1
|
Golshan M, Dortaj H, Rajabi M, Omidi Z, Golshan M, Pourentezari M, Rajabi A. Animal origins free products in cell culture media: a new frontier. Cytotechnology 2025; 77:12. [PMID: 39654546 PMCID: PMC11625046 DOI: 10.1007/s10616-024-00666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/02/2024] [Indexed: 12/12/2024] Open
Abstract
Despite the importance of finding replacements for fetal bovine serum (FBS), very few studies have focused on this subject. Historically, the use of animals and their derivatives in growth, reproduction, and physiological studies has raised several concerns. The supplementation of culture media with FBS, also known as fetal calf serum, continues to be widespread, despite its limitations in quality, reproducibility, and implications for animal welfare. Moreover, the presence of counterfeit and illegal products can adversely affect cell cultures and treatments, prompting the search for alternative solutions. To reduce reliance on FBS, various substitutes have been introduced, such as plant-derived proteins, bovine eye fluid, sericin protein, human platelet lysate, and inactivated coelomic fluid, which can provide roles similar to that of FBS. Therefore, it is essential to develop serum-free and animal supplement-free environments suitable for therapeutic and clinical applications, tailored to the specific needs of different cell types. Among the alternatives, plant-based options have gained attention as sustainable and ethical solutions. These include plant-derived peptones from sources like soy and wheat, which are rich in amino acids and peptides essential for mammalian cell growth, as well as plant protein hydrolysates from beans and peas that serve as sources of amino acids and growth factors. Plant extracts, especially from soy and various seeds, contain necessary proteins and growth factors, while phytohormones such as cytokinins and plant polysaccharides can help regulate cell growth. While these alternatives offer benefits like reduced costs and lower risks of disease transmission, further research is necessary to refine and align them with the specific requirements of diverse cell types. Graphical abstract
Collapse
Affiliation(s)
- Mahsa Golshan
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| | - Hengameh Dortaj
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Rajabi
- Department of Periodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Omidi
- Department of Cardiovascular Disease, Alzahra Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Golshan
- Shiraz Transplant Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Majid Pourentezari
- Department of Anatomical Sciences, School of Medicine Shahid, Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Neuroendocrine Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Rajabi
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| |
Collapse
|
2
|
Zhan Z, Wang Y, Xie H, Yang M, Ruan M, Liu X, Liu J, Liu Z, Wen F, Hong X, Hu C. Hierarchically Porous Microgels with Interior Spiral Canals for High-Efficiency Delivery of Stem Cells in Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405648. [PMID: 39703097 DOI: 10.1002/smll.202405648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Chronic wound poses a serious risk to diabetic patients, primarily due to damaged skin microvasculature and prolonged inflammation at the wound site. Mesenchymal stem cell (MSC) therapy utilizing microgels as a cell delivery system has shown promise in promoting wound healing by enhancing cell viability and the secretion of bioactive factors. Retaining sufficient MSCs at injury sites is crucial for optimal therapeutic outcomes. However, inadequate hierarchical structure and limited use of the microgel's interior space significantly reduce cell proliferation and infiltration efficiency, thereby compromising the therapeutic effect. To address this, a microfluidic approach is developed for fabricating porous hierarchical interconnected microgels with interior spiral canals (PHIGels) by employing a fluidic "viscous instability" effect and gas formation reaction during the microfluidic synthesis. These MSC-laden PHIGel scaffolds facilitate rapid proliferation and infiltration into the interior spiral canals through a hierarchical pore network, significantly increasing the number of viable cells that can be carried by the microgels. It is proved that these microgel-based deliveries of MSCs promote re-epithelialization, collagen synthesis, angiogenesis, and reduction in inflammation, thus enhancing cutaneous wound repair in a rat model of type I diabetes. The microporosity and hierarchical design of these microgels offer novel routes for tissue regeneration and repair.
Collapse
Affiliation(s)
- Zhen Zhan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuting Wang
- Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Hanhan Xie
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ming Yang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Muyang Ruan
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xuefei Liu
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jialing Liu
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zeyang Liu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Feiqiu Wen
- Shenzhen Children's Hospital of China Medical University, Shenzhen, 518038, China
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Luo H, Ruan H, Ye C, Jiang W, Wang X, Chen S, Chen Z, Li D. Plant-derived leaf vein scaffolds for the sustainable production of dog cell-cultured meat. Food Chem X 2024; 23:101603. [PMID: 39100247 PMCID: PMC11295996 DOI: 10.1016/j.fochx.2024.101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
Animal cell culture technology in the production of slaughter-free meat offers ethical advantages with regards to animal welfare, rendering it a more socially acceptable approach for dog meat production. In this study, edible plant-derived scaffold was used as a platform for cell expansion to construct cell-cultured dog meat slices. Primary dog skeletal muscle satellite cells (MSCs) and adipose stem cells (ASCs) were isolated and cultured as seed cells, and 3D spheroid culture in vitro promoted MSCs and ASCs myogenic and adipogenic differentiation, respectively. Natural leaf veins (NLV) were produced as edible mesh scaffolds to create 3D engineered dog muscle and fat tissues. After MSCs and ASCs adhered, proliferated and differentiated on the NLV scaffolds, and muscle and fat slices were produced with cultured dog muscle fibers and adipocytes, respectively. These findings demonstrate the potential of plant-derived NLV scaffolds in the production of cultured dog meat.
Collapse
Affiliation(s)
- Huina Luo
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Huimin Ruan
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
| | - Cailing Ye
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
| | - Wenkang Jiang
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
| | - Xin Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Shengfeng Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhisheng Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Dongsheng Li
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
| |
Collapse
|
4
|
Su L, Jing L, Zeng S, Fu C, Huang D. Sorghum Prolamin Scaffolds-Based Hybrid Cultured Meat with Enriched Sensory Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23355-23365. [PMID: 39380438 DOI: 10.1021/acs.jafc.4c06474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cultured meat (CM) has been hailed as a sustainable future meat production technology that requires scaffolds to support cell growth. Plant proteins are the most promising raw materials for edible scaffolds but remain underutilized. In this study, kafirin, an abundant, readily available, and nonallergenic prolamin extracted from red sorghum, was explored to fabricate 3D porous sponge-like scaffolds via a simple template-leaching method. The scaffolds featured fully interconnected pores with a high porosity of approximately 84% and mechanical properties of 1.0-1.9 kPa. Porcine skeletal muscle cells (PSCs) and adipose-derived stem cells (ADSCs) could adhere, proliferate, and differentiate on protein scaffolds. Thereafter, a hybrid CM was produced by culturing porcine ADSCs on kafirin scaffolds for 12 days, integrating plant protein-based and cell-based alternatives. The anthocyanins found in red sorghum contributed to the hybrid CM with meat-like color and antioxidative benefits. Moreover, the hybrid CM prototype demonstrated promising potential in providing higher protein content (22.9%) and unique mouthfeel and appearance characteristics, highlighting the viability of sorghum prolamin in promoting CM production.
Collapse
Affiliation(s)
- Lingshan Su
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Linzhi Jing
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
| | - Shunjiang Zeng
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
| | - Dejian Huang
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| |
Collapse
|
5
|
Xin Q, Niu R, Chen Q, Liu D, Xu E. Stable cytoactivity of piscine satellite cells in rice bran-gelatin hydrogel scaffold of cultured meat. Int J Biol Macromol 2024; 277:134242. [PMID: 39084438 DOI: 10.1016/j.ijbiomac.2024.134242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
In order to achieve high cell adhesion and growth efficiency on scaffolds for cultured meat, animal materials, especially gelatin, are necessary though the disadvantages of weak mechanical properties and poor stability of their hydrogel scaffolds are present during cell cultivation. Here, we use rice bran as a kind of filling and supporting materials to develop a composite scaffold with gelatin for fish cell cultivation, where rice bran is also inexpensive from high yield fibrous agricultural by-product. The rice bran (with a proportion of 1, 3, 5, 7, 10 to 3 of gelatin) could evenly distributed in the three-dimensional network composed of gelatin hydrogel. It contributed to delaying swelling and degradation rates, fixing water and improving elastic modulus. It is important that rice bran-gelatin hydrogel scaffolds (especially the hydrogel with 70 % rice bran, db) promoted piscine satellite cells (PSCs) proliferation effectively compared to the pure gelatin hydrogel, and the former could also support the differentiation of PSCs. Overall, this work showed a positive promotion to explore new source of scaffold materials like agricultural by-product for reducing the cost of cell cultured meat production.
Collapse
Affiliation(s)
- Qipu Xin
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruihao Niu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qihe Chen
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China.
| |
Collapse
|
6
|
Gurel M, Rathod N, Cabrera LY, Voyton S, Yeo M, Ozogul F, Ozbolat IT. A narrative review: 3D bioprinting of cultured muscle meat and seafood products and its potential for the food industry. Trends Food Sci Technol 2024; 152:104670. [PMID: 39309029 PMCID: PMC11412102 DOI: 10.1016/j.tifs.2024.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The demand for meat and seafood products has been globally increasing for decades. To address the environmental, social, and economic impacts of this trend, there has been a surge in the development of three-dimensional (3D) food bioprinting technologies for lab-grown muscle food products and their analogues. This innovative approach is a sustainable solution to mitigate the environmental risks associated with climate change caused by the negative impacts of indiscriminative livestock production and industrial aquaculture. This review article explores the adoption of 3D bioprinting modalities to manufacture lab-grown muscle food products and their associated technologies, cells, and bioink formulations. Additionally, various processing techniques, governing the characteristics of bioprinted food products, nutritional compositions, and safety aspects as well as its relevant ethical and social considerations, were discussed. Although promising, further research and development is needed to meet standards and translate into several industrial areas, such as the food and renewable energy industries. In specific, optimization of animal cell culture conditions, development of serum-free media, and bioreactor design are essential to eliminate the risk factors but achieve the unique nutritional requirements and consumer acceptance. In short, the advancement of 3D bioprinting technologies holds great potential for transforming the food industry, but achieving widespread adoption will require continued innovation, rigorous research, and adherence to ethical standards to ensure safety, nutritional quality, and consumer acceptance.
Collapse
Affiliation(s)
- Mediha Gurel
- Biotechnology Research and Application Center, Cukurova University, 01330, Adana, Turkey
- Electronic and Automation Department, Bitlis Eren University, Bitlis, 13000, Turkey
| | - Nikheel Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post-graduate Institute of Post-harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Raigad, 402116, India
| | - Laura Y. Cabrera
- Rock Ethics Institute, Penn State University, University Park, 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Stephen Voyton
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
| | - Miji Yeo
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Fatih Ozogul
- Biotechnology Research and Application Center, Cukurova University, 01330, Adana, Turkey
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Penn State University, Hershey, PA, 17033, USA
- Department of Medical Oncology, Cukurova University, Adana, 01130, Turkey
| |
Collapse
|
7
|
Zhang P, Zhao X, Zhang S, Li G, Midgley AC, Fang Y, Zhao M, Nishinari K, Yao X. The important role of cellular mechanical microenvironment in engineering structured cultivated meat: Recent advances. Curr Res Food Sci 2024; 9:100865. [PMID: 39416367 PMCID: PMC11481608 DOI: 10.1016/j.crfs.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cultivated meat (CM) provides a potential solution to meet the rising demand for eco-friendly meat supply systems. Recent efforts focus on producing CM that replicates the architecture and textural toughness of natural skeletal muscle. Significance of the regulated role of cellular microenvironment in myogenesis has been reinforced by the substantial influence of mechanical cues in mediating the muscle tissue organization. However, the formation of structured CM has not been adequately described in context of the mechanical microenvironment. In this review, we provide an updated understanding of the myogenesis process within mechanically dynamic three-dimensional microenvironments, discuss the effects of environmental mechanical factors on muscle tissue regeneration and how cell mechanics respond to the mechanical condition, and further highlight the role of mechanical cues as important references in constructing a sustainable Hydrocolloids-based biomaterials for CM engineering. These findings help to overcome current limitations in improving the textural properties of CM.
Collapse
Affiliation(s)
- Pan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xu Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Shiling Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
8
|
Mariano E, Lee DY, Yun SH, Lee J, Choi YW, Park J, Han D, Kim JS, Choi I, Hur SJ. Crusting-fabricated three-dimensional soy-based scaffolds for cultured meat production: A preliminary study. Food Chem 2024; 452:139511. [PMID: 38710136 DOI: 10.1016/j.foodchem.2024.139511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 05/08/2024]
Abstract
Crusting has been developed as a non-chemical and non-machine intensive scaffold fabrication method. This method is based on the self-assembling ability of soy biomolecules, allowing the fabrication of a three-dimensional network for cell growth. Preliminary characterization revealed differences in pore size, water absorption, and degradation between pure soy-based scaffold (Y2R) and with added glycerol (Y2G). The Fourier-transform infrared spectrum absorbance peaks of functional groups related to proteins, carbohydrates, and lipids hinted the integration of soy biomolecules potentially via the Maillard reaction, as supported by the visible browning of the scaffold surface. Microscopic images revealed aligned myotubes in both scaffolds, with Y2G myotubes having greater proximity after 72 h of proliferation. Both spontaneous and electro-stimulated contractions were recorded as early as 72 h in proliferation medium. Crusting-fabricated soy-based scaffolds can further be explored for its application in cultured meat production.
Collapse
Affiliation(s)
- Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Seung Hyeon Yun
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Yeong Woo Choi
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jinmo Park
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dahee Han
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jin Soo Kim
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
9
|
Fasciano S, Wheba A, Ddamulira C, Wang S. Recent advances in scaffolding biomaterials for cultivated meat. BIOMATERIALS ADVANCES 2024; 162:213897. [PMID: 38810509 DOI: 10.1016/j.bioadv.2024.213897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
The emergence of cultivated meat provides a sustainable and ethical alternative to traditional animal agriculture, highlighting its increasing importance in the food industry. Biomaterial scaffolds are critical components in cultivated meat production for enabling cell adhesion, proliferation, differentiation, and orientation. While there's extensive research on scaffolding biomaterials, applying them to cultivated meat production poses distinct challenges, with each material offering its own set of advantages and disadvantages. This review summarizes the most recent scaffolding biomaterials used in the last five years for cell-cultured meat, detailing their respective advantages and disadvantages. We suggest future research directions and provide recommendations for scaffolds that support scalable, cost-effective, and safe high-quality meat production. Additionally, we highlight commercial challenges cultivated meat faces, encompassing bioreactor design, cell culture mediums, and regulatory and food safety issues. In summary, this review provides a comprehensive guide and valuable insights for researchers and companies in the field of cultivated meat production.
Collapse
Affiliation(s)
- Samantha Fasciano
- Department of Cellular and Molecular Biology, University of New Haven, West Haven, CT, 06516, USA
| | - Anas Wheba
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, 06516, USA
| | - Christopher Ddamulira
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, 06516, USA
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, 06516, USA.
| |
Collapse
|
10
|
Wang J, Dai S, Xiang N, Zhang L, Zhong W, Shao P, Feng S. Cell-Based Meat Scaffold Based on a 3D-Printed Starch-Based Gel. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19143-19154. [PMID: 39105716 DOI: 10.1021/acs.jafc.4c04559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Starch was mixed with a gel to produce a starch-based gel ink, which exhibited favorable printing characteristics. Through the optimization of infill density, 3D-printed scaffolds with 50% infill density and a highly ordered microstructure were successfully fabricated. The addition of calcium carbonate nanoparticles-glucono delta lactone (CaCO3 NPs-GDL) had notable effects on the swelling degree, in vitro digestion, water stability, and pore distribution of the scaffolds. When the amount of CaCO3 NPs in the starch-based gel was 0.075 g, the resulting 3D-printed gel scaffold with a 50% infill density proved to be the most suitable for cultivating cell-based meat. It featured pore sizes ranging from 80 to 120 μm and a compression modulus of 246.76 Pa. After 7 days of proliferation, the C2C12 mouse skeletal myoblasts exhibited an approximately 2.81-fold increase in cell numbers. The fusion index and maturation index of C2C12 cells on the scaffolds were 57.00 ± 0.45% and 34.56 ± 0.56%, respectively. The starch-based gel scaffolds demonstrated excellent water stability and in vitro degradability. Moreover, C2C12 cells exhibited successful proliferation and differentiation on the starch-based scaffolds, ultimately leading to the production of cell-based meat. This study developed a starch-based composite gel scaffold for the manufacture of cell-based meat.
Collapse
Affiliation(s)
- Jing Wang
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Siqing Dai
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Ning Xiang
- Shanghai Shiwei Biotechnology Co., Ltd. (CellX), Shanghai 201203, China
| | - Le Zhang
- Institute for Biomedical Materials and Devices (IBMD), University of Technology Sydney, Ultimo 2007, Australia
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Ping Shao
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Simin Feng
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| |
Collapse
|
11
|
Ianovici I, Zagury Y, Afik N, Hendel M, Lavon N, Levenberg S. Embedded three-dimensional printing of thick pea-protein-enriched constructs for large, customized structured cell-based meat production. Biofabrication 2024; 16:045023. [PMID: 38996408 DOI: 10.1088/1758-5090/ad628f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Recent 3D-printing research showed the potential of using plant-protein-enriched inks to fabricate cultivated meat (CM) via agar-based support baths. However, for fabricating large, customized, structured, thick cellular constructs and further cultivation, improved 3D-printing capabilities and diffusion limit circumvention are warranted. The presented study harnesses advanced printing and thick tissue engineering concepts for such purpose. By improving bath composition and altering printing design and execution, large-scale, marbled, 0.5-cm-thick rib-eye shaped constructs were obtained. The constructs featured stable fibrous architectures comparable to those of structured-meat products. Customized multi-cellular constructs with distinct regions were produced as well. Furthermore, sustainable 1-cm-thick cellular constructs were carefully designed and produced, which successfully maintained cell viability and activity for 3 weeks, through the combined effects of void-incorporation and dynamic culturing. As large, geometrically complex construct fabrication suitable for long-term cellular cultivation was demonstrated, these findings hold great promise for advancing structured CM research.
Collapse
Affiliation(s)
- Iris Ianovici
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yedidya Zagury
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Noa Afik
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | | - Neta Lavon
- Aleph-Farms Ltd, Rehovot 7670609, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Aleph-Farms Ltd, Rehovot 7670609, Israel
| |
Collapse
|
12
|
Wang S, Lin S, Liu K, Jia S, Liu Q, Sun N. Investigation into Potential Allergenicity and Digestion-Resistant Linear Epitopes of Fish Skin Gelatin in Cell-Cultured Meat Scaffolds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14922-14940. [PMID: 38885638 DOI: 10.1021/acs.jafc.4c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
As a key component of cell-cultured fish, fish skin gelatin (FSG)-based cell scaffold provides support structures for cell growth, proliferation, and differentiation. However, there are potential allergenicity risks contained in FSG-based scaffolds. In this study, 3D edible scaffolds were prepared by phase separation method and showed a contact angle of less than 90°, which indicated that the scaffolds were favorable for cell adhesion. Besides, the swelling ratio was greater than 200%, implying a great potential to support cell growth. The sequence homology analysis indicated that FSG was prone to cross-reaction with collagen analogues. Additionally, a food allergic model was constructed and represented that mice gavaged with cod FSG exhibited higher levels of specific antibodies, mast cell degranulation, vascular permeability, and intestinal barrier impairment than those gavaged with pangasius and tilapias FSG. Its higher allergenicity might be attributed to a higher number of digestion-resistant linear epitopes. Moreover, the higher hydrolysis degree linked to the exposure of linear epitopes to promote the combination with IgE, which was also responsible for maintaining the higher allergenicity of cod FSG. This study clarifies allergenic risks in cell-cultured fish and further study will focus on the allergenicity reduction of FSG-based cell scaffolds.
Collapse
Affiliation(s)
- Shuya Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Kexin Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Shuqi Jia
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Qiaozhen Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Na Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
13
|
Zhou Z, Feng W, Moghadas BK, Baneshi N, Noshadi B, Baghaei S, Dehkordi DA. Review of recent advances in bone scaffold fabrication methods for tissue engineering for treating bone diseases and sport injuries. Tissue Cell 2024; 88:102390. [PMID: 38663113 DOI: 10.1016/j.tice.2024.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 06/17/2024]
Abstract
Despite advancements in medical care, the management of bone injuries remains one of the most significant challenges in the fields of medicine and sports medicine globally. Bone tissue damage is often associated with aging, reduced quality of life, and various conditions such as trauma, cancer, and infection. While bone tissue possesses the natural capacity for self-repair and regeneration, severe damage may render conventional treatments ineffective, and bone grafting may be limited due to secondary surgical procedures and potential disease transmission. In such cases, bone tissue engineering has emerged as a viable approach, utilizing cells, scaffolds, and growth factors to repair damaged bone tissue. This research shows a comprehensive review of the current literature on the most important and effective methods and materials for improving the treatment of these injuries. Commonly employed cell types include osteogenic cells, embryonic stem cells, and mesenchymal cells, while scaffolds play a crucial role in bone tissue regeneration. To create an effective bone scaffold, a thorough understanding of bone structure, material selection, and examination of scaffold fabrication techniques from inception to the present day is necessary. By gaining insights into these three key components, the ability to design and construct appropriate bone scaffolds can be achieved. Bone tissue engineering scaffolds are evaluated based on factors such as strength, porosity, cell adhesion, biocompatibility, and biodegradability. This article examines the diverse categories of bone scaffolds, the materials and techniques used in their fabrication, as well as the associated merits and drawbacks of these approaches. Furthermore, the review explores the utilization of various scaffold types in bone tissue engineering applications.
Collapse
Affiliation(s)
- Zeng Zhou
- Department of Physical Education, Central South University, Changsha, Hunan 4100083, China
| | - Wei Feng
- Department of Physical Education, Central South University, Changsha, Hunan 4100083, China.
| | - B Kamyab Moghadas
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran; Department of Applied Researches, Chemical, Petroleum & Polymer Engineering Research Center, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - N Baneshi
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - B Noshadi
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Eastern Mediterranean University, via Mersin 10, TR-99628 Famagusta, North Cyprus, Turkey
| | - Sh Baghaei
- Medical Doctor, Isfahan University of Medical Science, Isfahan, Iran
| | - D Abasi Dehkordi
- Medical Doctor, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
14
|
Wang X, Wang M, Xu Y, Yin J, Hu J. A 3D-printable gelatin/alginate/ε-poly-l-lysine hydrogel scaffold to enable porcine muscle stem cells expansion and differentiation for cultured meat development. Int J Biol Macromol 2024; 271:131980. [PMID: 38821790 DOI: 10.1016/j.ijbiomac.2024.131980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 06/02/2024]
Abstract
The mass proliferation of seed cells and imitation of meat structures remain challenging for cell-cultured meat production. With excellent biocompatibility, high water content and porosity, hydrogels are frequently-studied materials for anchorage-dependent cell scaffolds in biotechnology applications. Herein, a scaffold based on gelatin/alginate/ε-Poly-l-lysine (GAL) hydrogel is developed for skeletal muscle cells, which has a great prospect in cell-cultured meat production. In this work, the hydrogel GAL-4:1, composed of gelatin (5 %, w/v), alginate (5 %, w/v) and ε-Poly-l-lysine (molar ratio vs. alginate: 4:1) is selected as cell scaffold based on Young's modulus of 11.29 ± 1.94 kPa, satisfactory shear-thinning property and suitable porous organized structure. The commercially available C2C12 mouse skeletal myoblasts and porcine muscle stem cells (PMuSCs), are cultured in the 3D-printed scaffold. The cells show strong ability of attachment, proliferation and differentiation after induction, showing high biocompatibility. Furthermore, the cellular bioprinting is performed with GAL-4:1 hydrogel and freshly extracted PMuSCs. The extracted PMuSCs exhibit high viability and display early myogenesis (desmin) on the 3D scaffold, suggesting the great potential of GAL hydrogel as 3D cellular constructs scaffolds. Overall, we develop a novel GAL hydrogel as a 3D-printed bioactive platform for cultured meat research.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Meiling Wang
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, PR China
| | - Yiqiang Xu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, PR China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, PR China.
| |
Collapse
|
15
|
Kawecki NS, Chen KK, Smith CS, Xie Q, Cohen JM, Rowat AC. Scalable Processes for Culturing Meat Using Edible Scaffolds. Annu Rev Food Sci Technol 2024; 15:241-264. [PMID: 38211941 DOI: 10.1146/annurev-food-072023-034451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
There is increasing consumer demand for alternative animal protein products that are delicious and sustainably produced to address concerns about the impacts of mass-produced meat on human and planetary health. Cultured meat has the potential to provide a source of nutritious dietary protein that both is palatable and has reduced environmental impact. However, strategies to support the production of cultured meats at the scale required for food consumption will be critical. In this review, we discuss the current challenges and opportunities of using edible scaffolds for scaling up the production of cultured meat. We provide an overview of different types of edible scaffolds, scaffold fabrication techniques, and common scaffold materials. Finally, we highlight potential advantages of using edible scaffolds to advance cultured meat production by accelerating cell growth and differentiation, providing structure to build complex 3D tissues, and enhancing the nutritional and sensory properties of cultured meat.
Collapse
Affiliation(s)
- N Stephanie Kawecki
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Kathleen K Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Corinne S Smith
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Qingwen Xie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Julian M Cohen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
| | - Amy C Rowat
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, USA;
- Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
16
|
Su L, Jing L, Zeng S, Fu C, Huang D. 3D Porous Edible Scaffolds from Rye Secalin for Cell-Based Pork Fat Tissue Culturing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11587-11596. [PMID: 38728660 DOI: 10.1021/acs.jafc.3c09713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Cellular agriculture holds hope for a sustainable alternative to conventional meat, yet multiple technical challenges remain. These include the large-scale production of edible scaffolds and culturing methods for fat tissues, which are key to meat texture, flavor, and nutritional values. Herein. we disclose our method in the facile fabrication of sponge-like plant protein scaffolds by applying commercial sugar cubes as highly permeable templates. The prepared secalin scaffolds feature a high porosity of 85-90%, fully interconnected pores, and high water stability. The mechanical properties of scaffolds could be tuned by varying sugar-to-protein weight ratio and post-water annealing treatment. Moreover, murine preadipocytes (3T3-L1) and porcine adipose-derived stem cells (ADSCs) readily infiltrate, adhere, proliferate, and differentiate on the secalin scaffolds to develop a fat tissue morphology. A cultured fat tissue was produced by culturing porcine ADSCs for 12 days, which remarkably resembles conventional porcine subcutaneous adipose tissue in appearance, texture, flavor, and fatty acid profiles. The research demonstrates the great potential of sponge-like secalin scaffolds for cultured fat tissue production.
Collapse
Affiliation(s)
- Lingshan Su
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Linzhi Jing
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
| | - Shunjiang Zeng
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
| | - Dejian Huang
- National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, Jiangsu 215123, China
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| |
Collapse
|
17
|
Lee M, Park S, Choi B, Choi W, Lee H, Lee JM, Lee ST, Yoo KH, Han D, Bang G, Hwang H, Koh WG, Lee S, Hong J. Cultured meat with enriched organoleptic properties by regulating cell differentiation. Nat Commun 2024; 15:77. [PMID: 38167486 PMCID: PMC10762223 DOI: 10.1038/s41467-023-44359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Research on cultured meat has primarily focused on the mass proliferation or differentiation of muscle cells; thus, the food characteristics of cultured meat remain relatively underexplored. As the quality of meat is determined by its organoleptic properties, cultured meat with similar sensory characteristics to animal-derived meat is highly desirable. In this study, we control the organoleptic and nutritional properties of cultured meat by tailoring the 2D differentiation of primary bovine myoblasts and primary bovine adipose-derived mesenchymal stem cells on gelatin/alginate scaffolds with varying stiffness. We assess the effect of muscle and adipose differentiation quality on the sensory properties of cultured meat. Thereafter, we fabricate cultured meat with similar sensory profiles to that of conventional beef by assembling the muscle and adipose constructs composed of highly differentiated cells. We introduce a strategy to produce cultured meat with enriched food characteristics by regulating cell differentiation with scaffold engineering.
Collapse
Affiliation(s)
- Milae Lee
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sohyeon Park
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Bumgyu Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Woojin Choi
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Lee
- Department of Animal Life Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Jeong Min Lee
- Department of Applied Animal Life Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Applied Animal Life Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Ki Hyun Yoo
- Simple Planet, 805, 34, sangwan 12-gil, Seongdong-gu, Seoul, 04790, Republic of Korea
| | - Dongoh Han
- Simple Planet, 805, 34, sangwan 12-gil, Seongdong-gu, Seoul, 04790, Republic of Korea
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
18
|
Zhu G, Gao D, Li L, Yao Y, Wang Y, Zhi M, Zhang J, Chen X, Zhu Q, Gao J, Chen T, Zhang X, Wang T, Cao S, Ma A, Feng X, Han J. Generation of three-dimensional meat-like tissue from stable pig epiblast stem cells. Nat Commun 2023; 14:8163. [PMID: 38071210 PMCID: PMC10710416 DOI: 10.1038/s41467-023-44001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Cultured meat production has emerged as a breakthrough technology for the global food industry with the potential to reduce challenges associated with environmental sustainability, global public health, animal welfare, and competition for food between humans and animals. The muscle stem cell lines currently used for cultured meat cannot be passaged in vitro for extended periods of time. Here, we develop a directional differentiation system of porcine pre-gastrulation epiblast stem cells (pgEpiSCs) with stable cellular features and achieve serum-free myogenic differentiation of the pgEpiSCs. We show that the pgEpiSCs-derived skeletal muscle progenitor cells and skeletal muscle fibers have typical muscle cell characteristics and display skeletal muscle transcriptional features during myogenic differentiation. Importantly, we establish a three-dimensional differentiation system for shaping cultured tissue by screening plant-based edible scaffolds of non-animal origin, followed by the generation of pgEpiSCs-derived cultured meat. These advances provide a technical approach for the development of cultured meat.
Collapse
Affiliation(s)
- Gaoxiang Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Linzi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yixuan Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingjie Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Minglei Zhi
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinying Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinze Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tianzhi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaowei Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tong Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing, China.
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
19
|
Sadri B, Gao W. Fibrous wearable and implantable bioelectronics. APPLIED PHYSICS REVIEWS 2023; 10:031303. [PMID: 37576610 PMCID: PMC10364553 DOI: 10.1063/5.0152744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/20/2023] [Indexed: 08/15/2023]
Abstract
Fibrous wearable and implantable devices have emerged as a promising technology, offering a range of new solutions for minimally invasive monitoring of human health. Compared to traditional biomedical devices, fibers offer a possibility for a modular design compatible with large-scale manufacturing and a plethora of advantages including mechanical compliance, breathability, and biocompatibility. The new generation of fibrous biomedical devices can revolutionize easy-to-use and accessible health monitoring systems by serving as building blocks for most common wearables such as fabrics and clothes. Despite significant progress in the fabrication, materials, and application of fibrous biomedical devices, there is still a notable absence of a comprehensive and systematic review on the subject. This review paper provides an overview of recent advancements in the development of fibrous wearable and implantable electronics. We categorized these advancements into three main areas: manufacturing processes, platforms, and applications, outlining their respective merits and limitations. The paper concludes by discussing the outlook and challenges that lie ahead for fiber bioelectronics, providing a holistic view of its current stage of development.
Collapse
Affiliation(s)
- Behnam Sadri
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology; Pasadena, California 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology; Pasadena, California 91125, USA
| |
Collapse
|
20
|
Chen Y, Li L, Chen L, Shao W, Chen X, Fan X, Liu Y, Ding S, Xu X, Zhou G, Feng X. Gellan gum-gelatin scaffolds with Ca 2+ crosslinking for constructing a structured cell cultured meat model. Biomaterials 2023; 299:122176. [PMID: 37253307 DOI: 10.1016/j.biomaterials.2023.122176] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 05/03/2023] [Accepted: 05/20/2023] [Indexed: 06/01/2023]
Abstract
As an emerging technology to obtain protein by culturing animal-derived cells in vitro, it is crucial to construct 3D edible scaffolds to prepare structured cell cultured meat products. In this study, a scaffold based on gellan gum (GG)-gelatin (Gel) was prepared and further cross-linked with Ca2+. FTIR confirmed the electrostatic interaction between GG and Gel and the ionic cross-linking of Ca2+ and carboxyl groups, and SEM images showed the porous structure of the scaffolds. The staining results showed that scaffolds with high concentrations of Ca2+ had higher biocompatibility than scaffolds with low concentrations of Ca2+ and non-crosslinked scaffolds, and scaffolds Ca2+-GG2-Gel3-0.5 adhered to more cells and were more conducive to cell spreading. The immunofluorescence staining, SEM images, Western blot, and RT-qPCR showed that the scaffolds supported the proliferation and myogenic differentiation of chicken skeletal muscle satellite cells (CSMSCs) and myotubes were formed on the scaffolds. Finally, the scaffolds were stained and fried after culturing. The results of the textural and chromatic analysis showed that the texture and color of the scaffolds were similar to fresh meat and meat products. These results showed that ionically crosslinked GG-Gel scaffolds are biocompatible and stable for structured cell cultured meat models.
Collapse
Affiliation(s)
- Yan Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Linzi Li
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Wei Shao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Xiaohong Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Xiaojing Fan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Yaping Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China
| | - Shijie Ding
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xinglian Xu
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guanghong Zhou
- Lab of Meat Processing and Quality Control of EDU, College of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
21
|
Samandari M, Saeedinejad F, Quint J, Chuah SXY, Farzad R, Tamayol A. Repurposing biomedical muscle tissue engineering for cellular agriculture: challenges and opportunities. Trends Biotechnol 2023; 41:887-906. [PMID: 36914431 PMCID: PMC11412388 DOI: 10.1016/j.tibtech.2023.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/13/2023]
Abstract
Cellular agriculture is an emerging field rooted in engineering meat-mimicking cell-laden structures using tissue engineering practices that have been developed for biomedical applications, including regenerative medicine. Research and industrial efforts are focused on reducing the cost and improving the throughput of cultivated meat (CM) production using these conventional practices. Due to key differences in the goals of muscle tissue engineering for biomedical versus food applications, conventional strategies may not be economically and technologically viable or socially acceptable. In this review, these two fields are critically compared, and the limitations of biomedical tissue engineering practices in achieving the important requirements of food production are discussed. Additionally, the possible solutions and the most promising biomanufacturing strategies for cellular agriculture are highlighted.
Collapse
Affiliation(s)
| | - Farnoosh Saeedinejad
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA
| | - Sharon Xin Ying Chuah
- Food Science and Human Nutrition Department, Florida Sea Grant and Global Food Systems Institute, University of Florida, Gainesville, FL, USA
| | - Razieh Farzad
- Food Science and Human Nutrition Department, Florida Sea Grant and Global Food Systems Institute, University of Florida, Gainesville, FL, USA.
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
22
|
Park D, Lee SJ, Choi DK, Park JW. Therapeutic Agent-Loaded Fibrous Scaffolds for Biomedical Applications. Pharmaceutics 2023; 15:pharmaceutics15051522. [PMID: 37242764 DOI: 10.3390/pharmaceutics15051522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Tissue engineering is a sophisticated field that involves the integration of various disciplines, such as clinical medicine, material science, and life science, to repair or regenerate damaged tissues and organs. To achieve the successful regeneration of damaged or diseased tissues, it is necessary to fabricate biomimetic scaffolds that provide structural support to the surrounding cells and tissues. Fibrous scaffolds loaded with therapeutic agents have shown considerable potential in tissue engineering. In this comprehensive review, we examine various methods for fabricating bioactive molecule-loaded fibrous scaffolds, including preparation methods for fibrous scaffolds and drug-loading techniques. Additionally, we delved into the recent biomedical applications of these scaffolds, such as tissue regeneration, inhibition of tumor recurrence, and immunomodulation. The aim of this review is to discuss the latest research trends in fibrous scaffold manufacturing methods, materials, drug-loading methods with parameter information, and therapeutic applications with the goal of contributing to the development of new technologies or improvements to existing ones.
Collapse
Affiliation(s)
- Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Dong Kyu Choi
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
23
|
Zhang G, Li W, Yu M, Huang H, Wang Y, Han Z, Shi K, Ma L, Yu Z, Zhu X, Peng Z, Xu Y, Li X, Hu S, He J, Li D, Xi Y, Lan H, Xu L, Tang M, Xiao M. Electric-Field-Driven Printed 3D Highly Ordered Microstructure with Cell Feature Size Promotes the Maturation of Engineered Cardiac Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206264. [PMID: 36782337 PMCID: PMC10104649 DOI: 10.1002/advs.202206264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Engineered cardiac tissues (ECTs) derived from human induced pluripotent stem cells (hiPSCs) are viable alternatives for cardiac repair, patient-specific disease modeling, and drug discovery. However, the immature state of ECTs limits their clinical utility. The microenvironment fabricated using 3D scaffolds can affect cell fate, and is crucial for the maturation of ECTs. Herein, the authors demonstrate an electric-field-driven (EFD) printed 3D highly ordered microstructure with cell feature size to promote the maturation of ECTs. The simulation and experimental results demonstrate that the EFD jet microscale 3D printing overcomes the jet repulsion without any prior requirements for both conductive and insulating substrates. Furthermore, the 3D highly ordered microstructures with a fiber diameter of 10-20 µm and spacing of 60-80 µm have been fabricated by maintaining a vertical jet, achieving the largest ratio of fiber diameter/spacing of 0.29. The hiPSCs-derived cardiomyocytes formed ordered ECTs with their sarcomere growth along the fiber and developed synchronous functional ECTs inside the 3D-printed scaffold with matured calcium handling compared to the 2D coverslip. Therefore, the EFD jet 3D microscale printing process facilitates the fabrication of scaffolds providing a suitable microenvironment to promote the maturation of ECTs, thereby showing great potential for cardiac tissue engineering.
Collapse
Affiliation(s)
- Guangming Zhang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Wenhai Li
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Miao Yu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalMedical CollegeSoochow UniversitySuzhou215000P. R. China
| | - Hui Huang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Yaning Wang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalMedical CollegeSoochow UniversitySuzhou215000P. R. China
| | - Zhifeng Han
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Kai Shi
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Lingxuan Ma
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Zhihao Yu
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Xiaoyang Zhu
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Zilong Peng
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Yue Xu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalMedical CollegeSoochow UniversitySuzhou215000P. R. China
| | - Xiaoyun Li
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalMedical CollegeSoochow UniversitySuzhou215000P. R. China
| | - Shijun Hu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalMedical CollegeSoochow UniversitySuzhou215000P. R. China
| | - Jiankang He
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Dichen Li
- State Key Laboratory for Manufacturing System EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yongming Xi
- Department of Spinal SurgeryThe Affilliated Hosepital of Qingdao UniversityQingdao266003P. R. China
| | - Hongbo Lan
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520P. R. China
| | - Lin Xu
- Yantai Affiliated HospitalBinzhou Medical UniversityYantai264100P. R. China
- Institute of Rehabilitation EngineeringBinzhou Medical UniversityYantai264100P. R. China
| | - Mingliang Tang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalMedical CollegeSoochow UniversitySuzhou215000P. R. China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantong226001P. R. China
| | - Miao Xiao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated HospitalMedical CollegeSoochow UniversitySuzhou215000P. R. China
| |
Collapse
|
24
|
Kong Y, Jing L, Huang D. Plant proteins as the functional building block of edible microcarriers for cell-based meat culture application. Crit Rev Food Sci Nutr 2022; 64:4966-4976. [PMID: 36384368 DOI: 10.1080/10408398.2022.2147144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Edible microcarriers are essential for developing cell-based meat in large-scale cell cultures. As they are required to be embedded in the final products, the microcarriers should be edible, biocompatible, cost-effective, and pathogen-free. The invention of edible animal-free microcarriers would be a breakthrough for cell-based meat culture. We reviewed the fabrication techniques and the materials of microcarriers, and found that plant proteins, having diverse structures and composition, could possess the active domains that are hypnotized to replace the animal-based extracellular matrix (ECM) for meat culture applications. In addition, the bioactive peptides in plants have been reviewed and most of them were resulted from enzyme hydrolysis. Therefore, plant proteins with rich bioactive peptides have the potential in the development microcarriers. Our work provided some new trains of thought for developing plant-based biomaterials as ECM materials and advances the fabrication of microcarriers for meat culture.
Collapse
Affiliation(s)
- Yan Kong
- Department of Food Science and Technology, 2 Science Drive 2, National University of Singapore, Singapore, Singapore
| | - Linzhi Jing
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Dejian Huang
- Department of Food Science and Technology, 2 Science Drive 2, National University of Singapore, Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|