1
|
An M, Liu Q, Jeong SY, Liu B, Huang E, Liang Q, Li H, Zhang G, Woo HY, Niu L, Guo X, Sun H. A Fluorinated Imide-Functionalized Arene Enabling a Wide Bandgap Polymer Donor for Record-Efficiency All-Polymer Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202410498. [PMID: 39405471 DOI: 10.1002/anie.202410498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 11/12/2024]
Abstract
All-polymer solar cells (all-PSCs) present compelling advantages for commercial applications, including mechanical durability and optical and thermal stability. However, progress in developing high-performance polymer donors has trailed behind the emergence of excellent polymer acceptors. In this study, we report a new electron-deficient arene, fluorinated bithiophene imide (F-BTI) and its polymer donor SA1, in which two fluorine atoms are introduced at the outer β-positions in the thiophene rings of BTI to fine-tune the energy levels and aggregation of the resulting polymers. SA1 exhibits a deep HOMO level of -5.51 eV, a wide bandgap of 1.81 eV and suitable miscibility with the polymer acceptor. Polymer chains incorporating F-BTI result in a highly ordered π-π stacking and favorable phase-separated morphology within the all-polymer active layer. Thus, SA1 : PY-IT-based all-PSCs exhibit an efficiency of 16.31 % with excellent stability, which is further enhanced to a record value of 19.33 % (certified: 19.17 %) by constructing ternary device. This work demonstrates that F-BTI offers an effective route for developing new polymer materials with improved optoelectronic properties, and the emergence of F-BTI will change the scenario in terms of developing polymer donor for high-performance and stable all-PSCs.
Collapse
Affiliation(s)
- Mingwei An
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Qian Liu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 136-713, South Korea
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Enmin Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Qiming Liang
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Henan Li
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, South Korea
| | - Li Niu
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Huiliang Sun
- Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, China
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Chemistry and Chemical Engineering, Gannan Normal University, 341000, Ganzhou, China
| |
Collapse
|
2
|
Wu J, Li Y, Tang F, Guo Y, Liu G, Wu S, Hu B, Fu Y, Lu X, Lu G, He Z, Zhu X, Peng X. Beyond Conventional Enhancements: Self-Organization of a Buffer Material on Tin Oxide as a Game-Changer for Improving the Performance of Inverted Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404066. [PMID: 38837665 DOI: 10.1002/smll.202404066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Inverted organic solar cells (OSCs) have garnered significant interest due to their remarkable stability. In this study, the efficiency and stability of inverted OSCs are enhanced via the in situ self-organization (SO) of an interfacial modification material Phen-NaDPO onto tin oxide (SnO2). During the device fabrication, Phen-NaDPO is spin-coated with the active materials all together on SnO2. Driven by the interactions with SnO2 and the thermodynamic forces due to its high surface energy and the convection flow, Phen-NaDPO spontaneously migrates to the SnO2 interface, resulting in the formation of an in situ modification layer on SnO2. This self-organization of Phen-NaDPO not only effectively reduces the work function of SnO2, but also enhances the ordered molecular stacking and manipulates the vertical morphology of the active layer, which suppress the surface trap-assisted recombination and minimize the charge extraction. As a result, the SO devices based on PM6:Y6 exhibit significantly improved photovoltaic performance with an enhanced power conversion efficiency of 17.62%. Moreover, the stability of the SO device is also improved. Furthermore, the SO ternary devices based on PM6:D18:L8-BO achieved an impressive PCE of 18.87%, standing as one of the highest values for single-junction inverted organic solar cells to date.
Collapse
Affiliation(s)
- Jifa Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Yumeng Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Feng Tang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Yinchun Guo
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Guoqiang Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Shaoguang Wu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Bin Hu
- Frontier Institute of Science and Technology, and State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yuang Fu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, and State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Zhicai He
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Xuhui Zhu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Xiaobin Peng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| |
Collapse
|
3
|
Wang Z, Wang H, Yang L, Du M, Gao L, Guo Q, Zhou E. Selenophene-fused Perylene Diimide-Based Cathode Interlayer Enables 19 % Efficiency Binary Organic Solar Cells via Stimulative Charge Extraction. Angew Chem Int Ed Engl 2024; 63:e202404921. [PMID: 38953122 DOI: 10.1002/anie.202404921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
The cathode interlayer is crucial for the development of organic solar cells (OSCs), but the research on simple and efficient interlayer materials is lagging behind. Here, a donor-acceptor (D-A) typed selenophene-fused perylene diimide (PDI) derivative (SePDI3) is developed as cathode interlayer material (CIM) for OSCs, and a non-fused PDI derivative (PDI3) is used as the control CIM for comparison. Compared to PDI3, SePDI3 shows a stronger self-doping effect and better crystallinity, resulting in better charge transport ability. Furthermore, the interaction between SePDI3 and L8-BO can form an efficient extraction channel, leading to superior charge extraction behavior. Finally, benefitting from significantly enhanced charge transport and extraction capacity, the SePDI3-based device displays a champion PCE of 19.04 % with an ultrahigh fill factor of 81.65 % for binary OSCs based on PM6 : L8-BO active layer, which is one of the top efficiencies reported to date in binary OSCs based novel CIMs. Our work prescribes a facile and effective fusion strategy to develop high-efficiency CIMs for OSCs.
Collapse
Affiliation(s)
- Zongtao Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Helin Wang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lei Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengzhen Du
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Gao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiang Guo
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Erjun Zhou
- National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
4
|
Song J, Li C, Ma H, Han B, Wang Q, Wang X, Wei D, Bu L, Yang R, Yan H, Sun Y. Optimizing Double-Fibril Network Morphology via Solid Additive Strategy Enables Binary All-Polymer Solar Cells with 19.50% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406922. [PMID: 39011798 DOI: 10.1002/adma.202406922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Double-fibril network morphology (DFNM), in which the donor and the acceptor can self-assemble into a double-fibril structure, is beneficial for exciton dissociation and charge transport in organic solar cells. Herein, it is demonstrated that such DFNM can be constructed and optimized in all-polymer solar cells (all-PSCs) with the assistance of 2-alkoxynaphthalene volatile solid additives. It is revealed that the incorporation of 2-alkoxynaphthalene can induce a stepwise regulation in the aggregation of donor and acceptor molecules during film casting and thermal annealing processes. Through altering the alkoxy of 2-alkoxynaphthalene solid additives, both the intermolecular interactions and molecular miscibility with the host materials can be precisely tuned, which allows for the optimization of the molecular aggregation process and facilitation of molecular self-assembly, and thus leading to reinforced molecular packing and optimized DFNM. As a result, an unprecedented efficiency of 19.50% (certified as 19.1%) is obtained for 2-ethoxynaphthalene-processed PM6:PY-DT-X all-PSCs with excellent photostability (T80 = 1750 h). This work reveals that the optimization of DFNM via solid additive strategy is a promising avenue to boosting the performance of all-PSCs.
Collapse
Affiliation(s)
- Jiali Song
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, P. R. China
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Chao Li
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Haisheng Ma
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Bingyu Han
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Qianqian Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Xunchang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Laju Bu
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Renqiang Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Yanming Sun
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, P. R. China
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
5
|
Zhang C, Zhong X, Sun X, Lv J, Ji Y, Fu J, Zhao C, Yao Y, Zhang G, Deng W, Wang K, Li G, Hu H. Designing a Novel Wide Bandgap Small Molecule Guest for Enhanced Stability and Morphology Mediation in Ternary Organic Solar Cells with over 19.3% Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401313. [PMID: 38569518 PMCID: PMC11187928 DOI: 10.1002/advs.202401313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Indexed: 04/05/2024]
Abstract
In this study, a novel wide-bandgap small molecule guest material, ITOA, designed and synthesized for fabricating efficient ternary organic solar cells (OSCs) ITOA complements the absorbance of the PM6:Y6 binary system, exhibiting strong crystallinity and modest miscibility. ITOA optimizes the morphology by promoting intensive molecular packing, reducing domain size, and establishing a preferred vertical phase distribution. These features contribute to improved and well-balanced charge transport, suppressed carrier recombination, and efficient exciton dissociation. Consequently, a significantly enhanced efficiency of 18.62% for the ternary device is achieved, accompanied by increased short-circuit current density (JSC), fill factor (FF), and open-circuit voltage (VOC). Building on this success, replacing Y6 with BTP-eC9 leads to an outstanding PCE of 19.33% for the ternary OSCs. Notably, the introduction of ITOA expedites the formation of the optimized morphology, resulting in an impressive PCE of 18.04% for the ternary device without any postprocessing. Moreover, the ternary device exhibits enhanced operational stability under maximum power point (MPP) tracking. This comprehensive study demonstrates that a rationally designed guest molecule can optimize morphology, reduce energy loss, and streamline the fabrication process, essential for achieving high efficiency and stability in OSCs, paving the way for practical commercial applications.
Collapse
Affiliation(s)
- Chenyang Zhang
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic UniversityShenzhenGuangdong518055China
- Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'anShaanxi710072China
| | - Xiuzun Zhong
- Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'anShaanxi710072China
| | - Xiaokang Sun
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic UniversityShenzhenGuangdong518055China
- School of Materials Science and EngineeringXiangtan UniversityXiangtanHunan411105China
| | - Jie Lv
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic UniversityShenzhenGuangdong518055China
| | - Yaxiong Ji
- Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenGuangdong518055China
| | - Jiehao Fu
- Department of Electronic and Information EngineeringResearch Institute for Smart Energy (RISE)The Hong Kong Polytechnic UniversityHong KongKowloon999077China
| | - Chaoyue Zhao
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhenGuangdong518118China
| | - Yiguo Yao
- Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'anShaanxi710072China
| | - Guangye Zhang
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhenGuangdong518118China
| | - Wanyuan Deng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouGuangdong510641China
| | - Kai Wang
- Institute of Flexible Electronics (IFE)Northwestern Polytechnical UniversityXi'anShaanxi710072China
| | - Gang Li
- Department of Electronic and Information EngineeringResearch Institute for Smart Energy (RISE)The Hong Kong Polytechnic UniversityHong KongKowloon999077China
| | - Hanlin Hu
- Hoffmann Institute of Advanced MaterialsShenzhen Polytechnic UniversityShenzhenGuangdong518055China
| |
Collapse
|
6
|
Hrostea L, Oajdea A, Leontie L. Impact of PCBM as a Third Component on Optical and Electrical Properties in Ternary Organic Blends. Polymers (Basel) 2024; 16:1324. [PMID: 38794517 PMCID: PMC11125390 DOI: 10.3390/polym16101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
This paper investigates the influence of constituent weight ratios on optical and electrical properties, with a particular focus on the intrinsic properties (such as electrical mobility) of ternary organic blends, highlighting the role of a third component. The study explores novel donor:acceptor1:acceptor2 (D:A1:A2) matrix blends with photovoltaic potential, systematically adjusting the ratio of the two acceptors in the mixtures, while keeping constant the donor:acceptor weight ratio (D:A = 1:1.4). Herein, depending on this adjustment, six different samples of 100-400 nm thickness are methodically characterized. Optical analysis demonstrates the spectral complementarity of the component materials and exposes the optimal weight ratio (D:A1:A2 = 1:1:0.4) for the highest optical absorption coefficient. Atomic force microscopy (AFM) analysis reveals improved and superior morphological attributes with the addition of the third component (fullerene). In terms of the electrical mobility of charge carriers, this study finds that the sample in which A1 = A2 has the greatest recorded value [μmax=1.41×10-4cm2/(Vs)]. This thorough study on ternary organic blends reveals the crucial relationship between acceptor ratios and the properties of the final blend, highlighting the critical function of the third component in influencing the intrinsic factors such as electrical mobility, offering valuable insights for the optimization of ternary organic solar cells.
Collapse
Affiliation(s)
- Laura Hrostea
- Research Center on Advanced Materials and Technologies (RAMTECH), Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, 11 bd. Carol I, 700506 Iasi, Romania
| | - Anda Oajdea
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 bd. Carol I, 700506 Iasi, Romania;
| | - Liviu Leontie
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 bd. Carol I, 700506 Iasi, Romania;
| |
Collapse
|
7
|
Li R, Hu Y, Xu Y, Wang C, Li X, Liang S, Liu B, Li W. Dimerized Nonfused Electron Acceptor Based on a Thieno[3,4- c]pyrrole-4,6-dione Core for Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22256-22264. [PMID: 38651607 DOI: 10.1021/acsami.4c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In this work, the first dimerized nonfused electron acceptor (NFEA), based on thieno[3,4-c]pyrrole-4,6-dione as the core, has been designed and synthesized. The dimerized acceptor and its single counterpart exhibit similar energy levels but different absorption spectra due to their distinct aggregation behavior. The dimerized acceptor-based organic solar cells (OSCs) demonstrate a higher power conversion efficiency of 11.05%, accompanied by enhanced thermal stability. This improvement is attributed to the enhancement of the short-circuit current density and fill factor, along with an increase in the glass transition temperature. Characterizations of exciton dynamics and film morphology reveal that a dimerized acceptor-based device possesses an enhanced exciton dissociation efficiency and a well-established charge transport pathway, explaining its improved photovoltaic performance. All these results indicate that the dimerized NFEA as a promising candidate can achieve efficiency-stability-cost balance in OSCs.
Collapse
Affiliation(s)
- Ruonan Li
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Yuandu Hu
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Yunhua Xu
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, P. R. China
| | - Chao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Baiqiao Liu
- Research Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou 311121, China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
8
|
Ma R, Li H, Dela Peña TA, Xie X, Fong PWK, Wei Q, Yan C, Wu J, Cheng P, Li M, Li G. Tunable Donor Aggregation Dominance in a Ternary Matrix of All-Polymer Blends with Improved Efficiency and Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304632. [PMID: 37418757 DOI: 10.1002/adma.202304632] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/23/2023] [Indexed: 07/09/2023]
Abstract
Using two structurally similar polymer acceptors in constructing high-efficiency ternary all-polymer solar cells is a widely acknowledged strategy; however, the focus thus far has not been on how polymer acceptor(s) would tune the aggregation of polymer donors, and furthermore film morphology and device performance (efficiency and stability). Herein, it is reported that matching of the celebrity acceptor PY-IT and the donor PBQx-TCl results in enhanced H-aggregation in PBQx-TCl, which can be finely tuned by controlling the amount of the second acceptor PY-IV. Consequently, the efficiency-optimized PY-IV weight ratio (0.2/1.2) leads to a state-of-the-art power conversion efficiency of 18.81%, wherein light-illuminated operational stability is also enhanced along with well-protected thermal stability. Such enhancements in the efficiency and operational and thermal stabilities of solar cells can be attributed to morphology optimization and the desired glass transition temperature of the target active layer based on comprehensive characterization. In addition to being a high-power conversion efficiency case for all-polymer solar cells, these enhancements are also a successful attempt for using combined acceptors to tune donor aggregation toward optimal morphology, which provides a theoretical basis for the construction of other types of organic photovoltaics beyond all-polymer solar cells.
Collapse
Affiliation(s)
- Ruijie Ma
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Kowloon, 999077, China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Top Archie Dela Peña
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Xiyun Xie
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Kowloon, 999077, China
| | - Patrick Wai-Keung Fong
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Kowloon, 999077, China
| | - Qi Wei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Cenqi Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiaying Wu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology, Nansha, Guangzhou, 511400, China
| | - Pei Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Gang Li
- Department of Electrical and Electronic Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Kowloon, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
9
|
Hu Y, Wang Y, Yang F, Liu D, Lu G, Li S, Wei Z, Shen X, Jiang Z, Zhao Y, Pang Q, Song B, Shi Z, Shafique S, Zhou K, Chen X, Su W, Jian J, Tang K, Liu T, Zhu Y. Flexible Organic Photovoltaic-Powered Hydrogel Bioelectronic Dressing With Biomimetic Electrical Stimulation for Healing Infected Diabetic Wounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307746. [PMID: 38145346 PMCID: PMC10933690 DOI: 10.1002/advs.202307746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/28/2023] [Indexed: 12/26/2023]
Abstract
Electrical stimulation (ES) is proposed as a therapeutic solution for managing chronic wounds. However, its widespread clinical adoption is limited by the requirement of additional extracorporeal devices to power ES-based wound dressings. In this study, a novel sandwich-structured photovoltaic microcurrent hydrogel dressing (PMH dressing) is designed for treating diabetic wounds. This innovative dressing comprises flexible organic photovoltaic (OPV) cells, a flexible micro-electro-mechanical systems (MEMS) electrode, and a multifunctional hydrogel serving as an electrode-tissue interface. The PMH dressing is engineered to administer ES, mimicking the physiological injury current occurring naturally in wounds when exposed to light; thus, facilitating wound healing. In vitro experiments are performed to validate the PMH dressing's exceptional biocompatibility and robust antibacterial properties. In vivo experiments and proteomic analysis reveal that the proposed PMH dressing significantly accelerates the healing of infected diabetic wounds by enhancing extracellular matrix regeneration, eliminating bacteria, regulating inflammatory responses, and modulating vascular functions. Therefore, the PMH dressing is a potent, versatile, and effective solution for diabetic wound care, paving the way for advancements in wireless ES wound dressings.
Collapse
Affiliation(s)
- Yi‐Wei Hu
- Health Science CenterNingbo UniversityNingbo315211P. R. China
- Orthopaedic Oncology Center of Changzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Yu‐Heng Wang
- Faculty of Electrical Engineering and Computer ScienceNingbo UniversityNingbo315211P. R. China
- State Key Laboratory of Electrical Insulation and Power EquipmentXi'an Jiaotong UniversityXi'an710049P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Fang Yang
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| | - Ding‐Xin Liu
- State Key Laboratory of Electrical Insulation and Power EquipmentXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Guang‐Hao Lu
- State Key Laboratory of Electrical Insulation and Power EquipmentXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Sheng‐Tao Li
- State Key Laboratory of Electrical Insulation and Power EquipmentXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Zhi‐Xiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xiang Shen
- The Research Institute of Advanced TechnologiesNingbo UniversityNingbo315211P. R. China
| | - Zhuang‐De Jiang
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yi‐Fan Zhao
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Qian Pang
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| | - Bai‐Yang Song
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| | - Ze‐Wen Shi
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| | - Shareen Shafique
- School of Physical Science and TechnologyNingbo UniversityNingbo315211P. R. China
| | - Kun Zhou
- Shenzhen Institute of Aggregate Science and TechnologyThe Chinese University of Hong Kong ShenzhenShenzhen518172P. R. China
| | - Xiao‐Lian Chen
- Printable Electronics Research Center & Nano‐Device and Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsNano Chinese Academy of SciencesSuzhou215123P. R. China
| | - Wen‐Ming Su
- Printable Electronics Research Center & Nano‐Device and Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsNano Chinese Academy of SciencesSuzhou215123P. R. China
| | - Jia‐Wen Jian
- Faculty of Electrical Engineering and Computer ScienceNingbo UniversityNingbo315211P. R. China
| | - Ke‐Qi Tang
- Institute of Mass SpectrometrySchool of Material Science and Chemical EngineeringNingbo UniversityNingbo315211P. R. China
| | - Tie‐Long Liu
- Orthopaedic Oncology Center of Changzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Ya‐Bin Zhu
- Health Science CenterNingbo UniversityNingbo315211P. R. China
| |
Collapse
|
10
|
Feng W, Chen T, Li Y, Duan T, Jiang X, Zhong C, Zhang Y, Yu J, Lu G, Wan X, Kan B, Chen Y. Binary All-polymer Solar Cells with a Perhalogenated-Thiophene-Based Solid Additive Surpass 18 % Efficiency. Angew Chem Int Ed Engl 2024; 63:e202316698. [PMID: 38169129 DOI: 10.1002/anie.202316698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Morphological control of all-polymer blends is quintessential yet challenging in fabricating high-performance organic solar cells. Recently, solid additives (SAs) have been approved to be capable in tuning the morphology of polymer: small-molecule blends improving the performance and stability of devices. Herein, three perhalogenated thiophenes, which are 3,4-dibromo-2,5-diiodothiophene (SA-T1), 2,5-dibromo-3,4-diiodothiophene (SA-T2), and 2,3-dibromo-4,5-diiodothiophene (SA-T3), were adopted as SAs to optimize the performance of all-polymer organic solar cells (APSCs). For the blend of PM6 and PY-IT, benefitting from the intermolecular interactions between perhalogenated thiophenes and polymers, the molecular packing properties could be finely regulated after introducing these SAs. In situ UV/Vis measurement revealed that these SAs could assist morphological character evolution in the all-polymer blend, leading to their optimal morphologies. Compared to the as-cast device of PM6 : PY-IT, all SA-treated binary devices displayed enhanced power conversion efficiencies of 17.4-18.3 % with obviously elevated short-circuit current densities and fill factors. To our knowledge, the PCE of 18.3 % for SA-T1-treated binary ranks the highest among all binary APSCs to date. Meanwhile, the universality of SA-T1 in other all-polymer blends is demonstrated with unanimously improved device performance. This work provide a new pathway in realizing high-performance APSCs.
Collapse
Affiliation(s)
- Wanying Feng
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350, Tianjin, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Tianqi Chen
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350, Tianjin, China
| | - Yulu Li
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, 400714, Chongqing, China
| | - Tainan Duan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, 400714, Chongqing, China
| | - Xue Jiang
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, 400714, Chongqing, China
| | - Cheng Zhong
- Hubei Key Laboratory on Organic and Polymeric Opto-electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
| | - Yunxin Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350, Tianjin, China
| | - Jifa Yu
- Institute of Science and Technology, Xi'an Jiaotong University, 710054, Xi'an, China
| | - Guanghao Lu
- Institute of Science and Technology, Xi'an Jiaotong University, 710054, Xi'an, China
| | - Xiangjian Wan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350, Tianjin, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
11
|
Wu P, Duan Y, Li Y, Xu X, Li R, Yu L, Peng Q. 18.6% Efficiency All-Polymer Solar Cells Enabled by a Wide Bandgap Polymer Donor Based on Benzo[1,2-d:4,5-d']bisthiazole. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306990. [PMID: 37766648 DOI: 10.1002/adma.202306990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/26/2023] [Indexed: 09/29/2023]
Abstract
The limited selection of wide bandgap polymer donors for all-polymer solar cells (all-PSCs) is a bottleneck problem restricting their further development and remains poorly studied. Herein, a new wide bandgap polymer, namely PBBTz-Cl, is designed and synthesized by bridging the benzobisthiazole acceptor block and chlorinated benzodithiophene donor block with thiophene units for application as an electron donor in all-PSCs. PBBTz-Cl not only possesses wide bandgap and deep energy levels but also displays strong absorption, high-planar structure, and good crystallinity, making it a promising candidate for application as a polymer donor in organic solar cells. When paired with the narrow bandgap polymer acceptor PY-IT, a fibril-like morphology forms, which facilitates exciton dissociation and charge transport, contributing to a power conversion efficiency (PCE) of 17.15% of the corresponding all-PSCs. Moreover, when introducing another crystalline polymer acceptor BTP-2T2F into the PBBTz-Cl:PY-IT host blend, the absorption ditch in the range of 600-750 nm is filled, and the blend morphology is further optimized with the trap density reducing. As a result, the ternary blend all-PSCs achieve a significantly improved PCE of 18.60%, which is among the highest values for all-PSCs to date.
Collapse
Affiliation(s)
- Peixi Wu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuwei Duan
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science & Engineering Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yinfeng Li
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaopeng Xu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ruipeng Li
- National Synchrotron Light Source II Brookhaven National Lab, Suffolk, Upton, NY, 11973, USA
| | - Liyang Yu
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiang Peng
- School of Chemical Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
12
|
Chen T, Zheng X, Wang D, Zhu Y, Ouyang Y, Xue J, Wang M, Wang S, Ma W, Zhang C, Ma Z, Li S, Zuo L, Chen H. Delayed Crystallization Kinetics Allowing High-Efficiency All-Polymer Photovoltaics with Superior Upscaled Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308061. [PMID: 37734746 DOI: 10.1002/adma.202308061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Though encouraging performance is achieved in small-area organic photovoltaics (OPVs), reducing efficiency loss when evoluted to large-area modules is an important but unsolved issue. Considering that polymer materials show benefits in film-forming processability and mechanical robustness, a high-efficiency all-polymer OPV module is demonstrated in this work. First, a ternary blend consisting of two polymer donors, PM6 and PBQx-TCl, and one polymer acceptor, PY-IT, is developed, with which triplet state recombination is suppressed for a reduced energy loss, thus allowing a higher voltage; and donor-acceptor miscibility is compromised for enhanced charge transport, thus resulting in improved photocurrent and fill factor; all these contribute to a champion efficiency of 19% for all-polymer OPVs. Second, the delayed crystallization kinetics from solution to film solidification is achieved that gives a longer operation time window for optimized blend morphology in large-area module, thus relieving the loss of fill factor and allowing a record efficiency of 16.26% on an upscaled module with an area of 19.3 cm2 . Besides, this all-polymer system also shows excellent mechanical stability. This work demonstrates that all-polymer ternary systems are capable of solving the upscaled manufacturing issue, thereby enabling high-efficiency OPV modules.
Collapse
Affiliation(s)
- Tianyi Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiangjun Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Di Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuxuan Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yanni Ouyang
- National Laboratory of Solid-State Microstructures, School of Physics, and Collaborative Innovation Centre for Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mengting Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shanlu Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chunfeng Zhang
- National Laboratory of Solid-State Microstructures, School of Physics, and Collaborative Innovation Centre for Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Zaifei Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shuixing Li
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Lijian Zuo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| |
Collapse
|
13
|
Yang X, Shao Y, Wang S, Chen M, Xiao B, Sun R, Min J. Processability Considerations for Next-Generation Organic Photovoltaic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307863. [PMID: 38048536 DOI: 10.1002/adma.202307863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Indexed: 12/06/2023]
Abstract
The evolution of organic semiconductors for organic photovoltaics (OPVs) has resulted in unforeseen outcomes. This has provided substitute choices of photoactive layer materials, which effectively convert sunlight into electricity. Recently developed OPV materials have narrowed down the gaps in efficiency, stability, and cost in devices. Records now show power conversion efficiency in single-junction devices closing to 20%. Despite this, there is still a gap between the currently developed OPV materials and those that meet the requirements of practical applications, especially the solution processability issue widely concerned in the field of OPVs. Based on the general rule that structure determines properties, methodologies to enhance the processability of OPV materials are reviewed and explored from the perspective of material design and views on the further development of processable OPV materials are presented. Considering the current dilemma that the existing evaluation indicators cannot reflect the industrial processability of OPV materials, a more complete set of key performance indicators are proposed for their processability considerations. The purpose of this perspective is to raise awareness of the boundary conditions that exist in industrial OPV manufacturing and to provide guidance for academic research that aspires to contribute to technological advancements.
Collapse
Affiliation(s)
- Xinrong Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yiming Shao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Shanshan Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Mingxia Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Bo Xiao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
14
|
Qiu D, Zhang H, Tian C, Zhang J, Zhu L, Wei Z, Lu K. Central Core Substitutions and Film-Formation Process Optimization Enable Approaching 19% Efficiency All-Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307398. [PMID: 37801215 DOI: 10.1002/adma.202307398] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Molecular interactions and film-formation processes greatly impact the blend film morphology and device performances of all-polymer solar cells (all-PSCs). Molecular structure, such as the central cores of polymer acceptors, would significantly influence this process. Herein, the central core substitutions of polymer acceptors are adjusted and three quinoxaline (Qx)-fused-core-based materials, PQx1, PQx2, and PQx3 are synthesized. The molecular aggregation ability and intermolecular interaction are systematically regulated, which subsequently influence the film-formation process and determine the resulting blend film morphology. As a result, PQx3, with favorable aggregation ability and moderate interaction with polymer donor PM6, achieves efficient all-PSCs with a high power conversion efficiency (PCE) of 17.60%, which could be further improved to 18.06% after carefully optimizing device annealing and interface layer. This impressive PCE is one of the highest values for binary all-PSCs based on the classical polymer donor PM6. PYF-T-o is also involved in promoting light utilization, and the resulting ternary device shows an impressive PCE of 18.82%. In addition, PM6:PQx3-based devices exhibit high film-thickness tolerance, superior stability, and considerable potential for large-scale devices (16.23% in 1 cm2 device). These results highlight the importance of structure optimization of polymer acceptors and film-formation process control for obtaining efficient and stable all-PSCs.
Collapse
Affiliation(s)
- Dingding Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyang Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lingyun Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Liu Z, Li Q, Fu L, Wang J, Ma J, Zhang C, Wang R. Excited-State Dynamics in All-Polymer Blends with Polymerized Small-Molecule Acceptors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301931. [PMID: 37271886 PMCID: PMC10427414 DOI: 10.1002/advs.202301931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/13/2023] [Indexed: 06/06/2023]
Abstract
Polymerizing small-molecular acceptors (SMAs) is a promising route to construct high performance polymer acceptors of all-polymer solar cells (all-PSCs). After SMA polymerization, the microstructure of molecular packing is largely modified, which is essential in regulating the excited-state dynamics during the photon-to-current conversion. Nevertheless, the relationship between the molecular packing and excited-state dynamics in polymerized SMAs (PSMAs) remains poorly understood. Herein, the excited-state dynamics and molecular packing are investigated in the corresponding PSMA and SMA utilizing a combination of experimental and theoretical methods. This study finds that the charge separation from intra-moiety delocalized states (i-DEs) is much faster in blends with PSMAs, but the loosed π-π molecular packing suppresses the excitation conversion from the local excitation (LE) to the i-DE, leading to additional radiative losses from LEs. Moreover, the increased aggregations of PSMA in the blends decrease donor: acceptor interfaces, which reduces triplet losses from the bimolecular charge recombination. These findings suggest that excited-state dynamics may be manipulated by the molecular packing in blends with PSMAs to further optimize the performance of all-PSCs.
Collapse
Affiliation(s)
- Ziran Liu
- Key Laboratory of Oil and Gas Fine ChemicalsMinistry of Education & Xinjiang Uygur Autonomous RegionSchool of Chemical Engineering and TechnologyXinjiang UniversityUrumqi830046China
- National Laboratory of Solid State MicrostructuresSchool of Physics, and Collaborative Innovation Center for Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Qian Li
- National Laboratory of Solid State MicrostructuresSchool of Physics, and Collaborative Innovation Center for Advanced MicrostructuresNanjing UniversityNanjing210093China
| | - Lulu Fu
- School of Materials Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250000China
| | - Jide Wang
- Key Laboratory of Oil and Gas Fine ChemicalsMinistry of Education & Xinjiang Uygur Autonomous RegionSchool of Chemical Engineering and TechnologyXinjiang UniversityUrumqi830046China
| | - Jing Ma
- Institute of Theoretical and Computational ChemistryKey Laboratory of Mesoscopic Chemistry of MOESchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210093China
| | - Chunfeng Zhang
- National Laboratory of Solid State MicrostructuresSchool of Physics, and Collaborative Innovation Center for Advanced MicrostructuresNanjing UniversityNanjing210093China
- Institute of Materials EngineeringNanjing UniversityNantongJiangsu226019China
| | - Rui Wang
- College of PhysicsNanjing University of Aeronautics and Astronautics, and Key Laboratory of Aerospace Information Materials and Physics (NUAA)MIITNanjing211106China
| |
Collapse
|
16
|
Kim S, Choi H, Lee M, Jung H, Shin Y, Lee S, Kim K, Kim MH, Kwak K, Kim B. Critical Role of Non-Halogenated Solvent Additives in Eco-Friendly and Efficient All-Polymer Solar Cells. Polymers (Basel) 2023; 15:polym15061354. [PMID: 36987135 PMCID: PMC10056264 DOI: 10.3390/polym15061354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Organic solar cells (OSCs) demonstrating high power conversion efficiencies have been mostly fabricated using halogenated solvents, which are highly toxic and harmful to humans and the environment. Recently, non-halogenated solvents have emerged as a potential alternative. However, there has been limited success in attaining an optimal morphology when non-halogenated solvents (typically o-xylene (XY)) were used. To address this issue, we studied the dependence of the photovoltaic properties of all-polymer solar cells (APSCs) on various high-boiling-point non-halogenated additives. We synthesized PTB7-Th and PNDI2HD-T polymers that are soluble in XY and fabricated PTB7-Th:PNDI2HD-T-based APSCs using XY with five additives: 1,2,4-trimethylbenzene (TMB), indane (IN), tetralin (TN), diphenyl ether (DPE), and dibenzyl ether (DBE). The photovoltaic performance was determined in the following order: XY + IN < XY + TMB < XY + DBE ≤ XY only < XY + DPE < XY + TN. Interestingly, all APSCs processed with an XY solvent system had better photovoltaic properties than APSCs processed with chloroform solution containing 1,8-diiodooctane (CF + DIO). The key reasons for these differences were unraveled using transient photovoltage and two-dimensional grazing incidence X-ray diffraction experiments. The charge lifetimes of APSCs based on XY + TN and XY + DPE were the longest, and their long lifetime was strongly associated with the polymer blend film morphology; the polymer domain sizes were in the nanoscale range, and the blend film surfaces were smoother, as the PTB7-Th polymer domains assumed an untangled, evenly distributed, and internetworked morphology. Our results demonstrate that the use of an additive with an optimal boiling point facilitates the development of polymer blends with a favorable morphology and can contribute to the widespread use of eco-friendly APSCs.
Collapse
Affiliation(s)
- Saeah Kim
- Department of Chemistry & Nano Science, Ewha University, Seoul 03760, Republic of Korea
| | - Huijeong Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Myeongjae Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyeseung Jung
- Department of Chemistry & Nano Science, Ewha University, Seoul 03760, Republic of Korea
| | - Yukyung Shin
- Department of Chemistry & Nano Science, Ewha University, Seoul 03760, Republic of Korea
| | - Seul Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyungkon Kim
- Department of Chemistry & Nano Science, Ewha University, Seoul 03760, Republic of Korea
| | - Myung Hwa Kim
- Department of Chemistry & Nano Science, Ewha University, Seoul 03760, Republic of Korea
| | - Kyungwon Kwak
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - BongSoo Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Device Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Correspondence: ; Tel.: +82-52-217-3197; Fax: +82-52-217-2279
| |
Collapse
|