1
|
Wang T, Chen J, Shu C, Shen X, Fu Y, Li M, Luo Z. Orally-administrable supramolecular probiotic capsules enable cooperative colon-targeted inflammation inhibition for ameliorating ulcerative colitis. Acta Biomater 2025:S1742-7061(25)00069-8. [PMID: 39884521 DOI: 10.1016/j.actbio.2025.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Ulcerative colitis (UC) is a prevalent gastrointestinal disease characterized by the chronical and refractory inflammation of colorectal mucosa and walls, which severely impairs overall well-being of individuals. Probiotics has shown tremendous promise for UC therapy due to its multifaceted mucosal barrier restoration and immunomodulation capabilities. Nevertheless, the successful administration of probiotics remains a clinical obstacle. Herein, we report a multifunctional supramolecular probiotic capsule based on clinically-tested biopolymers for UC therapy, which not only allow colon-targeted probiotic delivery via oral route but also enable concurrent delivery of hemostatic and anti-inflammatory drugs. Specifically, Clostridium butyricum (CB) was first engineered with protective norepinephrine (NE) coating and then encapsulated by self-assembled gelatin-based nanocomplexes modified with balsalazide and matrix metalloproteinase 2/9 (MMP2-/9)-responsive fibronectin peptides. The released balsalazide and fibronectin could induce rapid hemostasis and anti-inflammation actions to alleviate inflammation damage of the UC-affected colons in the short term, while CB could restore gut microbiota homeostasis to remodel intestinal immunocomposition and repair mucosal barrier for reducing UC risk in the long term. Overall, this study provides a promising option for UC treatment with good efficacy and minimal invasiveness. STATEMENT OF SIGNIFICANCE: This study reports a supramolecular probiotic capsule with nanointegrative hemostatic and anti-inflammatory capacities for ulcerative colitis (UC) therapy, which could be orally administrated and activated in the inflamed colorectal sites. The probiotic capsules enable immediate UC symptom relief while also accelerating mucosal repair and preventing UC relapse in the long-term, offering an approach for UC treatment in the clinic.
Collapse
Affiliation(s)
- Ting Wang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Jie Chen
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325200, China
| | - Chuandong Shu
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xinkun Shen
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325200, China
| | - Yuanyuan Fu
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
2
|
Jeong B, Kim SJ, Yeun J, Lim J, Park N, Bae A, Kim J, Kwon OS, Choi BG, Im SG, Lee KG. Robust Anticorrosive Polymer Thin Film for Reliable Protection of Ingestible Devices. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39561383 DOI: 10.1021/acsami.4c14344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Ingestible devices (ID) provide a safe and noninvasive method for monitoring, diagnosing, and delivering drugs to specific sites in the human body, particularly within the gastrointestinal (GI) tract. However, the GI environment is highly acidic and humid, which can cause IDs to fail, and their corrosion in the acidic environment can cause leaching of toxic metal ions, thereby substantially limiting their long-term use. Thus, an efficient method is required to protect IDs, especially in the chemically and mechanically harsh GI environment. However, an anticorrosive polymer coating that can safeguard IDs in the GI environment without delamination or performance degradation has not been developed to date. The protective layer must satisfy several critical requirements, e.g., high biocompatibility, mechanical durability, and superior anticorrosion performance. This paper reports a highly cross-linked but submicron-thick siloxane-based anticorrosive polymer thin film that can be deposited directly onto IDs without damaging them. The 500 nm-thick cross-linked polymer coating demonstrates exceptional corrosion resistance and chemical and mechanical stability in the GI environment without cytotoxicity. A printed circuit board (PCB) coated with the developed ultrathin protective film sustained performance after exposure to a pH 1.00 phosphate buffered saline solution at 37 °C for 72 h without leaching of metal ions. The ID continued to operate effectively under such challenging conditions; thus, the developed film is suitable for applications that require prolonged functionality, e.g., diagnostics, drug delivery, and continuous health monitoring in the GI tract.
Collapse
Affiliation(s)
- Booseok Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seo Jin Kim
- Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Nano Science and Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jemin Yeun
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jihoon Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Nahyun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Aram Bae
- Center for NanoBio Development, National NanoFab Center, Daejeon 34141, Republic of Korea
| | - Jueun Kim
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Oh Seok Kwon
- Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Samcheok 25913, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KI for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyoung G Lee
- Center for NanoBio Development, National NanoFab Center, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Qiao Z, Chen Y, Pan H, Li J, Meng Q, Wang J, Cao Y, Wang W, Yang Y. Environment-tolerant, inherently conductive and self-adhesive gelatin-based supramolecular eutectogel for flexible sensor. Int J Biol Macromol 2024; 282:137219. [PMID: 39491696 DOI: 10.1016/j.ijbiomac.2024.137219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Although hydrogels have attracted increasing attention in the stretchable devices, the low adhesion properties and poor environmental adaptation still seriously restrict their development and application. Herein, we focused on the interaction between polymer networks with disperse media and their resultant influence on gel performance, and constructed self-adhesive and environment-tolerant gelatin/polyacrylamide supramolecular-polymer double-network (gelatin/PAM SP-DN) eutectogels using multiple supramolecular interactions between natural macromolecule and well-designed deep eutectic solvent (DES). The dual networks of gelatin/PAM SP-DN eutectogels produced significant supramolecular forces with DES, including hydrogen bonding and electrostatic interaction, contributing to enhance the energy dissipation capacity. Additionally, the Gelatin-PAM SP-DN eutectogels were more prone to generate strong bonding force to various substrates, showcasing both in-situ and ex-situ adhesion performance, and even being used for wet and underwater adhesion. The eutectogels revealed excellent environmental tolerance to maintain excellent mechanical flexibility, conductivity and adhesion at high and low temperatures, ensuring the constructed sensor to sensitively and reliably perceive strain, pressure and human motions over a wide temperature range. Also, the eutectogel demonstrated great potential as a temperature sensor. This work opens up a new horizon in the design of multifunctional and environment-tolerant natural macromolecule-based gel materials for flexible electronics, human-machine interaction and health diagnosis.
Collapse
Affiliation(s)
- Zhiyuan Qiao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ying Chen
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hongyu Pan
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jichang Li
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qingkai Meng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianfeng Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yanxia Cao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wanjie Wang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yanyu Yang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
4
|
Fukada K, Hayashi K. Thermally Degradable Water Diffusion Barrier Assembled by Gelatin and Beeswax toward Edible Electronics. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39076078 DOI: 10.1021/acsami.4c08493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Making ingestible devices edible facilitates diagnosis and therapy inside the body without the risk of retention; however, food materials are generally soft, absorb water molecules, and are not suitable for electronic devices. Here, we fabricated an edible water diffusion barrier film made by gelatin-beeswax composites for the encapsulation of transient electronics. Hydrophobic beeswax and hydrophilic gelatin are inherently difficult to mix; therefore, we created an emulsion simply by raising the temperature high enough to melt the materials and vigorous stirring them. As they cool, the beeswax with a relatively high solidification temperature aggregates and forms microspheres, which increases the gelatin gel's viscoelasticity and immobilizes the emulsion structure in the film. The thermoresponsive gelatin imparts degradability to the barrier and its stickiness also enables transfer of metal patterned electronics. Furthermore, we designed an edible resonator on the film and demonstrated its operation in an abdominal phantom environment; the resonator was made to be degradable in a warm aqueous solution by optimizing the composition ratio of the gelatin and beeswax. Our findings provide insight into criteria for making transient electronics on hydrophilic substrates with hydrophobic water diffusion barriers. This proof-of-concept study expands the potential of operating edible electronics in aqueous environments in harmony with the human body and nature.
Collapse
Affiliation(s)
- Kenta Fukada
- NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Katsuyoshi Hayashi
- NTT Device Technology Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| |
Collapse
|
5
|
Zhou Y, Ponraj G, Sun W, Li J, Ren H, Ouyang J. Fully Organic Sensors for Continuous Real-Time Digestion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32578-32586. [PMID: 38865685 DOI: 10.1021/acsami.4c02373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Monitoring the gastric digestive function is important for the diagnosis of gastric disorders and drug development. However, there is no report on the in situ and real-time monitoring of digestive functions. Herein, we report a flexible fully organic sensor to effectively monitor protein digestion in situ in a simulated gastric environment for the first time. The sensors are made of a blend of gluten that is a protein and poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) that is a conducting polymer. During the protein digestion, the breakdown of the polypeptides increases the level of separation among the PEDOT chains, thereby increasing the resistance. The resistance variation is sensitive to various conditions, including the concentration of pepsin that is the enzyme for protein digestion, temperature, pH value, and digestive drugs. Hence, these sensors can provide real-time information about the digestion and efficacy of digestive drugs. In addition, the signals can be collected via a convenient wireless communication manner.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Materials Science and Engineering, National University of Singapore 117574, Singapore, Singapore
- College of Materials Science and Engineering, Nanjing Forestry University of China, Nanjing 210037, China
| | - Godwin Ponraj
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Wen Sun
- NUS Chongqing Research Institute, Liangjiang New Area, Chongqing 119077, China
| | - Jianzhang Li
- College of Materials Science and Engineering, Nanjing Forestry University of China, Nanjing 210037, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University of China, Beijing 100091, China
| | - Hongliang Ren
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Department of Electrical Engineering, Hong Kong Chinese University, Hong Kong, China
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore 117574, Singapore, Singapore
- NUS Chongqing Research Institute, Liangjiang New Area, Chongqing 119077, China
| |
Collapse
|
6
|
Li Y, Zhao H, Han G, Li Z, Mugo SM, Wang H, Zhang Q. Portable Saliva Sensor Based on Dual Recognition Elements for Detection of Caries Pathogenic Bacteria. Anal Chem 2024; 96:9780-9789. [PMID: 38848497 DOI: 10.1021/acs.analchem.3c05112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Dental caries is one of the most common diseases affecting more than 2 billion people's health worldwide. In a clinical setting, it is challenging to predict and proactively guard against dental cavities prior to receiving a confirmed diagnosis. Streptococcus mutans (S. mutans) in saliva has been recognized as the main causative bacterial agent that causes dental caries. High sensitivity, good selectivity, and a wide detection range are incredibly important factors to affect S. mutans detection in practical applications. In this study, we present a portable saliva biosensor designed for the early detection of S. mutans with the potential to predict the occurrence of dental cavities. The biosensor was fabricated using a S. mutans-specific DNA aptamer and S. mutans-imprinted polymers. Methylene blue was utilized as a redox probe in the sensor to generate current signals for analysis. When S. mutans enters complementarily S. mutans cavities, it blocks electron transfer between methylene blue and the electrode, resulting in decreases in the reduction current signal. The signal variations are associated with S. mutans concentrations that are useful for quantitative analysis. The linear detection range of S. mutans is 102-109 cfu mL-1, which covers the critical concentration of high caries risk. The biosensor exhibited excellent selectivity toward S. mutans in the presence of other common oral bacteria. The biosensor's wide detection range, excellent selectivity, and low limit of detection (2.6 cfu mL-1) are attributed to the synergistic effect of aptamer and S. mutans-imprinted polymers. The sensor demonstrates the potential to prevent dental caries.
Collapse
Affiliation(s)
- Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Hao Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Samuel M Mugo
- Physical Science Department, MacEwan University, Edmonton, Alberta T5J 4S2, Canada
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
7
|
Naik DA, Matonis S, Balakrishnan G, Bettinger CJ. Intestinal retentive systems - recent advances and emerging approaches. J Mater Chem B 2023; 12:64-78. [PMID: 38047746 DOI: 10.1039/d3tb01842c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Intestinal retentive devices (IRDs) are devices designed to anchor within the lumen of the intestines for long-term residence in the gastrointestinal tract. IRDs can enable impactful medical device technologies including sustained oral drug delivery systems, indwelling sensors, or real-time diagnostics. The design and testing of IRDs present a myriad of challenges, including precise deployment of the device at desired intestinal locations, secure anchoring within the gastrointestinal tract to allow for natural function, and safe removal of the IRD at user-defined times. Advancing the state-of-the-art of IRD is an interdisciplinary effort that requires innovations such as new materials, novel anchoring mechanisms, and medical device design with consistent input from clinical practitioners and end-users. This perspective briefly reviews the current state-of-the-art for IRDs and charts a path forward to inform the design of future concepts. Specifically, this article will highlight materials, retention mechanisms, and test beds to measure the efficacy of IRDs and their mechanisms. Finally, potential synergies between IRD and other medical device technologies are presented to identify future opportunities.
Collapse
Affiliation(s)
- Durva A Naik
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
| | - Spencer Matonis
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
| | - Gaurav Balakrishnan
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
| | - Christopher J Bettinger
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
- Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall 4N201, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Spreafico G, Chiurazzi M, Bagnoli D, Emiliani S, de Bortoli N, Ciuti G. Endoluminal Procedures and Devices for Esophageal Tract Investigation: A Critical Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:8858. [PMID: 37960557 PMCID: PMC10650290 DOI: 10.3390/s23218858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Diseases of the esophageal tract represent a heterogeneous class of pathological conditions for which diagnostic paradigms continue to emerge. In the last few decades, innovative diagnostic devices have been developed, and several attempts have been made to advance and standardize diagnostic algorithms to be compliant with medical procedures. To the best of our knowledge, a comprehensive review of the procedures and available technologies to investigate the esophageal tract was missing in the literature. Therefore, the proposed review aims to provide a comprehensive analysis of available endoluminal technologies and procedures to investigate esophagus health conditions. The proposed systematic review was performed using PubMed, Scopus, and Web of Science databases. Studies have been divided into categories based on the type of evaluation and measurement that the investigated technology provides. In detail, three main categories have been identified, i.e., endoluminal technologies for the (i) morphological, (ii) bio-mechanical, and (iii) electro-chemical evaluation of the esophagus.
Collapse
Affiliation(s)
- Giorgia Spreafico
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (M.C.); (G.C.)
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Marcello Chiurazzi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (M.C.); (G.C.)
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | | | | | - Nicola de Bortoli
- Gastrointestinal Unit, Department of Translational Sciences and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy;
| | - Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy; (M.C.); (G.C.)
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| |
Collapse
|