1
|
Zhu ZS, Zhong S, Cheng C, Zhou H, Sun H, Duan X, Wang S. Microenvironment Engineering of Heterogeneous Catalysts for Liquid-Phase Environmental Catalysis. Chem Rev 2024; 124:11348-11434. [PMID: 39383063 DOI: 10.1021/acs.chemrev.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Environmental catalysis has emerged as a scientific frontier in mitigating water pollution and advancing circular chemistry and reaction microenvironment significantly influences the catalytic performance and efficiency. This review delves into microenvironment engineering within liquid-phase environmental catalysis, categorizing microenvironments into four scales: atom/molecule-level modulation, nano/microscale-confined structures, interface and surface regulation, and external field effects. Each category is analyzed for its unique characteristics and merits, emphasizing its potential to significantly enhance catalytic efficiency and selectivity. Following this overview, we introduced recent advancements in advanced material and system design to promote liquid-phase environmental catalysis (e.g., water purification, transformation to value-added products, and green synthesis), leveraging state-of-the-art microenvironment engineering technologies. These discussions showcase microenvironment engineering was applied in different reactions to fine-tune catalytic regimes and improve the efficiency from both thermodynamics and kinetics perspectives. Lastly, we discussed the challenges and future directions in microenvironment engineering. This review underscores the potential of microenvironment engineering in intelligent materials and system design to drive the development of more effective and sustainable catalytic solutions to environmental decontamination.
Collapse
Affiliation(s)
- Zhong-Shuai Zhu
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth Western Australia 6009, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Austraia 5005, Australia
| |
Collapse
|
2
|
Cheng J, Zhang Z, Shao J, Wang T, Li R, Zhang W. Construction of an Axial Charge Transfer Channel Between Single-Atom Fe Sites and Nitrogen-Doped Carbon Supports for Boosting Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402583. [PMID: 38804883 DOI: 10.1002/smll.202402583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The introduction of axial-coordinated heteroatoms in Fe─N─C single-atom catalysts enables the significant enhancement of their oxygen reduction reaction (ORR) performance. However, the interaction relationship between the axial-coordinated heteroatoms and their carbon supports is still unclear. In this work, a gas phase surface treatment method is proposed to prepare a series of X─Fe─N─C (X = O, P, and S) single-atom catalysts with axial X-coordination on graphitic-N-rich carbon supports. Synchrotron-based X-ray absorption near-edge structure spectra and X-ray photoelectron spectroscopy indicate the formation of an axial charge transfer channel between the graphitic-N-rich carbon supports and single-atom Fe sites by axial O atoms in O─Fe─N─C. As a result, the O─Fe─N─C exhibits excellent ORR performance with a half-wave potential of 0.905 V versus RHE and a high specific capacity of 884 mAh g-1 for zinc-air battery, which is superior to other X─Fe─N─C catalysts without axial charge transfer and the commercial Pt/C catalyst. This work not only demonstrates a general synthesis strategy for the preparation of single-atom catalysts with axial-coordinated heteroatoms, but also presents insights into the interaction between single-atom active sites and doped carbon supports.
Collapse
Affiliation(s)
- Jiahao Cheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zheng Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jibin Shao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tang Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Rui Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wang Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
3
|
Wang Z, Hu N, Wang L, Zhao H, Zhao G. In Situ Production of Hydroxyl Radicals via Three-Electron Oxygen Reduction: Opportunities for Water Treatment. Angew Chem Int Ed Engl 2024; 63:e202407628. [PMID: 39007234 DOI: 10.1002/anie.202407628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
The electro-Fenton (EF) process is an advanced oxidation technology with significant potential; however, it is limited by two steps: generation and activation of H2O2. In contrast to the production of H2O2 via the electrochemical two-electron oxygen reduction reaction (ORR), the electrochemical three-electron (3e-) ORR can directly activate molecular oxygen to yield the hydroxyl radical (⋅OH), thus breaking through the conceptual and operational limitations of the traditional EF reaction. Therefore, the 3e- ORR is a vital process for efficiently producing ⋅OH in situ, thus charting a new path toward the development of green water-treatment technologies. This review summarizes the characteristics and mechanisms of the 3e- ORR, focusing on the basic principles and latest progress in the in situ generation and efficient utilization of ⋅OH through the modulation of the reaction pathway, shedding light on the rational design of 3e- ORR catalysts, mechanistic exploration, and practical applications for water treatment. Finally, the future developments and challenges of efficient, stable, and large-scale utilization of ⋅OH are discussed based on achieving optimal 3e- ORR regulation and the potential to combine it with other technologies.
Collapse
Affiliation(s)
- Zhiming Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Nan Hu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Lan Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Hongying Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
4
|
Gupta RK, Maurya PK, Mishra AK. Advancements in Rechargeable Zn-Air Batteries with Transition-Metal Dichalcogenides as Bifunctional Electrocatalyst. Chempluschem 2024; 89:e202400278. [PMID: 38963318 DOI: 10.1002/cplu.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
This review covers recent progress on transition metal dichalcogenides (TMDs) as bifunctional electrocatalysts for Zinc-air batteries (ZABs), emphasizing their suitable surface area, electrocatalytic active sites, stability in acidic/basic environments, and tunable electronic properties. It discusses strategies like defect engineering, doping, interface, and structural modifications of TMDs nanostructures for enhancing the performances of ZABs. Zinc-air batteries are promising energy storage devices owing to their high energy density, low cost, and environmental friendliness. However, the development of durable and efficient bifunctional electrocatalysts is a major concern for Zn-air batteries. In this review, we summarize the recent progress on transition metal dichalcogenides (TMDs) as bifunctional electrocatalysts for Zn-air batteries. We discuss the advantages of TMDs, such as high activity, good stability, and tunable electronic structure, as well as the challenges, such as low conductivity, poor durability, and limited active sites. We also highlight the strategies for fine-tuning the properties of TMDs, such as defect engineering, doping, hybridization, and structural engineering, to enhance their catalytic performance and stability. We provide a comprehensive and in-depth analysis of the applications of TMDs in Zn-air batteries, demonstrating their potential as low-cost, abundant, and environmentally friendly alternatives to noble metal catalysts. We also suggest future directions like exploring new TMDs materials and compositions, developing novel synthesis and modification techniques, investigating the interfacial interactions and charge transfer processes, and integrating TMDs with other functional materials. This review aims to illuminate the path forward for the development of efficient and durable Zn-air batteries, aligning with the broader objectives of sustainable energy solutions.
Collapse
Affiliation(s)
- Rohit Kumar Gupta
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Prince Kumar Maurya
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Ashish Kumar Mishra
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| |
Collapse
|
5
|
Han J, Sun J, Chen S, Zhang S, Qi L, Husile A, Guan J. Structure-Activity Relationships in Oxygen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408139. [PMID: 39344559 DOI: 10.1002/adma.202408139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Oxygen electrocatalysis, as the pivotal circle of many green energy technologies, sets off a worldwide research boom in full swing, while its large kinetic obstacles require remarkable catalysts to break through. Here, based on summarizing reaction mechanisms and in situ characterizations, the structure-activity relationships of oxygen electrocatalysts are emphatically overviewed, including the influence of geometric morphology and chemical structures on the electrocatalytic performances. Subsequently, experimental/theoretical research is combined with device applications to comprehensively summarize the cutting-edge oxygen electrocatalysts according to various material categories. Finally, future challenges are forecasted from the perspective of catalyst development and device applications, favoring researchers to promote the industrialization of oxygen electrocatalysis at an early date.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingru Sun
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siyu Chen
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Anaer Husile
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130021, P. R. China
| |
Collapse
|
6
|
Xu L, Yang Z, Zhang C, Chen C. Recent progress in electrochemical C-N coupling: metal catalyst strategies and applications. Chem Commun (Camb) 2024; 60:10822-10837. [PMID: 39233628 DOI: 10.1039/d4cc03256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Electrochemical C-N coupling reactions hold significant importance in the fields of organic chemistry and green chemistry. Conventional methods for constructing C-N bonds typically rely on high temperatures, high pressures, and other conditions that are energy-intensive and prone to generating environmental pollutants. In contrast, the electrochemical approaches employ electrical energy as the driving force to achieve C-N bond formation under ambient conditions, representing a more environment-friendly and sustainable alternative. The notable advantages of electrochemical C-N coupling include high efficiency, good selectivity, and mild reaction conditions. Through rational design of corresponding electrocatalysts, it is possible to achieve efficient C-N bond coupling at low potentials. Moreover, the electrochemical methods allow for precise control over reaction conditions, thereby avoiding side reactions and by-products that are common for conventional methods, improving both selectivity and product purity. Despite the extensive research efforts devoted to exploring the potential of electrochemical C-N coupling, the design of efficient and stable metal catalysts remains a significant challenge. In this review, we summarize and evaluate the latest strategies developed for designing metal catalysts, and their application prospects for different nitrogen sources such as N2 and NOx. We delineate how the control over nanoscale structures, morphologies, and electronic properties of metal catalysts can optimize their performance in C-N coupling reactions, and discuss the performances and advantages of single-metal catalysts, bimetallic catalysts, and single-atom catalysts under various reaction conditions. By summarizing the latest research achievements, particularly in the development of high-efficiency catalysts, the application of novel catalyst materials, and the in-depth study of reaction mechanisms, this review aims to provide insights for future research in the field of electrochemical C-N coupling, and demonstrates that rationally designed metal catalysts could not only enhance the efficiency and selectivity of electrochemical C-N coupling reactions, but also offer conceptual frameworks for other electrochemical reactions.
Collapse
Affiliation(s)
- Lekai Xu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zhuojun Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xin Jiang, 830017, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Guo D, Xue XX, Jiao M, Liu J, Wu T, Ma X, Lu D, Zhang R, Zhang S, Shao G, Zhou Z. Coordination engineering of single-atom ruthenium in 2D MoS 2 for enhanced hydrogen evolution. Chem Sci 2024:d4sc04905e. [PMID: 39309101 PMCID: PMC11409851 DOI: 10.1039/d4sc04905e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
This study investigates the enhancement of catalytic activity in single-atom catalysts (SACs) through coordination engineering. By introducing non-metallic atoms (X = N, O, or F) into the basal plane of MoS2 via defect engineering and subsequently anchoring hetero-metallic Ru atoms, we created 10 types of non-metal-coordinated Ru SACs (Ru-X-MoS2). Computations indicate that non-metal atom X significantly modifies the electronic structure of Ru, optimizing the hydrogen evolution reaction (HER). Across acidic, neutral, and alkaline electrolytes, Ru-X-MoS2 catalysts exhibit significantly improved HER performance compared with Ru-MoS2, even surpassing commercial Pt/C catalysts. Among these, the Ru-O-MoS2 catalyst, characterized by its asymmetrically coordinated O2-Ru-S1 active sites, demonstrates the most favorable electrocatalytic behavior and exceptional stability across all pH ranges. Consequently, single-atom coordination engineering presents a powerful strategy for enhancing SAC catalytic performance, with promising applications in various fields.
Collapse
Affiliation(s)
- Dong Guo
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Xiong-Xiong Xue
- School of Physics and Optoelectronics, Xiangtan University Xiangtan 411105 P. R. China
| | - Menggai Jiao
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Jinhui Liu
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Tian Wu
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Xiandi Ma
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Die Lu
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Rui Zhang
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Shaojun Zhang
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Gonglei Shao
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Zhen Zhou
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
8
|
Li X, Jiao L, Li R, Jia X, Chen C, Hu L, Yan D, Zhai Y, Lu X. Biomimetic Electronic Communication of Iodine Doped Single-Atom Fe Site for Highly Active and Stable Dopamine Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405532. [PMID: 39225350 DOI: 10.1002/smll.202405532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Rational design of highly active and stable catalysts for dopamine oxidation is still a great challenge. Herein, inspired by the catalytic pocket of natural enzymes, an iodine (I)-doped single Fe-site catalyst (I/FeSANC) is synthesized to mimic the catalytic center of heme enzymes in both geometrical and electronic structures, aiming to enhance dopamine (DA) oxidation. Experimental studies and theoretical calculations show that electronic communication between I and FeN5 effectively modulates the electronic structure of the active site, greatly optimizing the overlap of Fe 3d and O 2p orbitals, thereby enhancing OH adsorption. In addition, the electronic communication induced by iodine doping attenuates the attack of proton hydrogen on the active center, thereby enhancing the stability of I/FeSANC. This work provides new insights into the design of highly active and stable single-atom catalysts and enhances the understanding of catalytic mechanisms for DA oxidation at the atomic scale.
Collapse
Affiliation(s)
- Xiaotong Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Lei Jiao
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Ruimin Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiangkun Jia
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Chengjie Chen
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Lijun Hu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Dongbo Yan
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yanling Zhai
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaoquan Lu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
- Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
9
|
Liu W, Chen R, Sang Z, Li Z, Nie J, Yin L, Hou F, Liang J. A Generalized Coordination Engineering Strategy for Single-Atom Catalysts toward Efficient Hydrogen Peroxide Electrosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406403. [PMID: 39036826 DOI: 10.1002/adma.202406403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/06/2024] [Indexed: 07/23/2024]
Abstract
Designing non-noble metal single-atom catalysts (M-SACs) for two-electron oxygen reduction reaction (2e-ORR) is attractive for the hydrogen peroxide (H2O2) electrosynthesis, in which the coordination configuration of the M-SACs essentially affects the reaction activity and product selectivity. Though extensively investigated, a generalized coordination engineering strategy has not yet been proposed, which fundamentally hinders the rational design of M-SACs with optimized catalytic capabilities. Herein, a generalized coordination engineering strategy is proposed for M-SACs toward H2O2 electrosynthesis via introducing heteroatoms (e.g., oxygen or sulfur atoms) with higher or lower electronegativity than nitrogen atoms into the first sphere of metal-N4 system to tailor their electronic structure and adjust the adsorption strength for *OOH intermediates, respectively, thus optimizing their electrocatalytic capability for 2e-ORR. Specifically, the (O, N)-coordinated Co SAC (Co-N3O) and (S, N)-coordinated Ni SAC (Ni-N3S) are precisely synthesized, and both present superior 2e-ORR activity (Eonset: ≈0.80 V versus RHE) and selectivity (≈90%) in alkaline conditions compared with conventional Co-N4 and Ni-N4 sites. The high H2O2 yield rates of 14.2 and 17.5 moL g-1 h-1 and long-term stability over 12 h are respectively achieved for Co-N3O and Ni-N3S. Such favorable 2e-ORR pathway of the catalysts is also theoretically confirmed by the kinetics simulations.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Rui Chen
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhiyuan Sang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhenxin Li
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiahuan Nie
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, P. R. China
| | - Feng Hou
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Ji Liang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
10
|
Lu S, Zhang Z, Cheng C, Zhang B, Shi Y. Unveiling the Aggregation of M-N-C Single Atoms into Highly Efficient MOOH Nanoclusters during Alkaline Water Oxidation. Angew Chem Int Ed Engl 2024:e202413308. [PMID: 39191657 DOI: 10.1002/anie.202413308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
M-N-C-type single-atom catalysts (SACs) are highly efficient for the electrocatalytic oxygen evolution reaction (OER). And the isolated metal atoms are usually considered real active sites. However, the oxidative structural evolution of coordinated N during the OER will probably damage the structure of M-N-C, hence resulting in a completely different reaction mechanism. Here, we reveal the aggregation of M-N-C materials during the alkaline OER. Taking Ni-N-C as an example, multiple characterizations show that the coordinated N on the surface of Ni-N-C is almost completely dissolved in the form of NO3 -, accompanied by the generation of abundant O functional groups on the surface of the carbon support. Accordingly, the Ni-N bonds are broken. Through a dissolution-redeposition mechanism and further oxidation, the isolated Ni atoms are finally converted to NiOOH nanoclusters supported by carbon as the real active sites for the enhanced OER. Fe-N-C and Co-N-C also have similar aggregation mechanism. Our findings provide unique insight into the structural evolution and activity origin of M-N-C-based catalysts under electrooxidative conditions.
Collapse
Affiliation(s)
- Shanshan Lu
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| | - Zhipu Zhang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| | - Chuanqi Cheng
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| | - Bin Zhang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| | - Yanmei Shi
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
11
|
Zhang S, Hong H, Zhang R, Wei Z, Wang Y, Chen D, Li C, Li P, Cui H, Hou Y, Wang S, Ho JC, Guo Y, Huang Z, Zhi C. Modulating the Leverage Relationship in Nitrogen Fixation Through Hydrogen-Bond-Regulated Proton Transfer. Angew Chem Int Ed Engl 2024:e202412830. [PMID: 39157915 DOI: 10.1002/anie.202412830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/18/2024] [Indexed: 08/20/2024]
Abstract
In the electrochemical nitrogen reduction reaction (NRR), a leverage relationship exists between NH3-producing activity and selectivity because of the competing hydrogen evolution reaction (HER), which means that high activity with strong protons adsorption causes low product selectivity. Herein, we design a novel metal-organic hydrogen bonding framework (MOHBF) material to modulate this leverage relationship by a hydrogen-bond-regulated proton transfer pathway. The MOHBF material was composited with reduced graphene oxide (rGO) to form a Ni-N2O2 molecular catalyst (Ni-N2O2/rGO). The unique structure of O atoms in Ni-O-C and N-O-H could form hydrogen bonds with H2O molecules to interfere with protons being directly adsorbed onto Ni active sites, thus regulating the proton transfer mechanism and slowing the HER kinetics, thereby modulating the leverage relationship. Moreover, this catalyst has abundant Ni-single-atom sites enriched with Ni-N/O coordination, conducive to the adsorption and activation of N2. The Ni-N2O2/rGO exhibits simultaneously enhanced activity and selectivity of NH3 production with a maximum NH3 yield rate of 209.7 μg h-1 mgcat. -1 and a Faradaic efficiency of 45.7 %, outperforming other reported single-atom NRR catalysts.
Collapse
Affiliation(s)
- Shaoce Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Rong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yiqiao Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Dong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Chuan Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Huilin Cui
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Yue Hou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Shengnan Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Johnny C Ho
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ying Guo
- College of Materials Science and Engineering, Shenzhen University, 518061, Shenzhen, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, NT, HKSAR, China
- Centre for Functional Photonics, City University of Hong Kong, Kowloon, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
12
|
Hao Q, Zhen C, Tang Q, Wang J, Ma P, Wu J, Wang T, Liu D, Xie L, Liu X, Gu MD, Hoffmann MR, Yu G, Liu K, Lu J. Universal Formation of Single Atoms from Molten Salt for Facilitating Selective CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406380. [PMID: 38857899 DOI: 10.1002/adma.202406380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Clarifying the formation mechanism of single-atom sites guides the design of emerging single-atom catalysts (SACs) and facilitates the identification of the active sites at atomic scale. Herein, a molten-salt atomization strategy is developed for synthesizing zinc (Zn) SACs with temperature universality from 400 to 1000/1100 °C and an evolved coordination from Zn-N2Cl2 to Zn-N4. The electrochemical tests and in situ attenuated total reflectance-surface-enhanced infrared absorption spectroscopy confirm that the Zn-N4 atomic sites are active for electrochemical carbon dioxide (CO2) conversion to carbon monoxide (CO). In a strongly acidic medium (0.2 m K2SO4, pH = 1), the Zn SAC formed at 1000 °C (Zn1NC) containing Zn-N4 sites enables highly selective CO2 electroreduction to CO, with nearly 100% selectivity toward CO product in a wide current density range of 100-600 mA cm-2. During a 50 h continuous electrolysis at the industrial current density of 200 mA cm-2, Zn1NC achieves Faradaic efficiencies greater than 95% for CO product. The work presents a temperature-universal formation of single-atom sites, which provides a novel platform for unraveling the active sites in Zn SACs for CO2 electroreduction and extends the synthesis of SACs with controllable coordination sites.
Collapse
Affiliation(s)
- Qi Hao
- School of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Cheng Zhen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Qi Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiazhi Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Peiyu Ma
- Key Laboratory of Precision and Intelligent Chemistry, National Synchrotron Radiation Laboratory, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Junxiu Wu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Tianyang Wang
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Dongxue Liu
- Key Laboratory of Automobile Materials Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, Jilin, 130022, China
| | - Linxuan Xie
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Xiao Liu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - M Danny Gu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, China
| | - Michael R Hoffmann
- Department of Environmental Science and Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA
| | - Gang Yu
- Merging Contaminants Research Center, Beijing Normal University, Zhuhai, Guangdong, 519087, China
| | - Kai Liu
- School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
13
|
Yan Y, Fu N, Shao W, Wang T, Liu Y, Niu Y, Zhang Y, Peng M, Yang Z. Pinpointing the Cl Coordination Effect on Mn-N 3-Cl Moiety Toward Boosting Reaction Kinetics and Suppressing Shuttle Effect in Li-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311799. [PMID: 38545998 DOI: 10.1002/smll.202311799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Indexed: 08/17/2024]
Abstract
Single atom catalysts (SACs) are highly favored in Li-S batteries due to their excellent performance in promoting the conversion of lithium polysulfides (LiPSs) and inhibiting their shuttling. However, the intricate and interrelated microstructures pose a challenge in deciphering the correlation between the chemical environment surrounding the active site and its catalytic activity. Here, a novel SAC featuring a distinctive Mn-N3-Cl moiety anchored on B, N co-doped carbon nanotubes (MnN3Cl@BNC) is synthesized. Subsequently, the selective removal of the Cl ligands while inheriting other microstructures is performed to elucidate the effect of Cl coordination on catalytic activity. The Cl coordination effectively enhances the electron cloud density of the Mn-N3-Cl moiety, reducing the band gap and increasing the adsorption capacity and redox kinetics of LiPSs. As a modified separator for Li-S batteries, MnN3Cl@BNC exhibits high capacities of 1384.1 and 743 mAh g-1 at 0.1 and 3C, with a decay rate of only 0.06% per cycle over 700 cycles at 1 C, which is much better than that of MnN3OH@BNC. This study reveals that Cl coordination positively contributes to improving the catalytic activity of the Mn-N3-Cl moiety, providing a fresh perspective for the design of high-performance SACs.
Collapse
Affiliation(s)
- Yurong Yan
- Shanghai Key Laboratory of D & A for Metal-Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ning Fu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China
| | - Wei Shao
- Shanghai Key Laboratory of D & A for Metal-Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Tiantian Wang
- Shanghai Key Laboratory of D & A for Metal-Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Ying Liu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China
| | - Yongsheng Niu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China
| | - Yanwei Zhang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China
| | - Mao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Zhenglong Yang
- Shanghai Key Laboratory of D & A for Metal-Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
14
|
Cheng L, Wu Q, Sun H, Tang Y, Xiang Q. Toward Functionality and Deactivation of Metal-Single-Atom in Heterogeneous Photocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406807. [PMID: 38923045 DOI: 10.1002/adma.202406807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Single-atom heterogeneous catalysts (SAHCs) provide an enticing platform for understanding catalyst structure-property-performance relationships. The 100% atom utilization and adjustable local coordination configurations make it easy to probe reaction mechanisms at the atomic level. However, the progressive deactivation of metal-single-atom (MSA) with high surface energy leads to frequent limitations on their commercial viability. This review focuses on the atomistic-sensitive reactivity and atomistic-progressive deactivation of MSA to provide a unifying framework for specific functionality and potential deactivation drivers of MSA, thereby bridging function, purpose-modification structure-performance insights with the atomistic-progressive deactivation for sustainable structure-property-performance accessibility. The dominant functionalization of atomically precise MSA acting on properties and reactivity encompassing precise photocatalytic reactions is first systematically explored. Afterward, a detailed analysis of various deactivation modes of MSA and strategies to enhance their durability is presented, providing valuable insights into the design of SAHCs with deactivation-resistant stability. Finally, the remaining challenges and future perspectives of SAHCs toward industrialization, anticipating shedding some light on the next stage of atom-economic chemical/energy transformations are presented.
Collapse
Affiliation(s)
- Lei Cheng
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Qiaolin Wu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanjun Sun
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China Chengdu, Sichuan, 610054, P. R. China
| |
Collapse
|
15
|
Miao J, Jiang Y, Wang X, Li X, Zhu Y, Shao Z, Long M. Correlating active sites and oxidative species in single-atom catalyzed Fenton-like reactions. Chem Sci 2024; 15:11699-11718. [PMID: 39092108 PMCID: PMC11290428 DOI: 10.1039/d4sc02621g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/29/2024] [Indexed: 08/04/2024] Open
Abstract
Single-atom catalysts (SACs) have gained widespread popularity in heterogeneous catalysis-based advanced oxidation processes (AOPs), owing to their optimal metal atom utilization efficiency and excellent recyclability by triggering reactive oxidative species (ROS) for target pollutant oxidation in water. Systematic summaries regarding the correlation between the active sites, catalytic activity, and reactive species of SACs have rarely been reported. This review provides an overview of the catalytic performance of carbon- and metal oxide-supported SACs in Fenton-like reactions, as well as the different oxidation pathways induced by the metal and non-metal active sites, including radical-based pathways (e.g., ·OH and SO4˙-) and nonradical-based pathways (e.g. 1O2, high-valent metal-oxo species, and direct electron transfer). Thereafter, we discuss the effects of metal types, coordination environments, and spin states on the overall catalytic performance and the generated ROS in Fenton-like reactions. Additionally, we provide a perspective on the future challenges and prospects for SACs in water purification.
Collapse
Affiliation(s)
- Jie Miao
- School of Environmental Science and Engineering, Nanjing Tech University Nanjing 211816 China
| | - Yunyao Jiang
- School of Environmental Science and Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xixi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
| | - Xue Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yuan Zhu
- School of Chemistry and Chemical Engineering, Queen's University Belfast Belfast BT7 1NN UK
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University Nanjing 210009 China
- Department of Chemical Engineering, Curtin University Perth 6845 Australia
| | - Mingce Long
- School of Environmental Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
16
|
Chen Y, Xu J, Chen Y, Wang L, Jiang S, Xie ZH, Zhang T, Munroe P, Peng S. Rapid Defect Engineering in FeCoNi/FeAl 2O 4 Hybrid for Enhanced Oxygen Evolution Catalysis: A Pathway to High-Performance Electrocatalysts. Angew Chem Int Ed Engl 2024; 63:e202405372. [PMID: 38659283 DOI: 10.1002/anie.202405372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Rational modulation of surface reconstruction in the oxygen evolution reaction (OER) utilizing defect engineering to form efficient catalytic activity centers is a topical interest in the field of catalysis. The introduction of point defects has been demonstrated to be an effective strategy to regulate the electronic configuration of electrocatalysts, but the influence of more complex planar defects (e.g., twins and stacking faults), on their intrinsic activity is still not fully understood. This study harnesses ultrasonic cavitation for rapid and controlled introduction of different types of defects in the FeCoNi/FeAl2O4 hybrid coating, optimizing OER catalytic activity. Theoretical calculations and experiments demonstrate that the different defects optimize the coordination environment and facilitate the activation of surface reconstruction into true catalytic activity centers at lower potentials. Moreover, it demonstrates exceptional durability, maintaining stable oxygen production at a high current density of 300 mA cm-2 for over 120 hours. This work not only presents a novel pathway for designing advanced electrocatalysts but also deepens our understanding of defect-engineered catalytic mechanisms, showcasing the potential for rapid and efficient enhancement of electrocatalytic performance.
Collapse
Affiliation(s)
- Yuhao Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jiang Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yujie Chen
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA-5005, Australia
| | - Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shuyun Jiang
- Department of Mechanical Engineering, Southeast University, 2 Si Pai Lou, Nanjing, 210096, PR China
| | - Zong-Han Xie
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA-5005, Australia
| | - Tianran Zhang
- College of Material Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing, PR China
| | - Paul Munroe
- School of Materials Science and Engineering, University of New South Wales, NSW, 2052, Australia
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
17
|
Fu Q, Liang S, Zhang S, Zhou C, Lv Y, Su X. Boron-doped g-C 3N 4 supporting Cu nanozyme for colorimetric-fluorescent-smartphone detection of α-glucosidase. Anal Chim Acta 2024; 1311:342715. [PMID: 38816154 DOI: 10.1016/j.aca.2024.342715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Due to that the higher activity of nanozymes would bring outstanding performance for the nanozyme-based biosensing strategies, great efforts have been made by researchers to improve the catalytic activity of nanozymes, and novel nanozymes with high catalytic activity are desired. Considering the crucial role in controlling blood glucose level, strategies like colorimetric and chemiluminescence to monitor α-glucosidase are developed. However, multi-mode detection with higher sensitivity was insufficient. Therefore, developing triple-mode detection method for α-glucosidase based on great performance nanozyme is of great importance. RESULTS In this work, a novel nanozyme Cu-BCN was synthesized by loading Cu on boron doped carbon substrate g-C3N4 and applied to the colorimetric-fluorescent-smartphone triple-mode detection of α-glucosidase. In the presence of H2O2, Cu-BCN catalyzed the generation of 1O2 from H2O2, 1O2 subsequently oxidized TMB to blue colored oxTMB. In the presence of hydroquinone (HQ), the ROS produced from H2O2 was consumed, inhibiting the oxidation of TMB, which endows the possibility of colorimetric and visual on-site detection of HQ. Further, due to that the fluorescence of Mg-CQDs at 444 nm could be quenched by oxTMB, HQ could also be quantified through fluorescent mode. Since α-glucosidase could efficiently hydrolyze α-arbutin into HQ, the sensitive detection of α-glucosidase was realized. Further, colorimetric paper-based device (c-PAD) was fabricated for on-site α-glucosidase detection. The LODs for α-glucosidase via three modes were 2.20, 1.62 and 2.83 U/L respectively, high sensitivities were realized. SIGNIFICANCE The nanozyme Cu-BCN possesses higher peroxidase-like activity by doping boron to the substrate than non-doped Cu-CN. The proposed triple-mode detection of α-glucosidase is more sensitive than most previous reports, and is reliable when applied to practical sample. Further, the smartphone-based colorimetric paper-based analytical device (c-PAD) made of simple materials could also detect α-glucosidase sensitively. The smartphone-based on-site detection provided a convenient, instrument-free and sensitive sensing method for α-glucosidase.
Collapse
Affiliation(s)
- Qingjie Fu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Shuang Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Siqi Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yuntai Lv
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
18
|
Yu L, Xin S, Li Y, Hsu HY. Linking atomic to mesoscopic scales in multilevel structural tailoring of single-atom catalysts for peroxide activation. MATERIALS HORIZONS 2024; 11:2729-2738. [PMID: 38511304 DOI: 10.1039/d4mh00215f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A key challenge in designing single-atom catalysts (SACs) with multiple and synergistic functions is to optimize their structure across different scales, as each scale determines specific material properties. We advance the concept of a comprehensive optimization of SACs across different levels of scale, from atomic, microscopic to mesoscopic scales, based on interfacial kinetics control on the coupled metal-dissolution/polymer-growth process in SAC synthesis. This approach enables us to manipulate the multilevel interior morphologies of SACs, such as highly porous, hollow, and double-shelled structures, as well as the exterior morphologies inherited from the metal oxide precursors. The atomic environment around the metal centers can be flexibly adjusted during the dynamic metal-oxide consumption and metal-polymer formation. We show the versatility of this approach using mono- or bi-metallic oxides to access SACs with rich microporosity, tunable mesoscopic structures and atomic coordinating compositions of oxygen and nitrogen in the first coordination-shell. The structures at each level collectively optimize the electronic and geometric structure of the exposed single-atom sites and lower the surface *O formation barriers for efficient and selective peroxidase-type reaction. The unique spatial geometric configuration of the edge-hosted active centers further improves substrate accessibility and substrate-to-catalyst hydrogen overflow due to tunable structural heterogeneity at mesoscopic scales. This strategy opens up new possibilities for engineering more multilevel structures and offers a unique and comprehensive perspective on the design principles of SACs.
Collapse
Affiliation(s)
- Li Yu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| | - Shaosong Xin
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Yuchan Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Hsien-Yi Hsu
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
- Department of Materials Science and Engineering & Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
19
|
Deng M, Wang D, Li Y. General Design Concept of High-Performance Single-Atom-Site Catalysts for H 2O 2 Electrosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314340. [PMID: 38439595 DOI: 10.1002/adma.202314340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Indexed: 03/06/2024]
Abstract
Hydrogen peroxide (H2O2) as a green oxidizing agent is widely used in various fields. Electrosynthesis of H2O2 has gradually become a hotspot due to its convenient and environment-friendly features. Single-atom-site catalysts (SASCs) with uniform active sites are the ideal catalysts for the in-depth study of the reaction mechanism and structure-performance relationship. In this review, the outstanding achievements of SASCs in the electrosynthesis of H2O2 through 2e- oxygen reduction reaction (ORR) and 2e- water oxygen reaction (WOR) in recent years, are summarized. First, the elementary steps of the two pathways and the roles of key intermediates (*OOH and *OH) in the reactions are systematically discussed. Next, the influence of the size effect, electronic structure regulation, the support/interfacial effect, the optimization of coordination microenvironments, and the SASCs-derived catalysts applied in 2e- ORR are systematically analyzed. Besides, the developments of SASCs in 2e- WOR are also overviewed. Finally, the research progress of H2O2 electrosynthesis on SASCs is concluded, and an outlook on the rational design of SASCs is presented in conjunction with the design strategies and characterization techniques.
Collapse
Affiliation(s)
- Mingyang Deng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Ramlal VR, Patel KB, Raj SK, Srivastava DN, Mandal AK. Self-Assembled Conjugated Coordination Polymer Nanorings: Role of Morphology and Redox Sites for the Alkaline Electrocatalytic Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26034-26043. [PMID: 38722669 DOI: 10.1021/acsami.4c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Electrocatalytic water splitting provides a sustainable method for storing intermittent energies, such as solar energy and wind, in the form of hydrogen fuel. However, the oxygen evolution reaction (OER), constituting the other half-cell reaction, is often considered the bottleneck in overall water splitting due to its slow kinetics. Therefore, it is crucial to develop efficient, cost-effective, and robust OER catalysts to enhance the water-splitting process. Transition-metal-based coordination polymers (CPs) serve as promising electrocatalysts due to their diverse chemical architectures paired with redox-active metal centers. Despite their potential, the rational use of CPs has faced obstacles including a lack of insights into their catalytic mechanisms, low conductivity, and morphology issues. Consequently, achieving success in this field requires the rational design of ligands and topological networks with the desired electronic structure. This study delves into the design and synthesis of three novel conjugated coordination polymers (CCPs) by leveraging the full conjugation of terpyridine-attached flexible tetraphenylethylene units as electron-rich linkers with various redox-active metal centers [Co(II), Ni(II), and Zn(II)]. The self-assembly process is tuned for each CCP, resulting in two distinct morphologies: nanosheets and nanorings. The electrocatalytic OER performance efficiency is then correlated with factors such as the nanostructure morphology and redox-active metal centers in alkaline electrolytes. Notably, among the three morphologies studied, nanorings for each CCP exhibit a superior OER activity. Co(II)-integrated CCPs demonstrate a higher activity between the redox-active metal centers. Specifically, the Co(II) nanoring morphology displays exceptional catalytic activity for OER, with a lower overpotential of 347 mV at a current density of 10 mA cm-2 and small Tafel slopes of 115 mV dec-1. The long-term durability is demonstrated for at least 24 h at 1.57 V vs RHE during water splitting. This is presumably the first proof that links the importance of nanostructure morphologies to redox-active metal centers in improving the OER activity, and it may have implications for other transdisciplinary energy-related applications.
Collapse
Affiliation(s)
- Vishwakarma Ravikumar Ramlal
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kinjal B Patel
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Savan K Raj
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Divesh N Srivastava
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amal Kumar Mandal
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
21
|
Ren Y, Wang J, Zhang M, Wang Y, Cao Y, Kim DH, Liu Y, Lin Z. Strategies Toward High Selectivity, Activity, and Stability of Single-Atom Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308213. [PMID: 38183335 DOI: 10.1002/smll.202308213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Indexed: 01/08/2024]
Abstract
Single-atom catalysts (SACs) hold immense promise in facilitating the rational use of metal resources and achieving atomic economy due to their exceptional atom-utilization efficiency and distinct characteristics. Despite the growing interest in SACs, only limited reviews have holistically summarized their advancements centering on performance metrics. In this review, first, a thorough overview on the research progress in SACs is presented from a performance perspective and the strategies, advancements, and intriguing approaches employed to enhance the critical attributes in SACs are discussed. Subsequently, a comprehensive summary and critical analysis of the electrochemical applications of SACs are provided, with a particular focus on their efficacy in the oxygen reduction reaction , oxygen evolution reaction, hydrogen evolution reaction , CO2 reduction reaction, and N2 reduction reaction . Finally, the outline future research directions on SACs by concentrating on performance-driven investigation, where potential areas for improvement are identified and promising avenues for further study are highlighted, addressing challenges to unlock the full potential of SACs as high-performance catalysts.
Collapse
Affiliation(s)
- Yujing Ren
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jinyong Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Mingyue Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuqing Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuan Cao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Dong Ha Kim
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Chemistry and NanoScience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| |
Collapse
|
22
|
Li H, Wu D, Wu J, Lv W, Duan Z, Ma D. Graphene-based iron single-atom catalysts for electrocatalytic nitric oxide reduction: a first-principles study. NANOSCALE 2024; 16:7058-7067. [PMID: 38445992 DOI: 10.1039/d4nr00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The electrocatalytic NO reduction reaction (NORR) emerges as an intriguing strategy to convert harmful NO into valuable NH3. Due to their unique intrinsic properties, graphene-based Fe single-atom catalysts (SACs) have gained considerable attention in electrocatalysis, while their potential for NORR and the underlying mechanism remain to be explored. Herein, using constant-potential density functional theory calculations, we systematically investigated the electrocatalytic NORR on the graphene-based Fe SACs. By changing the local coordination environment of Fe single atoms, 26 systems were constructed. Theoretical results show that, among these systems, the Fe SAC coordinated with four pyrrole N atoms and that co-coordinated with three pyridine N atoms and one O atom exhibit excellent NORR activity with low limiting potentials of -0.26 and -0.33 V, respectively, as well as have high selectivity toward NH3 by inhibiting the formation of byproducts, especially under applied potential. Furthermore, electronic structure analyses indicate that NO molecules can be effectively adsorbed and activated via the electron "donation-backdonation" mechanism. In particular, the d-band center of the Fe SACs was identified as an efficient catalytic activity descriptor for NORR. Our work could stimulate and guide the experimental exploration of graphene-based Fe SACs for efficient NORR toward NH3 under ambient conditions.
Collapse
Affiliation(s)
- Haobo Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Jiarui Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Wenjing Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Zhiyao Duan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
23
|
Jaramillo D, Alvarez G, Díaz C, Pérez S, Muñoz Saldaña J, Sierra L, López BL, Moreno-Zuria A, Mohamedi M, Palacio R. Porous carbonaceous materials simultaneously dispersing N, Fe and Co as bifunctional catalysts for the ORR and OER: electrochemical performance in a prototype of a Zn-air battery. Dalton Trans 2024. [PMID: 38236157 DOI: 10.1039/d3dt03330a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Infiltration of the mesoporous structure of SBA-15 silica as a hard template with phenanthroline complexes of Fe3+ and Co2+ allowed the simultaneous dispersion of nitrogen, iron and cobalt species on the surface of the obtained carbonaceous CMK-3 silica replica, with potential as bifunctional heterogeneous catalysts for the cathodic oxygen reduction and evolution reactions (ORR and OER). The textural properties and mesopore structure depended on the composition of the material. The carbonaceous FeCoNCMK-3 (1/1), obtained with an Fe/Co molar ratio of 1/1, exhibited an ordered cylindrical mesoporous structure with a high mesopore volume, a rather homogeneous composition in terms of total and surface concentrations of iron and cobalt, and a balanced presence of pyridinic-, pyrrolic- and graphitic-N species. FeCoNCMK-3 (1/1) could improve the ORR kinetics by adsorption and reduction of O2 through the 4-electron mechanism with a current density of -17.37 mA cm-2, Eonset of 1.13 V vs. RHE and E1/2 of 0.75 V when compared to metal-free, monometallic or bimetallic electrocatalysts with a higher amount of cobalt than that of iron. In addition, FeCoNCMK-3 (1/1) exhibited activity for the OER, presenting lower values of Eonset (1.52 V), Ej10 (1.78 V) and the Tafel slope (76.3 mV dec-1) with respect to other catalysts. When evaluated as a cathode in a prototype of a Zn-air battery, FeCoNCMK-3 (1/1) exhibited a high open circuit voltage of 1.41 V, a peak power density of 66.84 mW cm-2, a large specific capacity of 818.88 mA h gZn-1, and cycling for 20 h but with deactivation upon cycling.
Collapse
Affiliation(s)
- Daniela Jaramillo
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52 - 21, Medellín, Antioquia, 050010, Colombia.
| | - German Alvarez
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52 - 21, Medellín, Antioquia, 050010, Colombia.
| | - Cristian Díaz
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52 - 21, Medellín, Antioquia, 050010, Colombia.
| | - Sebastián Pérez
- Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados del IPN, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, 76230 Querétaro, Mexico
| | - Juan Muñoz Saldaña
- Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados del IPN, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, 76230 Querétaro, Mexico
| | - Ligia Sierra
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52 - 21, Medellín, Antioquia, 050010, Colombia.
| | - Betty Lucy López
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52 - 21, Medellín, Antioquia, 050010, Colombia.
| | - Alonso Moreno-Zuria
- Institut National de la Recherche Scientifique (INRS), Énergie Matériaux Télécommunications (EMT), 1650 Boulevard Lionel-Boulet, Varennes, Québec Canada, J3X1P7, Canada
| | - Mohamed Mohamedi
- Institut National de la Recherche Scientifique (INRS), Énergie Matériaux Télécommunications (EMT), 1650 Boulevard Lionel-Boulet, Varennes, Québec Canada, J3X1P7, Canada
| | - Ruben Palacio
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52 - 21, Medellín, Antioquia, 050010, Colombia.
| |
Collapse
|
24
|
Sun Y, Fan W, Li Y, Sui NLD, Zhu Z, Zhou Y, Lee JM. Tuning Coordination Structures of Zn Sites Through Symmetry-Breaking Accelerates Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306687. [PMID: 37649133 DOI: 10.1002/adma.202306687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/19/2023] [Indexed: 09/01/2023]
Abstract
Manipulating the coordination environment of individual active sites in a precise manner remains an important challenge in electrocatalytic reactions. Herein, inspired by theoretical predictions, a facile procedure to synthesize a series of symmetry-breaking zinc metal-organic framework (Zn-MOF) catalysts with well-defined structures is presented. Benefiting from the optimized coordination microenvironment regulated by symmetry-breaking, Zn-N2 S2 -MOF exhibits the best performance of nitrogen (N2 ) reduction reaction (NRR) with NH3 yield rate of 25.07 ± 1.57 µg h-1 cm-2 and Faradaic efficiency of 44.57 ± 2.79% compared with reported Zn-based NRR catalysts. X-ray absorption near-edge structure shows that the symmetry-breaking distorts the coordination environment and modulates the delocalized electrons around the Zn sites, which favors the formation of unpaired low-valence Znδ+ , thereby facilitating the adsorption/activation of N2 . Theoretical calculations elucidate that low-valence Znδ+ in Zn-N2 S2 -MOF can effectively lower the energy barrier of potential determining step, promoting the kinetics and boosting the NRR activity. This work highlights the relationship between the precise coordination environment of metal sites and the catalytic activity, which offers insightful guidance for rationally designing high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Yuntong Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Wenjun Fan
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yinghao Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Nicole L D Sui
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute (NEWRI), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637141, Singapore
| | - Zhouhao Zhu
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
25
|
Song W, Xiao C, Ding J, Huang Z, Yang X, Zhang T, Mitlin D, Hu W. Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301477. [PMID: 37078970 DOI: 10.1002/adma.202301477] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Indexed: 05/03/2023]
Abstract
This topical review focuses on the distinct role of carbon support coordination environment of single-atom catalysts (SACs) for electrocatalysis. The article begins with an overview of atomic coordination configurations in SACs, including a discussion of the advanced characterization techniques and simulation used for understanding the active sites. A summary of key electrocatalysis applications is then provided. These processes are oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2 RR). The review then shifts to modulation of the metal atom-carbon coordination environments, focusing on nitrogen and other non-metal coordination through modulation at the first coordination shell and modulation in the second and higher coordination shells. Representative case studies are provided, starting with the classic four-nitrogen-coordinated single metal atom (MN4 ) based SACs. Bimetallic coordination models including homo-paired and hetero-paired active sites are also discussed, being categorized as emerging approaches. The theme of the discussions is the correlation between synthesis methods for selective doping, the carbon structure-electron configuration changes associated with the doping, the analytical techniques used to ascertain these changes, and the resultant electrocatalysis performance. Critical unanswered questions as well as promising underexplored research directions are identified.
Collapse
Affiliation(s)
- Wanqing Song
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Caixia Xiao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zechuan Huang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xinyi Yang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Tao Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - David Mitlin
- Materials Science Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712-1591, USA
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
26
|
Zhang P, Liu Y, Liu S, Zhou L, Wu X, Han G, Liu T, Sun K, Li B, Jiang J. Precise Design and Modification Engineering of Single-Atom Catalytic Materials for Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305782. [PMID: 37718497 DOI: 10.1002/smll.202305782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Indexed: 09/19/2023]
Abstract
Due to their unique electronic and structural properties, single-atom catalytic materials (SACMs) hold great promise for the oxygen reduction reaction (ORR). Coordinating environmental and engineering strategies is the key to improving the ORR performance of SACMs. This review summarizes the latest research progress and breakthroughs of SACMs in the field of ORR catalysis. First, the research progress on the catalytic mechanism of SACMs acting on ORR is reviewed, including the latest research results on the origin of SACMs activity and the analysis of pre-adsorption mechanism. The study of the pre-adsorption mechanism is an important breakthrough direction to explore the origin of the high activity of SACMs and the practical and theoretical understanding of the catalytic process. Precise coordination environment modification, including in-plane, axial, and adjacent site modifications, can enhance the intrinsic catalytic activity of SACMs and promote the ORR process. Additionally, several engineering strategies are discussed, including multiple SACMs, high loading, and atomic site confinement. Multiple SACMs synergistically enhance catalytic activity and selectivity, while high loading can provide more active sites for catalytic reactions. Overall, this review provides important insights into the design of advanced catalysts for ORR.
Collapse
Affiliation(s)
- Pengxiang Zhang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Limin Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Guosheng Han
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| |
Collapse
|
27
|
Xu W, Lin Z, Pan S, Chen J, Wang T, Cortez‐Jugo C, Caruso F. Direct Assembly of Metal-Phenolic Network Nanoparticles for Biomedical Applications. Angew Chem Int Ed Engl 2023; 62:e202312925. [PMID: 37800651 PMCID: PMC10953434 DOI: 10.1002/anie.202312925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Coordination assembly offers a versatile means to developing advanced materials for various applications. However, current strategies for assembling metal-organic networks into nanoparticles (NPs) often face challenges such as the use of toxic organic solvents, cytotoxicity because of synthetic organic ligands, and complex synthesis procedures. Herein, we directly assemble metal-organic networks into NPs using metal ions and polyphenols (i.e., metal-phenolic networks (MPNs)) in aqueous solutions without templating or seeding agents. We demonstrate the role of buffers (e.g., phosphate buffer) in governing NP formation and the engineering of the NP physicochemical properties (e.g., tunable sizes from 50 to 270 nm) by altering the assembly conditions. A library of MPN NPs is prepared using natural polyphenols and various metal ions. Diverse functional cargos, including anticancer drugs and proteins with different molecular weights and isoelectric points, are readily loaded within the NPs for various applications (e.g., biocatalysis, therapeutic delivery) by direct mixing, without surface modification, owing to the strong affinity of polyphenols to various guest molecules. This study provides insights into the assembly mechanism of metal-organic complexes into NPs and offers a simple strategy to engineer nanosized materials with desired properties for diverse biotechnological applications.
Collapse
Affiliation(s)
- Wanjun Xu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Zhixing Lin
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Shuaijun Pan
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
- State Key Laboratory of Chemo/Biosensing and Chemometricsand College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082China
| | - Jingqu Chen
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Tianzheng Wang
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Christina Cortez‐Jugo
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| |
Collapse
|
28
|
Wu J, Wu D, Li H, Song Y, Lv W, Yu X, Ma D. Tailoring the coordination environment of double-atom catalysts to boost electrocatalytic nitrogen reduction: a first-principles study. NANOSCALE 2023; 15:16056-16067. [PMID: 37728053 DOI: 10.1039/d3nr03310d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Tailoring the coordination environment is an effective strategy to modulate the electronic structure and catalytic activity of atomically dispersed transition-metal (TM) catalysts, which has been widely investigated for single-atom catalysts but received less attention for emerging double-atom catalysts (DACs). Herein, based on first-principles calculations, taking the commonly studied N-coordinated graphene-based DACs as references, we explored the effect of coordination engineering on the catalytic behaviors of DACs towards the electrocatalytic nitrogen reduction reaction (NRR), which is realized through replacing one N atom by the B or O atom to form B, N or O, N co-coordinated DACs. We found that B, N or O, N co-coordination could significantly strengthen N2 adsorption and alter the N2 adsorption pattern of the TM dimer active center, which greatly facilitates N2 activation. Moreover, on the studied DACs, the linear scaling relationship between the binding strengths of key intermediates can be attenuated. Consequently, the O, N co-coordinated Mn2 DACs, exhibiting an ultralow limiting potential of -0.27 V, climb to the peak of the activity volcano. In addition, the experimental feasibility of this DAC system was also identified. Overall, benefiting from the coordination engineering effect, the chemical activity and catalytic performance of the DACs for NRR can be significantly boosted. This phenomena can be understood from the adjusted electronic structure of the TM dimer active center due to the changes of its coordination microenvironment, which significantly affects the binding strength (pattern) of key intermediates and changes the reaction pathways, leading to enhanced NRR activity and selectivity. This work highlights the importance of coordination engineering in developing DACs for the electrocatalytic NRR and other important reactions.
Collapse
Affiliation(s)
- Jiarui Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Haobo Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Yanhao Song
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Wenjing Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Xiaohu Yu
- Institute of Theoretical and Computational Chemistry, Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Sciences, Shaanxi University of Technology, Hanzhong 723000, China.
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
29
|
Gong F, Liu Y, Zhao Y, Liu W, Zeng G, Wang G, Zhang Y, Gong L, Liu J. Universal Sub-Nanoreactor Strategy for Synthesis of Yolk-Shell MoS 2 Supported Single Atom Electrocatalysts toward Robust Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2023; 62:e202308091. [PMID: 37340794 DOI: 10.1002/anie.202308091] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
The coordination structure determines the electrocatalytic performances of single atom catalysts (SACs), while it remains a challenge to precisely regulate their spatial location and coordination environment. Herein, we report a universal sub-nanoreactor strategy for synthesis of yolk-shell MoS2 supported single atom electrocatalysts with dual-anchored microenvironment of vacancy-enriched MoS2 and intercalation carbon toward robust hydrogen-evolution reaction. Theoretical calculations reveal that the "E-Lock" and "E-Channel" are conducive to stabilize and activate metal single atoms. A group of SACs is subsequently produced with the assistance of sulfur vacancy and intercalation carbon in the yolk-shell sub-nanoreactor. The optimized C-Co-MoS2 yields the lowest overpotential (η10 =17 mV) compared with previously reported MoS2 -based electrocatalysts to date, and also affords a 5-9 fold improvement in activity even comparing with those as-prepared single-anchored analogues. Theoretical results and in situ characterizations unveil its active center and durability. This work provides a universal pathway to design efficient catalysts for electro-refinery.
Collapse
Affiliation(s)
- Feilong Gong
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Yuheng Liu
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Yang Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Guang Zeng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
| | - Guoqing Wang
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Yonghui Zhang
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Lihua Gong
- Key Laboratory of Surface and Interface Science and Technology of Henan Province, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450001, P. R. China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, P. R. China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering and Advanced Technology Institute of University of Surrey, Guildford, Surrey, GU2 7XH, UK
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, P. R. China
| |
Collapse
|
30
|
Liu WJ, Zhou X, Min Y, Huang JW, Chen JJ, Wu Y, Yu HQ. Engineering of Local Coordination Microenvironment in Single-Atom Catalysts Enabling Sustainable Conversion of Biomass into a Broad Range of Amines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305924. [PMID: 37698463 DOI: 10.1002/adma.202305924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Utilizing renewable biomass as a substitute for fossil resources to produce high-value chemicals with a low carbon footprint is an effective strategy for achieving a carbon-neutral society. Production of chemicals via single-atom catalysis is an attractive proposition due to its remarkable selectivity and high atomic efficiency. In this work, a supramolecular-controlled pyrolysis strategy is employed to fabricate a palladium single-atom (Pd1 /BNC) catalyst with B-doped Pd-Nx atomic configuration. Owing to the meticulously tailored local coordination microenvironment, the as-synthesized Pd1 /BNC catalyst exhibits remarkable conversion capability for a wide range of biomass-derived aldehydes/ketones. Thorough characterizations and density functional theory calculations reveal that the highly polar metal-N-B site, formed between the central Pd single atom and its adjacent N and B atoms, promotes hydrogen activation from the donor (reductants) and hydrogen transfer to the acceptor (C═O group), consequently leading to exceptional selectivity. This system can be further extended to directly synthesize various aromatic and furonic amines from renewable lignocellulosic biomass, with their greenhouse gas emission potentials being negative in comparison to those of fossil-fuel resource-based amines. This research presents a highly effective and sustainable methodology for constructing C─N bonds, enabling the production of a diverse array of amines from carbon-neutral biomass resources.
Collapse
Affiliation(s)
- Wu-Jun Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xiao Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuan Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jia-Wei Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuen Wu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
31
|
Zhang Z, Huang J, Chen W, Hao J, Xi J, Xiao J, He B, Chen J. Probing the Activity Enhancement of Carbocatalyst with the Anchoring of Atomic Metal. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2434. [PMID: 37686942 PMCID: PMC10489856 DOI: 10.3390/nano13172434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Enhanced catalysis for organic transformation is essential for the synthesis of high-value compounds. Atomic metal species recently emerged as highly effective catalysts for organic reactions with high activity and metal utilization. However, developing efficient atomic catalysts is always an attractive and challenging topic in the modern chemical industry. In this work, we report the preparation and activity enhancement of nitrogen- and sulfur-codoped holey graphene (NSHG) with the anchoring of atomic metal Pd. When employed as the catalyst for nitroarenes reduction reactions, the resultant Pd/NSHG composite exhibits remarkably high catalytic activity due to the co-existence of dual-active components (i.e., catalytically active NSHG support and homogeneous dispersion of atomic metal Pd). In the catalytic 4-nitrophenol (4-NP) reduction reaction, the efficiency (turnover frequency) is 3.99 × 10-2 mmol 4-NP/(mg cat.·min), which is better than that of metal-free nitrogen-doped holey graphene (NHG) (2.3 × 10-3 mmol 4-NP/(mg cat.·min)) and NSHG carbocatalyst (3.8 × 10-3 mmol 4-NP/(mg cat.·min)), the conventional Pd/C and other reported metal-based catalysts. This work provides a rational design strategy for the atomic metal catalysts loaded on active doped graphene support. The resultant Pd/NSHG dual-active component catalyst (DACC) is also anticipated to bring great application potentials for a broad range of organic fields, such as organic synthesis, environment treatment, energy storage and conversion.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; (Z.Z.); (J.H.); (W.C.)
| | - Jie Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; (Z.Z.); (J.H.); (W.C.)
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; (Z.Z.); (J.H.); (W.C.)
| | - Jufang Hao
- Staff Development Institute of China National Tobacco Corporation (CNTC), Zhengzhou 450008, China;
| | - Jiangbo Xi
- School of Chemistry and Environmental Engineering, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; (Z.Z.); (J.H.); (W.C.)
| | - Jian Xiao
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Baojiang He
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou 450001, China
| | - Jun Chen
- School of Chemistry and Environmental Engineering, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; (Z.Z.); (J.H.); (W.C.)
| |
Collapse
|
32
|
Hu H, Zhao Y, Zhang Y, Xi J, Xiao J, Cao S. Performance Regulation of Single-Atom Catalyst by Modulating the Microenvironment of Metal Sites. Top Curr Chem (Cham) 2023; 381:24. [PMID: 37480375 DOI: 10.1007/s41061-023-00434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/01/2023] [Indexed: 07/24/2023]
Abstract
Metal-based catalysts, encompassing both homogeneous and heterogeneous types, play a vital role in the modern chemical industry. Heterogeneous metal-based catalysts usually possess more varied catalytically active centers than homogeneous catalysts, making it challenging to regulate their catalytic performance. In contrast, homogeneous catalysts have defined active-site structures, and their performance can be easily adjusted by modifying the ligand. These characteristics lead to remarkable conceptual and technical differences between homogeneous and heterogeneous catalysts. As a recently emerging class of catalytic material, single-atom catalysts (SACs) have become one of the most active new frontiers in the catalysis field and show great potential to bridge homogeneous and heterogeneous catalytic processes. This review documents a brief introduction to SACs and their role in a range of reactions involving single-atom catalysis. To fully understand process-structure-property relationships of single-atom catalysis in chemical reactions, active sites or coordination structure and performance regulation strategies (e.g., tuning chemical and physical environment of single atoms) of SACs are comprehensively summarized. Furthermore, we discuss the application limitations, development trends and future challenges of single-atom catalysis and present a perspective on further constructing a highly efficient (e.g., activity, selectivity and stability), single-atom catalytic system for a broader scope of reactions.
Collapse
Affiliation(s)
- Hanyu Hu
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China
| | - Yanyan Zhao
- Rowland Institute at Harvard, Cambridge, MA, 02142, USA
| | - Yue Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China
| | - Jiangbo Xi
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, People's Republic of China.
| | - Jian Xiao
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China.
| | - Sufeng Cao
- Aramco Boston Research Center, Cambridge, MA, 02139, USA.
| |
Collapse
|