1
|
Song X, Huang R, Zhang X, Chang Q, Kim S, Jeong D, Hou Q, Kim J, Ang EH, Su X, Feng X, Xiang H. Unveiling the Dynamic Pathways of Metal-Organic Framework Crystallization and Nanoparticle Incorporation for Li-S Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407984. [PMID: 39316295 DOI: 10.1002/advs.202407984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/24/2024] [Indexed: 09/25/2024]
Abstract
Metal-organic frameworks (MOFs) present diverse building blocks for high-performance materials across industries, yet their crystallization mechanisms remain incompletely understood due to gaps in nucleation and growth knowledge. In this study, MOF structural evolution is probed using in situ liquid phase transmission electron microscopy (TEM) and cryo-TEM, unveiling a blend of classical and nonclassical pathways involving liquid-liquid phase separation, particle attachment-coalescence, and surface layer deposition. Additionally, ultrafast high-temperature sintering (UHS) is employed to dope ultrasmall Cobalt nanoparticles (Co NPs) uniformly within nitrogen-doped hard carbon nanocages confirmed by 3D electron tomography. Lithium-sulfur battery tests demonstrate the nanocage-Co NP structure's exceptional capacity and cycling stability, attributed to Co NP catalytic effects due to its small size, uniform dispersion, and nanocage confinement. The findings propose a holistic framework for MOF crystallization understanding and Co NP tunability through ultrafast sintering, promising advancements in materials science and informing future MOF synthesis strategies and applications.
Collapse
Affiliation(s)
- Xiaohui Song
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
- Engineering Research Center of High Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Rui Huang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Xingyu Zhang
- School of Mathematics, Statistics and Mechanics, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Qiang Chang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Semi Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, South Korea
| | - Daeun Jeong
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, South Korea
| | - Qian Hou
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Juyeong Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
- Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju, 52828, South Korea
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637616, Singapore
| | - Xiaowei Su
- Anhui Honghai New Materials Co., Ltd, Anqing, Anhui, 246100, P. R. China
| | - Xuyong Feng
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Hongfa Xiang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
- Engineering Research Center of High Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
2
|
Jin M, Zou Y, Shi BC, Liu TT, Tang YJ. Laser-Induced Preparation of Anderson-Type Polyoxometalate-Derived Sulfide/Oxide Electrocatalysts for Electrochemical Water Oxidation. CHEMSUSCHEM 2024; 17:e202301862. [PMID: 38503691 DOI: 10.1002/cssc.202301862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Developing cost-effective and high-active electrocatalysts is vital to enhance the electrocatalytic performance for oxygen evolution reaction (OER). However, traditional pyrolysis methods require complicated procedures, exact temperatures, and long reaction times, leading to high costs and low yields of electrocatalysts in potential industrial applications. Herein, a rapid and economic laser-induced preparation strategy is proposed to synthesize three bimetallic sulfide/oxide composites (MMoOS, M=Fe, Co, and Ni) on a nickel foam (NF) substrate. A focused CO2 laser with high energy is applied to decompose Anderson-type polyoxometalate (POM)-based precursors, enabling the creation of abundant heteropore and defective structures in the MMoOS composites that have multi-components of MS/Mo4O11/MoS2. Remarkably, owing to the structural interactions between the active species, FeMoOS shows superior electrocatalytic performance for OER in an alkaline medium, exhibiting a low overpotential of 240 mV at 50 mA cm-2, a small Tafel slope of 79 mV dec-1, and good durability for 80 h. Physical characterizations after OER imply that partially dissolved Mo-based species and new-formed NiO/NiOOH can effectively uncover abundant active sites, fasten charge transfer, and modify defective structures. This work provides a rapid laser-induced irradiation method for the synthesis of POM-derived nanocomposites as promoted electrocatalysts.
Collapse
Affiliation(s)
- Man Jin
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Yan Zou
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Bo-Cong Shi
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Ting-Ting Liu
- School of Teacher Education, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| | - Yu-Jia Tang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, P. R. China
| |
Collapse
|
3
|
Sun QJ, Guo WT, Liu SZ, Tang XG, Roy VA, Zhao XH. Rise of Metal-Organic Frameworks: From Synthesis to E-Skin and Artificial Intelligence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45830-45860. [PMID: 39178336 DOI: 10.1021/acsami.4c07732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Metal-organic frameworks (MOFs) have attained broad research attention in the areas of sensors, resistive memories, and optoelectronic synapses on the merits of their intriguing physical and chemical properties. In this review, recent progress on the synthesis of MOFs and their electronic applications is introduced and discussed. Initially, the crystal structures and properties of MOFs encompassing optical, electrical, and chemical properties are discussed in brief. Subsequently, advanced synthesis methods for MOFs are introduced, categorized into hydrothermal approach, microwave synthesis, mechanochemical synthesis, and electrochemical deposition. After that, the various roles of MOFs in widespread applications, including sensing, information storage, optoelectronic synapses, machine learning, and artificial intelligence, are discussed, highlighting their versatility and the innovative solutions they provide to long-standing challenges. Finally, an outlook on remaining challenges and a future perspective for MOFs are proposed.
Collapse
Affiliation(s)
- Qi-Jun Sun
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Wen-Tao Guo
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shu-Zheng Liu
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xin-Gui Tang
- School of Physics and Optoelectric Engineering & Guangdong Provincial Key Laboratory of Sensing Physics and System Integration Applications, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Vellaisamy Al Roy
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong 999077, P. R. China
| | - Xin-Hua Zhao
- School of Intelligent Manufacturing and Electrical Engineering, Guangzhou Institute of Science and Technology, Guangzhou 510540, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
4
|
Zhao Z, Ke X, Huang J, Zhang Z, Wu Y, Huang G, Tan J, Liu X, Mei Y, Chu J. Design and Synthesis of Transferrable Macro-Sized Continuous Free-Standing Metal-Organic Framework Films for Biosensor Device. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310189. [PMID: 38468446 PMCID: PMC11187891 DOI: 10.1002/advs.202310189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/10/2024] [Indexed: 03/13/2024]
Abstract
Metal organic framework (MOF) films have attracted abundant attention due to their unique characters compared with MOF particles. But the high-temperature reaction and solvent corrosion limit the preparation of MOF films on fragile substrates, hindering further applications. Fabricating macro-sized continuous free-standing MOF films and transferring them onto fragile substrates are a promising alternative but still challenging. Here, a universal strategy to prepare transferrable macro-sized continuous free-standing MOF films with the assistance of oxide nanomembranes prepared by atomic layer deposition and studied the growth mechanism is developed. The oxide nanomembranes serve not only as reactant, but also as interfacial layer to maintain the integrality of the free-standing structure as the stacked MOF particles are supported by the oxide nanomembrane. The centimeter-scale free-standing MOF films can be transferred onto fragile substrates, and all in one device for glucose sensing is assembled. Due to the strong adsorption toward glucose molecules, the obtained devices exhibit outstanding performance in terms of high sensitivity, low limit of detection, and long durability. This work opens a new window toward the preparation of MOF films and MOF film-based biosensor chip for advantageous applications in post-Moore law period.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of OptoelectronicsFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Xinyi Ke
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of OptoelectronicsFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Jiayuan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Ziyu Zhang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Yue Wu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Gaoshan Huang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Xuanyong Liu
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghai200050P. R. China
| | - Yongfeng Mei
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of OptoelectronicsFudan UniversityShanghai200438P. R. China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000P. R. China
- International Institute of Intelligent Nanorobots and NanosystemsFudan UniversityShanghai200438P. R. China
| | - Junhao Chu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200438P. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of OptoelectronicsFudan UniversityShanghai200438P. R. China
| |
Collapse
|
5
|
Ye JQ, Xu SY, Liang Q, Dai YZ, He MY. Metal-Organic Frameworks-Derived Nanocarbon Materials and Nanometal Oxides for Photocatalytic Applications. Chem Asian J 2024; 19:e202400161. [PMID: 38500400 DOI: 10.1002/asia.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Harnessing low-density solar energy and converting it into high-density chemical energy through photocatalysis has emerged as a promising avenue for the production of chemicals and remediation of environmental pollution, which contributes to alleviating the overreliance on fossil fuels. In recent years, metal-organic frameworks (MOFs) have gained widespread application in the field of photocatalysis due to their photostability, tunable structures, and responsiveness in the visible light range. However, most MOFs exhibit relatively low response to light, limiting their practical applications. MOFs-derived nanomaterials not only retain the inherent advantages of pristine MOFs but also show enhanced light adsorption and responsiveness. This review categorizes and summarizes MOFs-derived nanomaterials, including nanocarbons and nanometal oxides, providing representative examples for the synthetic strategies of each category. Subsequently, the recent research progress on MOFs-derived materials in photocatalytic applications are systematically introduced, specifically in the areas of photocatalytic water splitting to H2, photocatalytic CO2 reduction, and photocatalytic water treatment. The corresponding mechanisms involved in each photocatalytic reaction are elaborated in detail. Finally, the review discusses the challenges and further directions faced by MOFs-derived nanomaterials in the field of photocatalysis, highlighting their potential role in advancing sustainable energy production and environmental remediation.
Collapse
Affiliation(s)
- Jun-Qing Ye
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Shu-Ying Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Qian Liang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Yan-Zi Dai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Ming-Yang He
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
6
|
Mutlu S, Ortaç B, Ozbey DH, Durgun E, Savaskan Yılmaz S, Arsu N. Laser-Driven Rapid Synthesis of Metal-Organic Frameworks and Investigation of UV-NIR Optical Absorption, Luminescence, Photocatalytic Degradation, and Gas and Ion Adsorption Properties. Polymers (Basel) 2024; 16:217. [PMID: 38257016 PMCID: PMC10820686 DOI: 10.3390/polym16020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
In this study, we designed a platform based on a laser-driven approach for fast, efficient, and controllable MOF synthesis. The laser irradiation method was performed for the first time to synthesize Zn-based MOFs in record production time (approximately one hour) compared to all known MOF production methods with comparable morphology. In addition to well-known structural properties, we revealed that the obtained ZnMOFs have a novel optical response, including photoluminescence behavior in the visible range with nanosecond relaxation time, which is also supported by first-principles calculations. Additionally, photocatalytic degradation of methylene blue with ZnMOF was achieved, degrading the 10 ppm methylene blue (MB) solution 83% during 1 min of irradiation time. The application of laser technology can inspire the development of a novel and competent platform for a fast MOF fabrication process and extend the possible applications of MOFs to miniaturized optoelectronic and photonic devices.
Collapse
Affiliation(s)
- Saliha Mutlu
- Department of Chemistry, Karadeniz Technical University, Trabzon 61080, Turkey;
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Bülend Ortaç
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Dogukan Hazar Ozbey
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Engin Durgun
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Sevil Savaskan Yılmaz
- Department of Chemistry, Karadeniz Technical University, Trabzon 61080, Turkey;
- National Nanotechnology Research Center (UNAM) and Institute of Materials Science Nanotechnology, Bilkent University, Ankara 06800, Turkey; (D.H.O.); (E.D.)
| | - Nergis Arsu
- Department of Chemistry, Yildiz Technical University, Davutpasa Campus, Istanbul 34220, Turkey
| |
Collapse
|
7
|
Levshakova A, Kaneva M, Borisov E, Panov M, Shmalko A, Nedelko N, Mereshchenko AS, Skripkin M, Manshina A, Khairullina E. Simultaneous Catechol and Hydroquinone Detection with Laser Fabricated MOF-Derived Cu-CuO@C Composite Electrochemical Sensor. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7225. [PMID: 38005154 PMCID: PMC10673110 DOI: 10.3390/ma16227225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
The conversion of metal-organic frameworks (MOFs) into advanced functional materials offers a promising route for producing unique nanomaterials. MOF-derived systems have the potential to overcome the drawbacks of MOFs, such as low electrical conductivity and poor structural stability, which have hindered their real-world applications in certain cases. In this study, laser scribing was used for pyrolysis of a Cu-based MOF ([Cu4{1,4-C6H4(COO)2}3(4,4'-bipy)2]n) to synthesize a Cu-CuO@C composite on the surface of a screen-printed electrode (SPE). Scanning electron microscopy, X-ray diffractometry, and Energy-dispersive X-ray spectroscopy were used for the investigation of the morphology and composition of the fabricated electrodes. The electrochemical properties of Cu-CuO@C/SPE were studied by cyclic voltammetry and differential pulse voltammetry. The proposed flexible electrochemical Cu-CuO@C/SPE sensor for the simultaneous detection of hydroquinone and catechol exhibited good sensitivity, broad linear range (1-500 μM), and low limits of detection (0.39 μM for HQ and 0.056 μM for CT).
Collapse
Affiliation(s)
- Aleksandra Levshakova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Maria Kaneva
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
- Ioffe Institute, St. Petersburg 194021, Russia
| | - Evgenii Borisov
- Center for Optical and Laser Materials Research, St. Petersburg University, St. Petersburg 199034, Russia;
| | - Maxim Panov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
- Faculty of Pharmaceutical Technology, St. Petersburg State Chemical Pharmaceutical University, Professor Popov Str., 14, Lit. A, St. Petersburg 197022, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, St. Petersburg 194021, Russia;
| | - Alexandr Shmalko
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, St. Petersburg 194021, Russia;
| | - Nikolai Nedelko
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Andrey S. Mereshchenko
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Mikhail Skripkin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Alina Manshina
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Evgeniia Khairullina
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russia
| |
Collapse
|
8
|
Aguila-Rosas J, Ramos D, Quirino-Barreda CT, Flores-Aguilar JA, Obeso JL, Guzmán-Vargas A, Ibarra IA, Lima E. Copper(II)-MOFs for bio-applications. Chem Commun (Camb) 2023; 59:11753-11766. [PMID: 37703047 DOI: 10.1039/d3cc03146b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The recent development and implementation of copper-based metal-organic frameworks in biological applications are reviewed. The advantages of the presence of copper in MOFs for relevant applications such as drug delivery, cancer treatment, sensing, and antimicrobial are highlighted. Advanced composites such as MOF-polymers are playing critical roles in developing materials for specific applications.
Collapse
Affiliation(s)
- Javier Aguila-Rosas
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Dalia Ramos
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Carlos T Quirino-Barreda
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960, CDMX, Mexico
| | - Juan Andrés Flores-Aguilar
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| | - Juan L Obeso
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación 11500, Miguel Hidalgo, CDMX, Mexico
| | - Ariel Guzmán-Vargas
- ESIQIE - Instituto Politécnico Nacional, Avenida IPN UPALM Edificio 7, Zacatenco, 07738 México D.F, Mexico.
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|