1
|
Jiang Z, Liu D, Wang Y, Song W, Yan D, Ge Z, Liu Y. A Tricyclic Framework with Integrated B←N and Cyano Dual Functionalization for Superior n-Type Organic Electronics. Angew Chem Int Ed Engl 2024:e202416669. [PMID: 39404186 DOI: 10.1002/anie.202416669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Indexed: 11/12/2024]
Abstract
n-Type conjugated polymers featuring low-lying lowest unoccupied molecular orbital (LUMO) energy levels are essential for achieving high-performance n-type organic thin-film transistors (OTFTs) and organic thermoelectrics (OTEs). However, the synthesis of acceptors with strong electron-withdrawing characteristics presents a significant challenge. Herein, a peripheral functionalization strategy is employed on the tricyclic framework anthracene by introducing dual N,O-bidentate BF2/B(CN)2 groups to enhance its electron-withdrawing capability. This approach successfully navigates synthetic challenges, leading to the development of two novel acceptor building blocks: DBNF and DBNCN. Compared to the counterparts with a single N,O-bidentate BF2/B(CN)2 moiety, DBNF and DBNCN exhibit an extended π-backbone, enhanced molecular packing, and improved electron-withdrawing properties. Utilizing these innovative acceptor monomers, copolymers, PDBNF and PDBNCN, are synthesized, which exhibit considerably suppressed LUMO ≈-4.0 eV. The deep LUMO of PDBNF together with its favourable bimodal packing orientation leads to remarkable electron mobility of 3.04 cm2 V-1 s-1 with improved stability in OTFTs. Importantly, efficient n-doping in OTEs is achieved with PDBNCN, exhibiting exceptional conductivity of 95.5 S cm-1 and a maximum power factor of 147.8 μW m-1 K-2-among the highest reported for solution-processed n-type polymers. This work underscores the effectiveness of introducing dual B←N and cyano functionalities in attaining high-performance n-type plastic electronics.
Collapse
Affiliation(s)
- Zhen Jiang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Di Liu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
- Laboratory of Advanced Materials, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Yang Wang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Wei Song
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Dongsheng Yan
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Ziyi Ge
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yunqi Liu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
2
|
Shen T, Liu D, Zhang J, Wei Z, Wang Y. A High-Mobility n-Type Noncovalently-Fused-Ring Polymer for High-Performance Organic Thermoelectrics. Angew Chem Int Ed Engl 2024; 63:e202409018. [PMID: 38856227 DOI: 10.1002/anie.202409018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/11/2024]
Abstract
Conjugated polymers are emerging as competitive candidates for organic thermoelectrics (OTEs). However, to make the device truly pervasive, both p- and n-type conjugated polymers are essential. Despite great efforts, no n-type equivalents to the p-type benchmark PEDOT:PSS exist to date mainly due to the low electrical conductivity (σ). Herein, a near-amorphous n-type conjugated polymer, namely pDFSe, is reported with high σ by achieving the synergy between charge transport and doping efficiency. The polymer pDFSe is synthesized based on an acceptor-triad moiety of diketopyrrolopyrrole-difluorobenzoselenadiazole-diketopyrrolopyrrole (DFSe), which has the noncovalently-fused-ring structure to reinforce the backbone rigidity. Furthermore, an axisymmetric thiophene-selenophene-thiophene donor is introduced, which enables the formation of near-amorphous microstructures. The above merits ensure good doping efficiency without scarifying efficient intrachain charge-carrier transport. Thus, pDFSe-based n-type transistors exhibit high electron mobility up to 6.15 cm2 V-1 s-1, much higher than its reference polymer pDSe without the noncovalently-fused-ring structure (0.77 cm2 V-1 s-1). Further upon n-doping, pDFSe demonstrates excellent σ of 62.6 S cm-1 and maximum power factor of 133.1 μW m-1 K-2, which are among the highest values reported for solution-processed n-type polymers. The results demonstrate the great potential of near-amorphous n-type conjugated polymers with noncovalently-fused-ring structure for the next-generation OTEs.
Collapse
Affiliation(s)
- Tao Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Di Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Songhu Road 2005, Shanghai, 200438, China
- Laboratory of Advanced Materials, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| |
Collapse
|
3
|
Shen T, Jiang Z, Wang Y, Liu Y. Rational Molecular Design of Diketopyrrolopyrrole-Based n-Type and Ambipolar Polymer Semiconductors. Chemistry 2024; 30:e202401812. [PMID: 38887976 DOI: 10.1002/chem.202401812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Diketopyrrolopyrrole (DPP)-based polymer semiconductors have drawn great attention in the field of organic electronics due to the planar structure, decent solubilizing capability, and high crystallinity. However, the electron-deficient capacity of DPP derivatives are not strong enough, leading to relatively high-lying lowest unoccupied molecular orbital (LUMO) energy levels of the corresponding polymers. As a result, n-type and ambipolar DPP-based polymers are rare and their electron mobilities also lag far behind the p-type counterparts, which limits the development of important p-n-junction-based electronic devices. Therefore, new design strategies have been proposed recent years to develop n-type/ambipolar DPP-based polymers with improved performances. In this view, these molecular design strategies are summarized, including copolymerization of DPP with different acceptors and weak donors, DPP flanked aromatic ring modification, DPP-core ring expansion and DPP dimerization. The relationship between the chemical structures and organic thin-film transistor performances is intensively discussed. Finally, a perspective on future trends in the molecular design of DPP-based n-type/ambipolar polymers is also proposed.
Collapse
Affiliation(s)
- Tao Shen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Zhen Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Yang Wang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Yunqi Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Science, Beijing, 100190, China
| |
Collapse
|
4
|
Zhang T, Chen Z, Zhang W, Wang L, Yu G. Recent Progress of Fluorinated Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403961. [PMID: 38830614 DOI: 10.1002/adma.202403961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Indexed: 06/05/2024]
Abstract
In recent years, conjugated polymers have received widespread attention due to their characteristic advantages of light weight, favorable solution processability, and structural modifiability. Among various conjugated polymers, fluorinated ones have developed rapidly to achieve high-performance n-type or ambipolar polymeric semiconductors. The uniqueness of fluorinated conjugated polymers contains the high coplanarity of their structures, lower frontier molecular orbital energy levels, and strong nonbonding interactions. In this review, first the fluorinated building blocks, including fluorinated benzene and thiophene rings, fluorinated B←N bridged units, and fluoroalkyl side chains are summarized. Subsequently, different synthetic methods of fluorinated conjugated polymers are described, with a special focus on their respective advantages and disadvantages. Then, with these numerous fluorinated structures and appropriate synthetic methods bear in mind, the properties and applications of the fluorinated conjugated polymers, such as cyclopentadithiophene-, amide-, and imide-based polymers, and B←N embedded polymers, are systematically discussed. The introduction of fluorine atoms can further enhance the electron-deficiency of the backbone, influencing the charge carrier transport performance. The promising fluorinated conjugated polymers are applied widely in organic field-effect transistors, organic solar cells, organic thermoelectric devices, and other organic opto-electric devices. Finally, the outlook on the challenges and future development of fluorinated conjugated polymers is systematically discussed.
Collapse
Affiliation(s)
- Tianhao Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhihui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Chen Y, Wu Z, Chen Z, Zhang S, Li W, Zhao Y, Wang Y, Liu Y. Molecular "backbone surgery" of electron-deficient heteroarenes based on dithienopyrrolobenzothiadiazole: conformation-dependent crystal structures and charge transport properties. Chem Sci 2024; 15:11761-11774. [PMID: 39092104 PMCID: PMC11290414 DOI: 10.1039/d4sc02794a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/18/2024] [Indexed: 08/04/2024] Open
Abstract
Electron-deficient heteroarenes based on dithienopyrrolobenzothiadiazole (BTP) have been highly attractive due to their fascinating packing structures, broad absorption profiles, and promising applications in non-fullerene organic solar cells. However, the control of their crystal structures for superior charge transport still faces big challenges. Herein, a conformation engineering strategy is proposed to rationally manipulate the single crystal structure of BTP-series heteroarenes. The parent molecule BTPO-c has a 3D network crystal structure, which originates from its banana-shaped conformation. Subtracting one thiophene moiety from the central backbone leads to a looser brickwork crystal structure of the derivative BTPO-z because of its interrupted angular-shaped conformation. Further subtracting two thiophene moieties results in the derivative BTPO-l with a compact 2D-brickwork crystal structure due to its quasi-linear conformation with a unique dimer packing structure and short π-π stacking distance (3.30 Å). Further investigation of charge-transport properties via single-crystal organic transistors demonstrates that the compact 2D-brickwork crystal structure of BTPO-l leads to an excellent electron mobility of 3.5 cm2 V-1 s-1, much higher than that of BTPO-c with a 3D network (1.9 cm2 V-1 s-1) and BTPO-z with a looser brickwork structure (0.6 cm2 V-1 s-1). Notably, this study presents, for the first time, an elegant demonstration of the tunable single crystal structures of electron-deficient heteroarenes for efficient organic electronics.
Collapse
Affiliation(s)
- Yuzhong Chen
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Zeng Wu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Zekun Chen
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Shuixin Zhang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Wenhao Li
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Yan Zhao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Yang Wang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| | - Yunqi Liu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China
| |
Collapse
|
6
|
Li X, Sabir A, Zhang X, Jiang H, Wang W, Zheng X, Yang H. Highly Stretchable and Oriented Wafer-Scale Semiconductor Films for Organic Phototransistor Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36678-36687. [PMID: 38966894 DOI: 10.1021/acsami.4c04349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Stretchable organic phototransistor arrays have potential applications in artificial visual systems due to their capacity to perceive ultraweak light across a broad spectrum. Ensuring uniform mechanical and electrical performance of individual devices within these arrays requires semiconductor films with large-area scale, well-defined orientation, and stretchability. However, the progress of stretchable phototransistors is primarily impeded by their limited electrical properties and photodetection capabilities. Herein, wafer-scale and well-oriented semiconductor films were successfully prepared using a solution shearing process. The electrical properties and photodetection capabilities were optimized by improving the polymer chain alignment. Furthermore, a stretchable 10 × 10 transistor array with high device uniformity was fabricated, demonstrating excellent mechanical robustness and photosensitive imaging ability. These arrays based on highly stretchable and well-oriented wafer-scale semiconductor films have great application potential in the field of electronic eye and artificial visual systems.
Collapse
Affiliation(s)
- Xiangxiang Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Ayesha Sabir
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Xiaoying Zhang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Hongchen Jiang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Weiyu Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Xinran Zheng
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Hui Yang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Liu D, Zhao Y, Zhang J, Wei Z, Liu Y, Wang Y. Bis(benzoselenadiazol)ethane: A π-Extended Acceptor-Dimeric Unit for Ambipolar Polymer Transistors with Hole and Electron Mobilities Exceeding 10 cm 2 V -1 s -1. Angew Chem Int Ed Engl 2024; 63:e202400061. [PMID: 38440917 DOI: 10.1002/anie.202400061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/06/2024]
Abstract
The lack of ambipolar polymers with balanced hole (μh) and electron mobilities (μe) >10 cm2 V-1 s-1 is the main bottleneck for developing organic integrated circuits. Herein, we show the design and synthesis of a π-extended selenium-containing acceptor-dimeric unit, namely benzo[c][1,2,5]selenadiazol-4-yl)ethane (BBSeE), to address this dilemma. In comparison to its sulfur-counterpart, BBSeE demonstrates enlarged co-planarity, selective noncovalent interactions, polarized Se-N bond, and higher electron affinity. The successful stannylation of BBSeE offers a great opportunity to access acceptor-acceptor copolymer pN-BBSeE, which shows a narrower band gap, lower-lying lowest unoccupied molecular orbital level (-4.05 eV), and a higher degree of backbone planarity. Consequently, the pN-BBSeE-based organic transistors display an ideally balanced ambipolar transporting property with μh and μe of 10.65 and 10.72 cm2 V-1 s-1, respectively. To the best of our knowledge, the simultaneous μh/μe values >10.0 cm2 V-1 s-1 are the best performances ever reported for ambipolar polymers. In addition, pN-BBSeE shows an excellent shelf-storage stability, retaining over 85 % of the initial mobility values after two months storage. Our study demonstrates the π-extended acceptor-dimeric BBSeE is a promising acceptor building block for constructing high-performance ambipolar polymers applied in next-generation organic integrated circuit.
Collapse
Affiliation(s)
- Di Liu
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
- Laboratory of Advanced Materials, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yinghan Zhao
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Wang
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| |
Collapse
|
8
|
Ren S, Wang S, Chen J, Yi Z. Design of Novel Functional Conductive Structures and Preparation of High-Hole-Mobility Polymer Transistors by Green Synthesis Using Acceptor-Donor-Acceptor Strategies. Polymers (Basel) 2024; 16:396. [PMID: 38337285 DOI: 10.3390/polym16030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The design of novel acceptor molecular structures based on classical building blocks is regarded as one of the efficient ways to explore the application of organic conjugated materials in conductivity and electronics. Here, a novel acceptor moiety, thiophene-vinyl-diketopyrrolopyrrole (TVDPP), was envisioned and prepared with a longer conjugation length and a more rigid structure than thiophene-diketopyrrolopyrrole (TDPP). The brominated TVDPP can be sequentially bonded to trimethyltin-containing benzo[c][1,2,5]thiadiazole units via Suzuki polycondensation to efficiently prepare the polymer PTVDPP-BSz, which features high molecular weight and excellent thermal stability. The polymerization process takes only 24 h and eliminates the need for chlorinated organic solvents or toxic tin-based reagents. Density functional theory (DFT) simulations and film morphology analyses verify the planarity and high crystallinity of the material, respectively, which facilitates the achievement of high carrier mobility. Conductivity measurements of the polymeric material in the organic transistor device show a hole mobility of 0.34 cm2 V-1 s-1, which illustrates its potential for functionalized semiconductor applications.
Collapse
Affiliation(s)
- Shiwei Ren
- Advanced Materials Platform Laboratory, Zhuhai Fudan Innovation and Science Research Center, Guangdong-Macao In-Depth Cooperation Zone in Hengqin 519000, China
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai 200438, China
- Alternative Technologies for Fine Chemicals Process of Zhejiang Key Laboratory, Shaoxing University, Shaoxing 312000, China
| | - Sichun Wang
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Jinyang Chen
- Alternative Technologies for Fine Chemicals Process of Zhejiang Key Laboratory, Shaoxing University, Shaoxing 312000, China
| | - Zhengran Yi
- Advanced Materials Platform Laboratory, Zhuhai Fudan Innovation and Science Research Center, Guangdong-Macao In-Depth Cooperation Zone in Hengqin 519000, China
- Laboratory of Molecular Materials and Devices, State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Ren S, Wang Z, Zhang W, Yassar A, Chen J, Wang S. Incorporation of Diketopyrrolopyrrole into Polythiophene for the Preparation of Organic Polymer Transistors. Molecules 2024; 29:260. [PMID: 38202843 PMCID: PMC10780697 DOI: 10.3390/molecules29010260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Polythiophene, as a class of potential electron donor units, is widely used in organic electronics such as transistors. In this work, a novel polymeric material, PDPPTT-FT, was prepared by incorporating the electron acceptor unit into the polythiophene system. The incorporation of the DPP molecule assists in improving the solubility of the material and provides a convenient method for the preparation of field effect transistors via subsequent solution processing. The introduction of fluorine atoms forms a good intramolecular conformational lock, and theoretical calculations show that the structure displays excellent co-planarity and regularity. Grazing incidence wide-angle X-ray (GIWAXS) results indicate that the PDPPTT-FT is highly crystalline, which facilitates carrier migration within and between polymer chains. The hole mobility of this π-conjugated material is as high as 0.30 cm2 V-1 s-1 in organic transistor measurements, demonstrating the great potential of this polymer material in the field of optoelectronics.
Collapse
Affiliation(s)
- Shiwei Ren
- Zhuhai-Fudan Research Institute of Innovation, Hengqin 519000, China;
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
- Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Wenqing Zhang
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Abderrahim Yassar
- Laboratory of Physics of Interfaces and Thin Films, Institut Polytechnique de Paris, 91128 Palaiseau, France;
| | - Jinyang Chen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Sichun Wang
- Department of Materials Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
10
|
Li J, Chen Z, Wang J, Young Jeong S, Yang K, Feng K, Yang J, Liu B, Woo HY, Guo X. Semiconducting Polymers Based on Simple Electron-Deficient Cyanated trans-1,3-Butadienes for Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2023; 62:e202307647. [PMID: 37525009 DOI: 10.1002/anie.202307647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Developing high-performance but low-cost n-type polymers remains a significant challenge in the commercialization of organic field-effect transistors (OFETs). To achieve this objective, it is essential to design the key electron-deficient units with simple structures and facile preparation processes, which can facilitate the production of low-cost n-type polymers. Herein, by sequentially introducing fluorine and cyano functionalities onto trans-1,3-butadiene, we developed a series of structurally simple but highly electron-deficient building blocks, namely 1,4-dicyano-butadiene (CNDE), 3-fluoro-1,4-dicyano-butadiene (CNFDE), and 2,3-difluoro-1,4-dicyano-butadiene (CNDFDE), featuring a highly coplanar backbone and deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels (-3.03-4.33 eV), which render them highly attractive for developing n-type semiconducting polymers. Notably, all these electron-deficient units can be easily accessed by a two-step high-yield synthetic procedure from low-cost raw materials, thus rendering them highly promising candidates for commercial applications. Upon polymerization with diketopyrrolopyrrole (DPP), three copolymers were developed that demonstrated unipolar n-type transport characteristics in OFETs with the highest electron mobility of >1 cm2 V-1 s-1 . Hence, CNDE, CNFDE, and CNDFDE represent a class of novel, simple, and efficient electron-deficient units for constructing low-cost n-type polymers, thereby providing valuable insight for OFET applications.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Zhicai Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
- Department State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, 570228, Haikou, Hainan, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Sang Young Jeong
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, 02841, Seoul, South Korea
| | - Kun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Jie Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Han Young Woo
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, 02841, Seoul, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
- Songshan Lake Materials Laboratory, 523808, Dongguan, Guangdong, China
| |
Collapse
|