1
|
Lu W, Yan W, Guo R, Zheng J, Bian Z, Liu Z. Upconversion Luminescence in a Photostable Ion-Paired Yb-Eu Heteronuclear Complex. Angew Chem Int Ed Engl 2024; 63:e202413069. [PMID: 39045802 DOI: 10.1002/anie.202413069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
Lanthanide-based upconversion molecular complexes have potential application in diverse fields and attracted considerable research interest in recent years. However, the similar coordination reactivity of lanthanide ions has constrained the designability of target molecule with well-defined structure, and many attempts obtained statistical mixtures. Herein, an ion-paired Yb-Eu heteronuclear complex [Eu(TpPy)2][Yb(ND)4] (TpPy=tris[3-(2-pyridyl)pyrazolyl]hydroborate, ND=3-cyano-2-methyl-1,5-naphthyridin-4-olate) was designed and synthesized. Thanks to the radius difference between Eu3+ (1.07 Å) and Yb3+ (0.98 Å) ions, the hexadentate TpPy ligand was selected to coordinate with Eu3+ and the Yb3+ with a smaller radius was chelated by bidentate ND ligand. As a result, the sites of Eu3+ and Yb3+ in the complex can be clarified by high-resolution mass spectrometry and single-crystal structure analysis. Upon the excitation of Yb3+ at 980 nm, the upconversion emission of Eu3+ was realized through a cooperative sensitization process. Furthermore, [Eu(TpPy)2][Yb(ND)4] demonstrated excellent photostability during continuous high-power density 980 nm laser irradiation, with a LT95 (the time to 95 % of the initial emission intensity) of 420 minutes. This work provides the first example of a pure ion-paired Yb-Eu heteronuclear complex upconversion system and may bring insights into rational design of lanthanide-based upconversion molecular complexes.
Collapse
Affiliation(s)
- Wen Lu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenchao Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ruoyao Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiayin Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Wang Y, Lou B, Dang P, Zhang G, Wan Y, Tian L, Lian H, Hou Z, Ma C, Li G, Lin J. Enhancement of NIR-II Emission of Er 3+ by Doping Fe 3+ in Double Perovskites: Multimode Luminescence for Versatile Optoelectronic Applications. Angew Chem Int Ed Engl 2024:e202416021. [PMID: 39395165 DOI: 10.1002/anie.202416021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024]
Abstract
Erbium ions are commonly used to extend the photoelectric properties of metal halide perovskites from visible to near-infrared range. However, achieving high-efficiency multimode luminescence in a single system is difficult due to the weak absorption associated with forbidden 4f-4f transitions. In this study, a unique strategy is proposed to adjust multimode luminescence and enhance the second near-infrared region (NIR-II) emission in Cs2NaBiCl6 by incorporating Fe3+ ions. The as-prepared material demonstrates reversible thermochromism, driven by strong electron-phonon coupling effect, and exhibits tunable luminescence that can be adjusted by altering excitation energy and temperature. Notably, benefitting from the charge transfer transition of Fe3+-Cl- along with the influence of Fe3+ doping on the geometrical and electronic structures, the blue-excitable (450 nm) NIR-II emission around 1541 nm from Er3+ is realized for the first time, achieving an intensity 16.7 times higher and a maximum photoluminescence quantum yield (PLQY) of 22.5 %. This enhancement enables innovative applications such as two-dimensional information encryption by the multi-channel cooperative responses and improved NIR imaging. The study highlights the potential of Fe3+ doping in optimizing absorption and multimode luminescence in perovskites, opening avenues for advanced applications in blue-excitable NIR light emitting diodes (LEDs), thermometer, anti-counterfeiting, and NIR imaging.
Collapse
Affiliation(s)
- Yingsheng Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Bibo Lou
- School of Optoelectronic Engineering&CQUPT-BUL Innovation Institute, Chongqing University of Posts and Telecommunications, Chongqing, 400065, P. R. China
| | - Peipei Dang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Guodong Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yujia Wan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Long Tian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Hongzhou Lian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Zhiyao Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, P. R. China
| | - Chonggeng Ma
- School of Optoelectronic Engineering&CQUPT-BUL Innovation Institute, Chongqing University of Posts and Telecommunications, Chongqing, 400065, P. R. China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
3
|
Liu Y, Ning L, Luo Y, Huang Y, He Z, Ma H, Zhao Y, Zhang J, Liu D, Fu L, Langford SJ, Gale PA, Luo Y, Bao G. Stabilizing Dye-Sensitized Upconversion Hybrids by Cyclooctatetraene. NANO LETTERS 2024; 24:12486-12492. [PMID: 39292766 DOI: 10.1021/acs.nanolett.4c03391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) can convert low-energy near-infrared (NIR) light into high-energy visible light, making them valuable for broad applications. UCNPs often suffer from poor light-harvesting capabilities, which can be significantly improved by incorporating organic dye antennas. However, the dye-sensitized upconversion systems are prone to severe photobleaching in an ambient atmosphere. Here, we present a synergistic approach to mitigate photobleaching by introducing triplet state quencher cyclooctatetraene (COT). COT effectively suppresses the generation of singlet oxygen by quenching the triplet states of the dye and consumes the existing singlet oxygen through oxidant reactions. The inclusion of COT extends the half-life of IR806 by 4.7-times by preventing the oxidation of its poly(methylene) chains. Without significantly affecting emission intensity and dynamics, COT effectively stabilized dye-UCNPs, demonstrating a notable 3.9-fold increase in half-life under continuous laser irradiation. Our findings suggest a new strategy to enhance the photostability of near-infrared dyes and dye-sensitized upconversion nanohybrids.
Collapse
Affiliation(s)
- Yuxi Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, P.R. China
| | - Lulu Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, P.R. China
| | - Yijun Luo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, P.R. China
| | - Yin Huang
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Zemin He
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, P.R. China
| | - Hao Ma
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, P.R. China
| | - Yuzhen Zhao
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, P.R. China
| | - Jianjian Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Deming Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Sciences, Changchun 130033, P.R. China
| | - Libing Fu
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Steven J Langford
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Philip A Gale
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yuxia Luo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, P.R. China
| | - Guochen Bao
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|
4
|
Min JW, Samanta T, Lee AY, Jung YK, Viswanath NSM, Kim YR, Cho HB, Moon JY, Jang SH, Kim JH, Im WB. Highly Emissive Lanthanide-Based 0D Metal Halide Nanocrystals for Efficient Ultraviolet Photodetector. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402951. [PMID: 38923817 DOI: 10.1002/smll.202402951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Recently, lanthanide-based 0D metal halides have attracted considerable attention for their applications in X-ray imaging, light-emitting diodes (LEDs), sensors, and photodetectors. Herein, lead-free 0D gadolinium-alloyed cesium cerium chloride (Gd3+-alloyed Cs3CeCl6) nanocrystals (NCs) are introduced as promising materials for optoelectronic application owing to their unique optical properties. The incorporation of Gd3+ in Cs3CeCl6 (CCC) NCs is proposed to increase the photoluminescence quantum yield (PLQY) from 57% to 96%, along with significantly enhanced phase and chemical stability. The structural analysis is performed by density functional theory (DFT) to confirm the effect of Gd3+ in Cs3Ce1- xGdxCl6 (CCGC) alloy system. Moreover, the CCGC NCs are applied as the active layer in UVPDs with different Gd3+ concentration. The excellent device performance is shown at 20% of Gd3+ in CCGC NCs with high detectivity (7.938 × 1011 Jones) and responsivity (0.195 A W-1) at -0.1 V at 310 nm. This study paves the way for the development of lanthanide-based metal halide NCs for next-generation UVPDs and other optoelectronic applications.
Collapse
Affiliation(s)
- Jeong Wan Min
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Tuhin Samanta
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ah Young Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Young-Kwang Jung
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | | | - Yu Ri Kim
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Han Bin Cho
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Ji Yoon Moon
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Se Hyuk Jang
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jong H Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Won Bin Im
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
5
|
Samanta T, Han JH, Lee HU, Cha BK, Park YM, Viswanath NSM, Cho HB, Kim HW, Cho SB, Im WB. Large-Scale Mechanochemical Synthesis of Cesium Lanthanide Chloride for Radioluminescence. Inorg Chem 2024; 63:16483-16490. [PMID: 39171850 DOI: 10.1021/acs.inorgchem.4c02766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Cesium lanthanide chloride (Cs3LnCl6), a recently developed class of lanthanide-based zero-dimensional metal halides, has garnered a significant amount of interest because of its potential applications in scintillators, light-emitting diodes, and photodetectors. Although cesium lanthanide chloride demonstrates exceptional scintillator properties, conventional synthesis methods involving solid-state and solution-phase techniques are complex and limited on the reaction scale. This study presents a facile mechanochemical synthesis method for producing Cs3CeCl6, Cs3TbCl6, and Cs3EuCl6 metal halides on a 5 g scale. These materials exhibit intense blue-violet, green, and red emissions upon ultraviolet excitation, with high photoluminescence quantum yields ranging from 54% to 93%. Furthermore, Cs3CeCl6, Cs3TbCl6, and Cs3EuCl6 metal halides exhibit intense radioluminescence spanning from the ultraviolet to the visible region. This research shows the potential of the scalable mechanochemical synthesis of lanthanide-based metal halides for the advancement of luminescent materials for scintillators.
Collapse
Affiliation(s)
- Tuhin Samanta
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Republic of Korea
| | - Joo Hyeong Han
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Republic of Korea
| | - Han Uk Lee
- Department of Materials Science and Engineering, Ajou University, Suwon-si, Gyeonggi-do 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Bo Kyung Cha
- Precision Medical Device Research Center, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Republic of Korea
| | - Yong Min Park
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Republic of Korea
| | | | - Han Bin Cho
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyeon Woo Kim
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Republic of Korea
- Nano Convergence Materials Center, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju 52851, Republic of Korea
| | - Sung Beom Cho
- Department of Materials Science and Engineering, Ajou University, Suwon-si, Gyeonggi-do 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Won Bin Im
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
6
|
Hu Q, Meng W, Li K, Yang C, Huang X, Song K, Long M, Liu X, Zhou G, Wu B. Glass Disorder Modulated Luminescence in Zero-Dimensional Antimony-Chloride Coplanar Dimers for Optical Anti-counterfeiting. NANO LETTERS 2024; 24:6568-6575. [PMID: 38787693 DOI: 10.1021/acs.nanolett.4c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Zero-dimensional metal halides have received wide attention due to their structural diversity, strong quantum confinement, and associated excellent photoluminescence properties. A reversible and tunable luminescence would be desirable for applications such as anti-counterfeiting, information encryption, and artificial intelligence. Yet, these materials are underexplored, with little known about their luminescence tuning mechanisms. Here we report a pyramidal coplanar dimer, (TBA)Sb2Cl7 (TBA = tetrabutylammonium), showing broadband emission wavelength tuning (585-650 nm) by simple thermal treatment. We attribute the broad color change to structural disorder induced by varying the heat treatment temperatures. Increasing the heating temperature transitions the material from long-range ordered crystalline phase to highly disordered glassy phase. The latter exhibits stronger electron-phonon coupling, enhancing the self-trapped exciton emission efficiency. The work provides a new material platform for manifold optical anti-counterfeiting applications and sheds light on the emission color tuning mechanisms for further design of stimuli-responsive materials.
Collapse
Affiliation(s)
- Qichuan Hu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Weiwei Meng
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Keyu Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Cheng Yang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Xiong Huang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Kejian Song
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Mingzhu Long
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| |
Collapse
|
7
|
Zhao Y, Yang X, Yang L, Xing F, Liu C, Di Y, Cao G, Wei S, Yang X, Zhang X, Liu Y, Gan Z. Advanced Optical Information Encryption Enabled by Polychromatic and Stimuli-Responsive Luminescence of Sb-Doped Double Perovskites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308390. [PMID: 38626374 PMCID: PMC11200084 DOI: 10.1002/advs.202308390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/08/2024] [Indexed: 04/18/2024]
Abstract
The smart materials with multi-color and stimuli-responsive luminescence are very promising for next generation of optical information encryption and anti-counterfeiting, but these materials are still scarce. Herein, a multi-level information encryption strategy is developed based on the polychromatic emission of Sb-doped double perovskite powders (SDPPs). Cs2NaInCl6:Sb, Cs2KInCl6:Sb, and Cs2AgInCl6:Sb synthesized through coprecipitation methods exhibit broadband emissions with bright blue, cyan, and orange colors, respectively. The information transmitted by specific SDPP is encrypted when different SDPPs are mixed. The confidential information can be decrypted by selecting the corresponding narrowband filter. Then, an encrypted quick response (QR) code with improved security is demonstrated based on this multi-channel selection strategy. Moreover, the three types of SDPPs exhibit three different water-triggered luminescence switching behaviors. The confidential information represented by Cs2NaInCl6:Sb can be erased/recovered through a simple water spray/drying. Whereas, the information collected from the green channel is permanently erased by moisture, which fundamentally avoids information leakage. Therefore, different encryption schemes can be designed to meet a variety of encryption requirements. The multicolor and stimuli-responsive luminescence greatly enrich the flexibility of optical information encryption, which leaps the level of security and confidentiality.
Collapse
Affiliation(s)
- Yijun Zhao
- Center for Future Optoelectronic Functional MaterialsSchool of Computer and Electronic Information/School of Artificial IntelligenceNanjing Normal UniversityNanjing210023China
| | - Xingru Yang
- Center for Future Optoelectronic Functional MaterialsSchool of Computer and Electronic Information/School of Artificial IntelligenceNanjing Normal UniversityNanjing210023China
| | - Lun Yang
- Institute for Advanced MaterialsHubei Key Laboratory of Pollutant Analysis & Reuse TechnologyHubei Normal UniversityHuangshi435002China
| | - Fangjian Xing
- Center for Future Optoelectronic Functional MaterialsSchool of Computer and Electronic Information/School of Artificial IntelligenceNanjing Normal UniversityNanjing210023China
| | - Cihui Liu
- Center for Future Optoelectronic Functional MaterialsSchool of Computer and Electronic Information/School of Artificial IntelligenceNanjing Normal UniversityNanjing210023China
| | - Yunsong Di
- Center for Future Optoelectronic Functional MaterialsSchool of Computer and Electronic Information/School of Artificial IntelligenceNanjing Normal UniversityNanjing210023China
| | - Guiyuan Cao
- Nanophotonics Research CenterShenzhen Key Laboratory of Micro‐Scale Optical Information TechnologyShenzhen UniversityShenzhen518060China
| | - Shibiao Wei
- Nanophotonics Research CenterShenzhen Key Laboratory of Micro‐Scale Optical Information TechnologyShenzhen UniversityShenzhen518060China
| | - Xifeng Yang
- College of Electronic and Information EngineeringChangshu Institute of TechnologySuzhou215500China
| | - Xiaowei Zhang
- Department of Electrical Engineering and Computer ScienceNingbo UniversityNingbo315211China
| | - Yushen Liu
- College of Electronic and Information EngineeringChangshu Institute of TechnologySuzhou215500China
| | - Zhixing Gan
- Center for Future Optoelectronic Functional MaterialsSchool of Computer and Electronic Information/School of Artificial IntelligenceNanjing Normal UniversityNanjing210023China
| |
Collapse
|
8
|
Zuo ZH, Feng ZW, Peng YY, Su Y, Liu ZQ, Li G, Yin Y, Chen Y. Designing Yolk-Shell Nanostructures for Reversible Water-Vapor-Responsive Dual-Mode Switching of Fluorescence and Structural Color. ACS NANO 2024; 18:4456-4466. [PMID: 38276073 DOI: 10.1021/acsnano.3c11092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Metal halide perovskites offer ample opportunities to develop advanced optoelectronic devices. This work showcases that the integration of metal halide perovskites into metal oxide nanoshells with controllable interior cavities can enable water-vapor-responsive dual-mode switching of fluorescence and structural color. Through a ship-in-a-bottle method to introduce a controlled amount of CsPbBr3 into MnO2 nanoshells, we have designed CsPbBr3@MnO2 yolk-shell nanostructures, which can uptake a defined amount of water to exhibit rapid (less than 1 s) and reversible (≥100 cycles) responses in both fluorescence on-off and color change when exposed to dynamic water vapor. These responses originate from the water-triggered phase transformation of CsPbBr3 to CsPb2Br5 and the structural color change of the MnO2 shell. The altered electronic and bonding structure at the oxide-halide interface, rapid water accumulation in the yolk-shell cavity, and protective effect of the oxide shell facilitate the reversible transformations. The response characteristics of the yolk-shell nanostructures have been further demonstrated in fabricating patterned films capable of multiple fluorescence/structural color responses, highlighting their potential for applications in advanced anticounterfeiting and encryption.
Collapse
Affiliation(s)
- Zhi-Han Zuo
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Zi-Wen Feng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Ying-Ying Peng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Yucong Su
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, Zhejiang 311305, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yibo Chen
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou 510006, P. R. China
| |
Collapse
|