and economic strategy to generate morphologically diverse carbon-based catalysts and provides new, essential insights into the growth mechanism of carbon nanomaterials syntheses.
Collapse
Affiliation(s)
- Wenchao Wan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, D-45470, Mülheim an der Ruhr, Germany
| | - Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Jie Meng
- Division of Chemical Physics, Lund University, Box 124, Lund, 22100, Sweden
| | - Christopher S Allen
- Electron Physical Science Imaging Center, Diamond Light Source Ltd, Didcot, Oxfordshire, OX11 0DE, UK
- Department of Materials, University of Oxford, Oxford, OX1 3HP, UK
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| |
Collapse
|
5
|
Zhao S, Chen Z, Liu H, Qi L, Zheng Z, Luan X, Gao Y, Liu R, Yan J, Bu F, Xue Y, Li Y. Graphdiyne-Based Multiscale Catalysts for Ammonia Synthesis. CHEMSUSCHEM 2023:e202300861. [PMID: 37578808 DOI: 10.1002/cssc.202300861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Graphdiyne, a sp/sp2 -cohybridized two-dimensional all- carbon material, has many unique and fascinating properties of alkyne-rich structures, large π conjugated system, uniform pores, specific unevenly-distributed surface charge, and incomplete charge transfer properties provide promising potential in practical applications including catalysis, energy conversion and storage, intelligent devices, life science, photoelectric, etc. These superior advantages have made graphdiyne one of the hottest research frontiers of chemistry and materials science and produced a series of original and innovative research results in the fundamental and applied research of carbon materials. In recent years, considerable advances have been made toward the development of graphdiyne-based multiscale catalysts for nitrogen fixation and ammonia synthesis at room temperatures and ambient pressures. This review aims to provide a comprehensive update in regard to the synthesis of graphdiyne-based multiscale catalysts and their applications in the synthesis of ammonia. The unique features of graphdiyne are highlighted throughout the review. Finally, it concludes with the discussion of challenges and future perspectives relating to graphdiyne.
Collapse
Affiliation(s)
- Shuya Zhao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Zhaoyang Chen
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Huimin Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Zhiqiang Zheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Xiaoyu Luan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Yaqi Gao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Runyu Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Jiayu Yan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Fanle Bu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 250100, Jinan, China
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
6
|
Zheng X, Chen S, Li J, Wu H, Zhang C, Zhang D, Chen X, Gao Y, He F, Hui L, Liu H, Jiu T, Wang N, Li G, Xu J, Xue Y, Huang C, Chen C, Guo Y, Lu TB, Wang D, Mao L, Zhang J, Zhang Y, Chi L, Guo W, Bu XH, Zhang H, Dai L, Zhao Y, Li Y. Two-Dimensional Carbon Graphdiyne: Advances in Fundamental and Application Research. ACS NANO 2023. [PMID: 37471703 DOI: 10.1021/acsnano.3c03849] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Graphdiyne (GDY), a rising star of carbon allotropes, features a two-dimensional all-carbon network with the cohybridization of sp and sp2 carbon atoms and represents a trend and research direction in the development of carbon materials. The sp/sp2-hybridized structure of GDY endows it with numerous advantages and advancements in controlled growth, assembly, and performance tuning, and many studies have shown that GDY has been a key material for innovation and development in the fields of catalysis, energy, photoelectric conversion, mode conversion and transformation of electronic devices, detectors, life sciences, etc. In the past ten years, the fundamental scientific issues related to GDY have been understood, showing differences from traditional carbon materials in controlled growth, chemical and physical properties and mechanisms, and attracting extensive attention from many scientists. GDY has gradually developed into one of the frontiers of chemistry and materials science, and has entered the rapid development period, producing large numbers of fundamental and applied research achievements in the fundamental and applied research of carbon materials. For the exploration of frontier scientific concepts and phenomena in carbon science research, there is great potential to promote progress in the fields of energy, catalysis, intelligent information, optoelectronics, and life sciences. In this review, the growth, self-assembly method, aggregation structure, chemical modification, and doping of GDY are shown, and the theoretical calculation and simulation and fundamental properties of GDY are also fully introduced. In particular, the applications of GDY and its formed aggregates in catalysis, energy storage, photoelectronic, biomedicine, environmental science, life science, detectors, and material separation are introduced.
Collapse
Affiliation(s)
- Xuchen Zheng
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Siao Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinze Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Han Wu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Danyan Zhang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xi Chen
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yang Gao
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Feng He
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lan Hui
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huibiao Liu
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tonggang Jiu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Guoxing Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Yurui Xue
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
| | - Changshui Huang
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300350, P. R. China
| | - Dan Wang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering and Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano and Soft Materials, Soochow University, Soochow 1215031, P. R. China
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control for Aerospace Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuliang Li
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary, Shandong University, Qingdao 266237, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Zhang L, Wang N, Li Y. Design, synthesis, and application of some two-dimensional materials. Chem Sci 2023; 14:5266-5290. [PMID: 37234883 PMCID: PMC10208047 DOI: 10.1039/d3sc00487b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Two-dimensional (2D) materials are widely used as key components in the fields of energy conversion and storage, optoelectronics, catalysis, biomedicine, etc. To meet the practical needs, molecular structure design and aggregation process optimization have been systematically carried out. The intrinsic correlation between preparation methods and the characteristic properties is investigated. This review summarizes the recent research achievements of 2D materials in the aspect of molecular structure modification, aggregation regulation, characteristic properties, and device applications. The design strategies to fabricate functional 2D materials starting from precursor molecules are introduced in detail referring to organic synthetic chemistry and self-assembly technology. It provides important research ideas for the design and synthesis of related materials.
Collapse
Affiliation(s)
- Luwei Zhang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
| | - Ning Wang
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University 27 Shanda Nanlu Jinan 250100 P. R. China
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P. R. China
| |
Collapse
|