1
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Pirozzi I, Kight A, Han AK, Cutkosky MR, Dual SA. Circulatory Support: Artificial Muscles for the Future of Cardiovascular Assist Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210713. [PMID: 36827651 DOI: 10.1002/adma.202210713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Artificial muscles enable the design of soft implantable devices which are poised to transform the way we mechanically support the heart today. Heart failure is a prevalent and deadly disease, which is treated with the implantation of rotary blood pumps as the only alternative to heart transplantation. The clinically used mechanical devices are associated with severe adverse events, which are reflected here in a comprehensive list of critical requirements for soft active devices of the future: low power, no blood contact, pulsatile support, physiological responsiveness, high cycle life, and less-invasive implantation. In this review, prior art in artificial muscles for their applicability in the short and long term is investigated and critically evaluated. The main challenges regarding the effectiveness, controllability, and implantability of recently proposed actuators are highlighted and the future perspectives for attachment, physiological responsiveness, durability, and biodegradability as well as equitable design considerations are explored.
Collapse
Affiliation(s)
- Ileana Pirozzi
- Department of Bioengineering, Stanford University, Palo Alto, CA 94301, USA
| | - Ali Kight
- Department of Bioengineering, Stanford University, Palo Alto, CA 94301, USA
| | - Amy Kyungwon Han
- Department of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Mark R Cutkosky
- Department of Mechanical Engineering, Stanford University, Palo Alto, CA 94301, USA
| | - Seraina A Dual
- Department of Biomedical Engineering, KTH Royal Institute of Technology, Huddinge, 14157, Sweden
| |
Collapse
|
3
|
Madani Z, Silva PES, Baniasadi H, Vaara M, Das S, Arias JC, Seppälä J, Sun Z, Vapaavuori J. Light-Driven Multidirectional Bending in Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405917. [PMID: 39044611 DOI: 10.1002/adma.202405917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Indexed: 07/25/2024]
Abstract
Using light to drive polymer actuators can enable spatially selective complex motions, offering a wealth of opportunities for wireless control of soft robotics and active textiles. Here, the integration of photothermal components is reported into shape memory polymer actuators. The fabricated twist-coiled artificial muscles show on-command multidirectional bending, which can be controlled by both the illumination intensity, as well as the chirality, of the prepared artificial muscles. Importantly, the direction in which these artificial muscles bend does not depend on intrinsic material characteristics. Instead, this directionality is achieved by localized untwisting of the actuator, driven by selective irradiation. The reaction times of this bending system are significantly - at least two orders of magnitude - faster than heliotropic biological systems, with a response time up to one second. The programmability of the artificial muscles is further demonstrated for selective, reversible, and sustained actuation when integrated in butterfly-shaped textiles, along with the capacity to autonomously orient toward a light source. This functionality is maintained even on a rotating platform, with angular velocities of 6°/s, independent of the rotation direction. These attributes collectively represent a breakthrough in the field of artificial muscles, intended to adaptive shape-changing soft systems and biomimetic technologies.
Collapse
Affiliation(s)
- Zahra Madani
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Pedro E S Silva
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Maija Vaara
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Susobhan Das
- QTF Centre of Excellence, Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Espoo, 02150, Finland
| | - Juan Camilo Arias
- QTF Centre of Excellence, Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Espoo, 02150, Finland
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| | - Zhipei Sun
- QTF Centre of Excellence, Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Espoo, 02150, Finland
| | - Jaana Vapaavuori
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, 02150, Finland
| |
Collapse
|
4
|
Huang X, Shen Y, Liu Y, Zhang H. Current status and future directions in pediatric ventricular assist device. Heart Fail Rev 2024; 29:769-784. [PMID: 38530587 DOI: 10.1007/s10741-024-10396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
A ventricular assist device (VAD) is a form of mechanical circulatory support that uses a mechanical pump to partially or fully take over the function of a failed heart. In recent decades, the VAD has become a crucial option in the treatment of end-stage heart failure in adult patients. However, due to the lack of suitable devices and more complicated patient profiles, this therapeutic approach is still not widely used for pediatric populations. This article reviews the clinically available devices, adverse events, and future directions of design and implementation in pediatric VADs.
Collapse
Affiliation(s)
- Xu Huang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
| | - Yi Shen
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China
| | - Yiwei Liu
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
| | - Hao Zhang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
- Shanghai Clinical Research Center for Rare Pediatric Diseases, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, No. 1678, Dongfang Rd, Pudong District, Shanghai, 200127, China.
| |
Collapse
|
5
|
Mathew A, Rama E, Kang K, Williams K, Birchall M, Iliadou E. Management Options for Bilateral Vocal Fold Impairment: Scoping Review to Assess the Potential of Soft Robotics Solutions. J Voice 2024:S0892-1997(24)00151-6. [PMID: 38849232 DOI: 10.1016/j.jvoice.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVES This scoping review aims to comprehensively assess current surgical interventions for bilateral vocal fold paralysis (BVFP), addressing the heterogeneity in treatment outcomes. Additionally, it explores the potential role of soft robotics as an innovative approach to improve outcomes in BVFP management. METHODS This scoping review systematically examines literature from MEDLINE, Embase, and Scopus databases. Inclusion criteria encompass studies related to BVFP management with measurable subjective or objective outcomes. Studies with populations solely under the age of 18 were excluded. Four reviewers independently screened 2263 studies, resulting in the selection of 125 papers for data extraction. Information included study characteristics, interventions, and outcomes. Data synthesis involved both quantitative and qualitative analyses. RESULTS The review identified 145 surgical interventions grouped into seven types: tracheostomy, cordectomy, arytenoidectomy, lateralization, combined procedures and others. Outcome measures fit into the following categories: "objective voice," "subjective voice," "aerodynamics," "dyspnea," "decannulation," "swallow," and "quality of life." Positive outcomes were predominant across all interventions, with arytenoidectomy and cordectomy showing relatively lower rates of successful objective and subjective voice outcomes. This could be the result of prioritizing improved airway status. Soft robotics is hypothesized as a potential solution to the limitation of current interventions sacrificing voice for breathing. CONCLUSIONS The main aim of current surgical interventions for BVFP is expanding glottic aperture. Yet achieving optimal outcomes remains elusive due to complex airflow dynamics and potential impacts on phonatory function and swallowing. The current review underscores the need for a more nuanced, personalized approach, considering individual anatomical and physiological variations. Soft robotics emerges as a promising avenue to address this variability. However, challenges such as implantation procedures, long-term care, and patient education require careful consideration. Collaboration between medical professionals, engineers, and robotics specialists is essential for translating these principles into practical solutions.
Collapse
Affiliation(s)
- Alan Mathew
- University of Cambridge, Cambridge, United Kingdom.
| | - Essam Rama
- University of Cambridge, Cambridge, United Kingdom
| | - Kiran Kang
- University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
6
|
Ye C, Zhao L, Yang S, Li X. Recent Research on Preparation and Application of Smart Joule Heating Fabrics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309027. [PMID: 38072784 DOI: 10.1002/smll.202309027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Indexed: 05/03/2024]
Abstract
Multifunctional wearable heaters have attracted much attention for their effective applications in personal thermal management and medical therapy. Compared to passive heating, Joule heating offers significant advantages in terms of reusability, reliable temperature control, and versatile coupling. Joule-heated fabrics make wearable electronics smarter. This review critically discusses recent advances in Joule-heated smart fabrics, focusing on various fabrication strategies based on material-structure synergy. Specifically, various applicable conductive materials with Joule heating effect are first summarized. Subsequently, different preparation methods for Joule heating fabrics are compared, and then their various applications in smart clothing, healthcare, and visual indication are discussed. Finally, the challenges faced in developing these smart Joule heating fabrics and their possible solutions are discussed.
Collapse
Affiliation(s)
- Chunfa Ye
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Longqi Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Sihui Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaoyan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
7
|
Liu Y, Yue S, Tian Z, Zhu Z, Li Y, Chen X, Wang ZL, Yu ZZ, Yang D. Self-Powered and Self-Healable Extraocular-Muscle-Like Actuator Based on Dielectric Elastomer Actuator and Triboelectric Nanogenerator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309893. [PMID: 37879669 DOI: 10.1002/adma.202309893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Although dielectric elastomer actuators (DEAs) are promising artificial muscles for use as visual prostheses in patients with oculomotor nerve palsy (ONP), high driving voltage coupled with vulnerable compliant electrodes limits their safe long-term service. Herein, a self-healable polydimethylsiloxane compliant electrode based on reversible imine bonds and hydrogen bonds is prepared and coated on an acrylic ester film to develop a self-healable DEA (SDEA), followed by actuation with a high-output triboelectric nanogenerator (TENG) to construct a self-powered DEA (TENG-SDEA). Under 135.9 kV mm-1 , the SDEA exhibits an elevated actuated strain of 50.6%, comparable to the actuation under DC power. Moreover, the mechanically damaged TENG-SDEA displays a self-healing efficiency of over 90% for 10 cycles. The TENG ensures the safe using of TENG-SDEAs and an extraocular-muscle-like actuator with oriented motion ability integrated by several TENG-SDEAs is constructed. Additionally, the SDEA is directly used as a flexible capacitive sensor for real-time monitoring of the patient's muscle movement. Accordingly, a medical aid system based on a conjunction of the extraocular-muscle-like actuator and a flexible capacitive sensor is manufactured to help the patients suffering from ONP with physical rehabilitation and treatment.
Collapse
Affiliation(s)
- Yanze Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shangzhi Yue
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongyuan Tian
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zijuan Zhu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongji Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiangyu Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- College of Materials Science and Engineering, Georgia Institute of Technology, GA, 30332, USA
- Yonsei Frontier Lab, Yonsei University, Seoul, 03722, Republic of Korea
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dan Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
Arjomandi Rad A, Vardanyan R, Rabiee P, Arjomandi Rad R, Miller G, Malawana J, Zubarevich A, Schmack B, Ruhparwar A, Weymann A. Implantable cardiac soft robotic sleeve: A promising technology for the millions with end-stage heart failure in low and middle-income countries. Artif Organs 2023; 47:1801-1804. [PMID: 37676107 DOI: 10.1111/aor.14642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/21/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Affiliation(s)
| | | | - Pedra Rabiee
- Hull York Medical School, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | | | - George Miller
- Centre for Digital Health and Education Research (CoDHER), University of Central Lancashire Medical School, Preston, UK
| | - Johann Malawana
- Centre for Digital Health and Education Research (CoDHER), University of Central Lancashire Medical School, Preston, UK
| | - Alina Zubarevich
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Bastian Schmack
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Arjang Ruhparwar
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Alexander Weymann
- Department of Cardiothoracic, Transplant and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Lee GS, Kim JG, Kim JT, Lee CW, Cha S, Choi GB, Lim J, Padmajan Sasikala S, Kim SO. 2D Materials Beyond Post-AI Era: Smart Fibers, Soft Robotics, and Single Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307689. [PMID: 37777874 DOI: 10.1002/adma.202307689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Recent consecutive discoveries of various 2D materials have triggered significant scientific and technological interests owing to their exceptional material properties, originally stemming from 2D confined geometry. Ever-expanding library of 2D materials can provide ideal solutions to critical challenges facing in current technological trend of the fourth industrial revolution. Moreover, chemical modification of 2D materials to customize their physical/chemical properties can satisfy the broad spectrum of different specific requirements across diverse application areas. This review focuses on three particular emerging application areas of 2D materials: smart fibers, soft robotics, and single atom catalysts (SACs), which hold immense potentials for academic and technological advancements in the post-artificial intelligence (AI) era. Smart fibers showcase unconventional functionalities including healthcare/environmental monitoring, energy storage/harvesting, and antipathogenic protection in the forms of wearable fibers and textiles. Soft robotics aligns with future trend to overcome longstanding limitations of hard-material based mechanics by introducing soft actuators and sensors. SACs are widely useful in energy storage/conversion and environmental management, principally contributing to low carbon footprint for sustainable post-AI era. Significance and unique values of 2D materials in these emerging applications are highlighted, where the research group has devoted research efforts for more than a decade.
Collapse
Affiliation(s)
- Gang San Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Jin Goo Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Jun Tae Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Chan Woo Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Sujin Cha
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Go Bong Choi
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Joonwon Lim
- Department of Information Display, Kyung Hee University, Seoul, 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Suchithra Padmajan Sasikala
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
- Materials Creation, Seoul, 06179, Republic of Korea
| |
Collapse
|