1
|
Dong Y, Ma Y, Shu A, Yan Z, Wang H, Wu Y. In-situ construction of N-doped Zn 0.6Cd 0.4S/oxygen vacancy-rich WO 3 Z-scheme heterojunction compound for boosting photocatalytic hydrogen production. J Colloid Interface Sci 2025; 678:1099-1108. [PMID: 39243476 DOI: 10.1016/j.jcis.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Photocatalytic water splitting technology for H2 production represents a promising and sustainable approach to clean energy generation. In this study, a high concentration of oxygen vacancies was introduced into tungsten trioxide (WO3) to create a vacancy-rich layer. This modified WO3 (WO3-x) was then combined with N-doped Zn0.6Cd0.4S through a hydrothermal synthesis, resulting in the formation of a Z-scheme heterojunction composite aimed at enhancing photocatalytic performance. Under visible light, the H2 production activity of the composite reached an impressive 8.52 mmol·g-1 without adding co-catalyst Pt. This corresponds to enhancements of 7.82 and 4.39 times the production yield of pure ZCS and ZCSN, respectively. However, the hydrogen production increased to 21.98 mmol·g-1 when Pt was added as a co-catalyst. Furthermore, an array of characterizations were employed to elucidate the presence of oxygen vacancies and the establishment of the Z-scheme heterojunction. This structural enhancement significantly facilitates the utilization of photo-generated electrons while effectively preventing photo-corrosion of ZCSN, thus improving material stability. Our study provides a new scheme for the incorporation of oxygen-rich vacancy and the construction of Z-scheme heterojunction, demonstrating a synergistic effect that greatly advances photocatalytic performance.
Collapse
Affiliation(s)
- Yuxin Dong
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yueting Ma
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Aoqiang Shu
- Key Laboratory of Environment Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Zhiyong Yan
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Hou Wang
- Key Laboratory of Environment Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Yan Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
2
|
Gao R, Shen R, Huang C, Huang K, Liang G, Zhang P, Li X. 2D/2D Hydrogen-Bonded Organic Frameworks/Covalent Organic Frameworks S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2025; 64:e202414229. [PMID: 39528399 DOI: 10.1002/anie.202414229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) demonstrate significant potential for application in photocatalysis. However, the low efficiency of electron-hole separation and limited stability inhibit their practical utilization in photocatalytic hydrogen evolution from water splitting. Herein, the novel dual-pyrene-base supramolecular HOF/COF 2D/2D S-scheme heterojunction between HOF-H4TBAPy (Py-HOF, H4TBAPy represents the 1,3,6,8-tetrakis (p-benzoic acid) pyrene) and Py-COF was successfully established using a rapid self-assembly solution dispersion method. Experimental and theoretical investigations confirm that the size-matching of two crystalline porous materials enables the integrated heterostructure material with abundant surface reaction sites, strong interaction, and an enhanced S-scheme built-in electric field, thus significantly improving the efficiency of photogenerated charge carrier separation and stability. Notably, the optimal HOF/COF heterojunction achieves a photocatalytic hydrogen evolution rate of 390.68 mmol g-1 h-1, which is 2.28 times higher than that of pure Py-HOF and 9.24 times higher than that of pure COF. These findings precisely acquire valuable atomic-scale insights into the ingenious design of dual-pyrene-based S-scheme heterojunction. This work presents an innovative perspective for forming supramolecular S-scheme heterojunctions over HOF-based semiconductors, offering a protocol for designing the powerful and strong-coupling S-scheme built-in electric fields for efficient solar energy utilization.
Collapse
Affiliation(s)
- Ruiqi Gao
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and, Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Rongchen Shen
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and, Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Can Huang
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and, Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Kaihui Huang
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and, Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, P.R. China
| | - Peng Zhang
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xin Li
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and, Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
3
|
Sun W, Zuo Y, Niu Y, Che G, Liu C, Dong H. Control interfacial charge transfer behavior by creating surface defects on structure unit of heterojunction to drive carrier separation for enhancing photocatalytic CO 2 reduction. J Colloid Interface Sci 2025; 677:820-830. [PMID: 39121666 DOI: 10.1016/j.jcis.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Controlling interfacial charge transfer behavior of heterojunction is an arduous issue to efficiently drive separation of photogenerated carriers for improving the photocatalytic activity. Herein, the interface charge transfer behavior is effectively controlled by fabricating an unparalleled VO-NiWO4/PCN heterojunction that is prepared by encapsulating NiWO4 nanoparticles rich in surface oxygen vacancies (VO-NiWO4) in the mesoporous polymeric carbon nitride (PCN) nanosheets. Experimental and theoretical investigations show that, differing with the traditional p-n junction, the direction of built-in electric field between p-type NiWO4 and n-type PCN is reversed interestingly. The strongly codirectional built-in electric field is also produced between the surface defect region and inside of VO-NiWO4 besides in the space charge region, the dual drive effect of which forcefully propels interface charge transfer through triggering Z-Scheme mechanism, thus significantly improving the separation efficiency of photogenerated carriers. Moreover, the unique mesoporous encapsulation structure of VO-NiWO4/PCN heterostructure can not only afford the confinement effect to improve the reaction kinetics and specificity in the CO2 reduction to CO, but also significantly reduce mass transfer resistance of molecular diffusion towards the reaction sites. Therefore, the VO-NiWO4/PCN heterostructure demonstrates the preeminent activity, stability and reusability for photocatalytic CO2 reduction to CO reaction. The average evolution rate of CO over the optimal 10 %-VO-NiWO4/PCN composite reaches around 2.5 and 1.8 times higher than that of individual PCN and VO-NiWO4, respectively. This work contributes a fresh design approach of interface structure in the heterojunction to control charge transfer behaviors and thus improve the photocatalytic performance.
Collapse
Affiliation(s)
- Wei Sun
- College of Engineering, Jilin Normal University, Siping 136000, PR China
| | - Yan Zuo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yaling Niu
- Baicheng Normal University, Baicheng 137000, PR China
| | - Guangbo Che
- Baicheng Normal University, Baicheng 137000, PR China.
| | - Chunbo Liu
- College of Engineering, Jilin Normal University, Siping 136000, PR China.
| | - Hongjun Dong
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
4
|
Yuan L, Tang C, Du P, Li J, Zhang C, Xi Y, Bi Y, Bao T, Du A, Liu C, Yu C. Nanoporous Heterojunction Photocatalysts with Engineered Interfacial Sites for Efficient Photocatalytic Nitrogen Fixation. Angew Chem Int Ed Engl 2024; 63:e202412340. [PMID: 39183598 DOI: 10.1002/anie.202412340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 08/27/2024]
Abstract
Photocatalytic N2 reduction reaction (PNRR) offers a promising strategy for sustainable production of ammonia (NH3). However, the reported photocatalysts suffer from low efficiency with great room to improve regarding the charge carrier utilization and active site engineering. Herein, a porous and chemically bonded heterojunction photocatalyst is developed for efficient PNRR to NH3 production via hybridization of two semiconducting metal-organic frameworks (MOFs), MIL-125-NH2 (MIL=Material Institute Lavoisier) and Co-HHTP (HHTP=2,3,6,7,10,11-hexahydroxytripehenylene). Experimental and theoretical results demonstrate the formation of Ti-O-Co chemical bonds at the interface, which not only serve as atomic pathway for S-scheme charge transfer, but also provide electron-deficient Co centers for improving N2 chemisorption/activation capability and restricting competitive hydrogen evolution. Moreover, the nanoporous structure allows the transportation of reactants to the interfacial active sites at heterojunction, enabling the efficient utilization of charge carriers. Consequently, the rationally designed MOF-based heterojunction exhibits remarkable PNRR performance with an NH3 production rate of 2.1 mmol g-1 h-1, an apparent quantum yield (AQY) value of 16.2 % at 365 nm and a solar-to-chemical conversion (SCC) efficiency of 0.28 %, superior to most reported PNRR photocatalysts. Our work provides new insights into the design principles of high-performance photocatalysts.
Collapse
Affiliation(s)
- Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Cheng Tang
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD, 4001, Australia
| | - Peiyang Du
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jiaxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yamin Xi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yin Bi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD, 4001, Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200241, P. R. China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200241, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
5
|
Luan BB, Chu X, Wang Y, Qiao X, Jiang Y, Zhang FM. Construction of COF/COF Organic S-Scheme Heterostructure for Enhanced Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412653. [PMID: 39422373 DOI: 10.1002/adma.202412653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Covalent organic frameworks (COFs) as a new type of photocatalysts have shown unique advantages in visible-light-driven hydrogen evolution, while the reported overall water-splitting systems are still very rare among various COF-based photocatalysts. Herein, two COFs are integrated to construct a type of organic S-scheme heterojunction for improved overall water splitting. In this system, TpBpy-COF and COF-316 serve as H2- and O2-evolving components, respectively, which are combined through π-π interaction between conjugated aromatic rings. By introducing ultra-small Pt nanoparticles (NPs) into the pores of the TpBpy-COF nanosheets (NS), the resultant COF-316/Pt@TpBpy-COF NS heterostructure achieves extremely high H2 and O2 evolution rates of 220.4 and 110.2 µmol g-1 h-1, respectively, under visible light irradiation (λ ≥ 420 nm). The results of transient absorption spectra (TAS) and photoelectronic measurements indicate that the organic heterojunction interface notably facilitates the separation and transfer of photogenerated electron-hole pairs. Further, theoretical calculations and in situ experiments confirm the spontaneous formation of the COF/COF heterojunction interface and the active sites for overall water splitting.
Collapse
Affiliation(s)
- Bing-Bing Luan
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Xiaoyu Chu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Ya Wang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Xiu Qiao
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Yanxia Jiang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Feng-Ming Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| |
Collapse
|
6
|
Sun K, Qian Y, Li D, Jiang HL. Reticular Materials for Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411118. [PMID: 39601158 DOI: 10.1002/adma.202411118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Indexed: 11/29/2024]
Abstract
Photocatalysis leverages solar energy to overcome the thermodynamic barrier, enabling efficient chemical reactions under mild conditions. It can greatly reduce reliance on traditional energy sources and has attracted significant research interest. Reticular materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), represent a class of crystalline materials constructed from molecular building blocks linked by coordination and covalent bonds, respectively. Reticular materials function as heterogeneous catalysts, combining well-defined structures and high tailorability akin to homogeneous catalysts. In this review, the regulation of light absorption, charge separation, and surface reactions in the photocatalytic process through precise molecular-level design based on the features of reticular materials is elaborated. Notably, for MOFsmicroenvironment modulation around catalytic sites affects photocatalytic performance is delved, with emphasis on their unique dynamic and flexible microenvironments. For COFs, the inherent excitonic effects due to their fully organic nature is discussed and highlight the strategies to regulate excitonic effects for charge- and/or energy-transfer-mediated photocatalysis. Finally, the current challenges and future directions in this field, aiming to provide a comprehensive understanding of how reticular materials can be optimized for enhanced photocatalysis is discussed.
Collapse
Affiliation(s)
- Kang Sun
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
7
|
Blätte D, Ortmann F, Bein T. Photons, Excitons, and Electrons in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:32161-32205. [PMID: 39556616 PMCID: PMC11613328 DOI: 10.1021/jacs.3c14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Covalent organic frameworks (COFs) are created by the condensation of molecular building blocks and nodes to form two-dimensional (2D) or three-dimensional (3D) crystalline frameworks. The diversity of molecular building blocks with different properties and functionalities and the large number of possible framework topologies open a vast space of possible well-defined porous architectures. Besides more classical applications of porous materials such as molecular absorption, separation, and catalytic conversions, interest in the optoelectronic properties of COFs has recently increased considerably. The electronic properties of both the molecular building blocks and their linkage chemistry can be controlled to tune photon absorption and emission, to create excitons and charge carriers, and to use these charge carriers in different applications such as photocatalysis, luminescence, chemical sensing, and photovoltaics. In this Perspective, we will discuss the relationship between the structural features of COFs and their optoelectronic properties, starting with the building blocks and their chemical connectivity, layer stacking in 2D COFs, control over defects and morphology including thin film synthesis, exploring the theoretical modeling of structural, electronic, and dynamic features of COFs, and discussing recent intriguing applications with a focus on photocatalysis and photoelectrochemistry. We conclude with some remarks about present challenges and future prospects of this powerful architectural paradigm.
Collapse
Affiliation(s)
- Dominic Blätte
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Frank Ortmann
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Bein
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
8
|
Zhang J, Li X, Hu H, Huang H, Li H, Sun X, Ma T. Enhancing photocatalytic performance of covalent organic frameworks via ionic polarization. Nat Commun 2024; 15:9576. [PMID: 39505870 PMCID: PMC11541737 DOI: 10.1038/s41467-024-53834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Covalent organic frameworks have emerged as a thriving family in the realm of photocatalysis recently, yet with concerns about their high exciton dissociation energy and sluggish charge transfer. Herein, a strategy to enhance the built-in electric field of series β-keto-enamine-based covalent organic frameworks by ionic polarization method is proposed. The ionic polarization is achieved through a distinctive post-synthetic quaternization reaction which can endow the covalent organic frameworks with separated charge centers comprising cationic skeleton and iodide counter-anions. The stronger built-in electric field generated between their cationic framework and iodide anions promotes charge transfer and exciton dissociation efficiency. Moreover, the introduced iodide anions not only serve as reaction centers with lowered H* formation energy barrier, but also act as electron extractant suppressing the recombination of electron-hole pairs. Therefore, the photocatalytic performance of the covalent organic frameworks shows notable improvement, among which the CH3I-TpPa-1 can deliver an high H2 production rate up to 9.21 mmol g-1 h-1 without any co-catalysts, representing a 42-fold increase compared to TpPa-1, being comparable to or possibly exceeding the current covalent organic framework photocatalysts with the addition of Pt co-catalysts.
Collapse
Affiliation(s)
- Jiahe Zhang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, People's Republic of China
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia
| | - Xiaoning Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia
| | - Haijun Hu
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, People's Republic of China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, China
| | - Hui Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia
| | - Xiaodong Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, People's Republic of China.
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia.
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia.
| |
Collapse
|
9
|
Zhang S, Sun J, Ju H. Z-Scheme Heterojunction of Hierarchical Cu 2S/CdIn 2S 4 Hollow Cubes to Boost Photoelectrochemical Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405712. [PMID: 39162109 DOI: 10.1002/smll.202405712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/10/2024] [Indexed: 08/21/2024]
Abstract
The exaltation of light-harvesting efficiency and the inhibition of fast charge recombination are pivotal to the improvement of photoelectrochemical (PEC) performance. Herein, a direct Z-scheme heterojunction is designed of Cu2S/CdIn2S4 by in situ growth of CdIn2S4 nanosheets on the surface of hollow CuS cubes and then annealing at 400 °C. The constructed Z-scheme heterojunction is demonstrated with electron paramagnetic resonance and redox couple (p-nitrophenol/p-aminophenol) measurements. Under illumination, it shows the photocurrent 6 times larger than that of hollow Cu2S cubes, and affords outstanding PEC performance over the known Cu2S and CdIn2S4-based photocatalysts. X-ray photoelectron spectroscopy and density functional theory results demonstrate a strong internal electric field formed in Cu2S/CdIn2S4 Z-scheme heterojunction, which accelerates the Z-scheme charge migration, thereby promoting electron-hole separation and enhancing their utilization efficiency. Moreover, the hollow structure of Cu2S is conducive to shortening the charge transport distance and improving light-harvesting capability. In proof-of-concept PEC application, a PEC detection method for miRNA-141 based on the sensitivity of benzo-4-chloro-hexadienone to light absorption on Cu2S/CdIn2S4 modified electrode is developed with good selectivity and a limit of detection of 32 aM. This work provides a simple approach for designing photoactive materials with highly efficient PEC performance.
Collapse
Affiliation(s)
- Si Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jiahui Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
10
|
Wu R, Hua M, Lu Y, Chen L, Chen Y, Hu Z. Modulating Pore Wall Chemistry Empowers Sonodynamic Activity of Two-Dimensional Covalent Organic Framework Heterojunctions for Pro-Oxidative Nanotherapy. Angew Chem Int Ed Engl 2024:e202416461. [PMID: 39384540 DOI: 10.1002/anie.202416461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Covalent organic frameworks (COFs) have garnered growing interest in the field of biomedicine; however, their application in sonodynamic therapy remains underexplored due to limited understanding of their intrinsic activity and structure-property relationships. Here, we present a pore wall chemistry modulation strategy for empowering sonodynamic activity to two-dimensional (2D) COF heterojunctions through in situ growth of COFs on bismuth oxycarbonate nanosheets (B NSs). Compared to the negligible sonodynamic effects observed in the pristine B NSs, the 2D heterojunction with vinyl-decorated COF pore walls demonstrates a 3.6-fold enhancement in sonocatalytic singlet oxygen generation. This performance also significantly outperforms that of isoreticular COFs functionalized with methoxy or non-substituted groups. Mechanistic studies reveal that the vinyl groups in the B@COF (BC) heterojunction facilitate the separation and transfer of charge carriers while also enhancing the adsorption of oxygen molecules. Furthermore, peroxymonosulfate (PMS) loading into the porous COFs boosts the therapeutic efficacy of antitumor nanotherapy via sonocatalytic dual oxidative species generation. These findings underscore the critical role of pore wall chemistry in modulating the sonocatalytic properties of COFs, and advance the development of COF-based sonosensitizers for pro-oxidative applications.
Collapse
Affiliation(s)
- Ruohui Wu
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Mengying Hua
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Yanjia Lu
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhongqian Hu
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
11
|
Sun R, Zhu Z, Tian N, Zhang Y, Huang H. Hydrogen Bonds and In situ Photoinduced Metallic Bi 0/Ni 0 Accelerating Z-Scheme Charge Transfer of BiOBr@NiFe-LDH for Highly Efficient Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202408862. [PMID: 38972856 DOI: 10.1002/anie.202408862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 07/06/2024] [Indexed: 07/09/2024]
Abstract
For heterojunction system, the lack of stable interfacial driving force and definite charge transfer channel makes the charge separation and transfer efficiency unsatisfactory. The photoreaction mechanism occurring at the interface also receives less attention. Herein, a 2D/2D Z-scheme junction BiOBr@NiFe-LDH with large-area contact featured by short interface hydrogen bonds and strong interfacial electric field (IEF) is synthesized, and in situ photoinduced metallic species assisting charge transfer mechanism is demonstrated. The hydrogen bonds between O atoms from BiOBr and H atoms from NiFe-LDH induce a significant interfacial charge redistribution, establishing a robust IEF. Notably, during photocatalytic reaction, Bi0 and Ni0 are in situ performed in heterojunction, which separately act as electron transport mediator and electron trap to further accelerate charge transfer efficiency up to 71.2 %. Theoretical calculations further demonstrate that the existence of Bi0 strengthens the IEF. Therefore, high-speed spatial charge separation is realized in Bi0/BiOBr@Ni0/NiFe-LDH, leading to a prominent photocatalytic activity with a tetracycline removal ratio of 88.3 % within 7 min under visible-light irradiation and the presence of persulfate, far exceeding majority of photocatalysts reported previously. This study provides valid insights for designing hydrogen bonding heterojunction systems, and advances mechanistic understanding on in situ photoreaction at interfaces.
Collapse
Affiliation(s)
- Rongjun Sun
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zijian Zhu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Na Tian
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yihe Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hongwei Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
12
|
Ma H, Huang C, Tan T, Li W, Xu W, Shen Y, Li Y, Fang R, Dong F. S-Scheme heterojunction of Cs 2SnBr 6/C 3N 4 with interfacial electron exchange toward efficient photocatalytic NO abatement. J Colloid Interface Sci 2024; 671:486-495. [PMID: 38815384 DOI: 10.1016/j.jcis.2024.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Photocatalytic technology is of great significance in environmental purification due to its eco-friendly and cost-effective operations. However, low charge-transfer efficiency restricts the photocatalytic activity of the catalyst. Herein, we report Cs2SnBr6/C3N4 composite catalysts that exhibit a robust interfacial electron exchange thereby enhancing photocatalytic nitric oxide (NO) oxidation. A comprehensive study has demonstrated the S-scheme electron transfer mechanism. Benefiting from the interfacial internal electric field, the C-Br bond serves as a direct electron transfer channel, resulting in enhanced charge separation. Furthermore, the S-scheme heterojunction effectively traps high redox potential electrons and holes, leading to the production of abundant reactive oxygen radicals that enhance photocatalytic NO abatement. The NO removal rate of the Cs2SnBr6/C3N4 heterogeneous system can reach 86.8 %, which is approximately 3-fold and 18-fold that of pristine C3N4 and Cs2SnBr6, respectively. The comprehensive understanding of the electron transfer between heterojunction atomic interfaces will provide a novel perspective on efficient environmental photocatalysis.
Collapse
Affiliation(s)
- Hao Ma
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Chunyan Huang
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Tianqi Tan
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Wenting Li
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Wei Xu
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yuhan Li
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Ruimei Fang
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; State Centre for International Cooperation on Designer Low Carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Tang Y, Lu Y, Ma B, Song J, Bai L, Wang Y, Chen Y, Liu M. Rational Design of ZnO/Sc 2CF 2 Heterostructure with Tunable Electronic Structure for Water Splitting: A First-Principles Study. Molecules 2024; 29:4638. [PMID: 39407568 PMCID: PMC11477741 DOI: 10.3390/molecules29194638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Heterostructures are highly promising photocatalyst candidates for water splitting due to their advanced properties than those of pristine components. The ZnO/Sc2CF2 heterostructure was designed in this work, and its electronic structure was investigated to explore its potential for water splitting. The assessments of binding energy, phonon spectrum, ab initio molecular dynamics, and elastic constants provide strong evidence for its stability. The ZnO/Sc2CF2 heterostructure has an indirect band gap of 1.93 eV with a type-Ⅰ band alignment. The electronic structure can be modified with strain, leading to a transition in band alignment from type-Ⅰ to type-Ⅱ. The heterostructure is suitable for water splitting since its VBM and CBM stride over the redox potential. The energy barrier and built-in electric field, resulting from the charge transfer, facilitate the spatial separation of photogenerated carriers, enhancing their utilization efficiency for redox processes. The photogenerated carriers in the heterostructures with lattice compression greater than 6% follow the direct-Z transfer mechanism. The ZnO/Sc2CF2 heterostructure is confirmed with high photocatalytic activity by a Gibbs free energy change of HER, which is 0.89 eV and decreases to -0.52 eV under an 8% compressive strain. The heterostructure exhibits a remarkable enhancement in both absorption range and intensity, which can be further improved with strains. All these findings suggest that the ZnO/Sc2CF2 heterostructure is an appreciated catalyst for efficient photocatalytic water splitting.
Collapse
Affiliation(s)
- Yong Tang
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, Athlone, Westmeath N37HD68, Ireland
| | - Yidan Lu
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Benyuan Ma
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Jun Song
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Liuyang Bai
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yinling Wang
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yuanyuan Chen
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM), Technological University of the Shannon: Midlands Midwest, Athlone, Westmeath N37HD68, Ireland
| | - Meiping Liu
- School of Intelligent Manufacturing, Huanghuai University, Zhumadian 463000, China
| |
Collapse
|
14
|
Wang QS, Yuan YC, Pan WG, Guo RT. Sharing N atoms boosting Z-scheme charge transfer in SrTiO 2N/CNx heterojunctions for selective photoreduction of CO 2 to CH 4. Dalton Trans 2024; 53:15048-15058. [PMID: 39206556 DOI: 10.1039/d4dt02037e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Exploring charge transfer channels in the Z-scheme heterojunction is an essential challenge. A strategy to precisely connect g-C3N4 with SrTiO3 through sharing N atoms was developed to create a chemically bonded Z-scheme heterojunction photocatalyst (STON/CNx). By sharing the N atoms, not only was the activity of the photocatalytic reduction of CO2 greatly improved, but the selectivity of the product was also changed. The CH4 product rate over optimal STON/CNx was 102.4 μmol g-1 h-1, with a 98.9% product selectivity. Both characterization and theoretical calculations indicate that N atoms tightly connect the heterostructures and serve as a channel for electron transport, facilitating the transfer of photogenerated electrons. This research lays a way for creating a sharing atoms' Z-scheme interface, providing the potential for exciting future photocatalytic applications.
Collapse
Affiliation(s)
- Qing-Shan Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, China.
| | - Yi-Chao Yuan
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, China.
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, 200090 Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, 200090 Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
15
|
Asokan K, Bhagyasree TM, Devasia G, Krishnamurty S, Solim S, Rueda L, Al-Mohannadi DM, Al-Hashimi M, Kakosimos K, Santhosh Babu S. A scalable approach using a gC 3N 4-covalent organic framework hybrid catalyst towards sustainable hydrogen production from seawater and wastewater. Chem Sci 2024; 15:13381-13388. [PMID: 39183933 PMCID: PMC11339968 DOI: 10.1039/d4sc01387e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/05/2024] [Indexed: 08/27/2024] Open
Abstract
The photocatalytic generation of H2 using covalent organic frameworks (COFs) is gaining more interest. While numerous reports have focused on the production of H2 from deionized water using COFs, the inability to produce H2 from industrial wastewater or seawater is a common limitation in many reported catalysts. Additionally, many of these reports lack a clear path to scale up the catalyst synthesis. In this study, we explore the prospect of hybridizing a COF with gC3N4 to create a robust photocatalyst for efficient H2 generation. This hybrid exhibits outstanding performance not only in deionized water, but also in wastewater, and simulated seawater. Furthermore, we explore the feasibility of the bulk-scale synthesis and successfully produce a 20 g hybrid catalyst in a single batch, and the synthesis method is scalable to achieve the commercial target. Remarkably, a maximum HER rate of 94 873 μmol g-1 h-1 and 109 125 μmol g-1 h-1 was obtained for the hybrid catalyst from industrial wastewater and simulated seawater, respectively. The performance of bulk-scale batches closely matches that of the small-scale ones. This research paves the way for the utilization of organic photocatalysts on a commercial scale, offering a promising solution for sustainable large-scale H2 production.
Collapse
Affiliation(s)
- Kiran Asokan
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL) Dr Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - T M Bhagyasree
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL) Dr Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - George Devasia
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL) Dr Homi Bhabha Road Pune 411008 India
| | - Sailaja Krishnamurty
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL) Dr Homi Bhabha Road Pune 411008 India
| | - Sabah Solim
- Qatar Shell Research & Technology Centre Qatar Science & Technology Park, Education City Doha Qatar
| | - Lina Rueda
- Qatar Shell Research & Technology Centre Qatar Science & Technology Park, Education City Doha Qatar
| | | | | | | | - Sukumaran Santhosh Babu
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL) Dr Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
16
|
Bi RX, Peng ZH, Lei L, Wang XX, Liu X, Zhang L, Liang RP, Qiu JD. Enhanced photocatalytic U(VI) reduction via double internal electric field in CoWO 4/covalent organic frameworks p-n heterojunction. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134869. [PMID: 38870857 DOI: 10.1016/j.jhazmat.2024.134869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Photoreduction of highly toxic U(VI) to less toxic U(IV) is crucial for mitigating radioactive contamination. Herein, a CoWO4/TpDD p-n heterojunction is synthesized, with TpDD serving as the n-type semiconductor substrate and CoWO4 as the p-type semiconductor grown in situ on its surface. The Fermi energy difference between TpDD and CoWO4 provides the electrochemical potential for charge-hole separation. Moreover, the Coulombic forces from the distinct carrier types between the two materials synergistically facilitate the transfer of electrons and holes. Hence, an internal electric field directed from TpDD to CoWO4 is established. Under photoexcitation conditions, charges and holes migrate efficiently along the curved band and internal electric field, further enhancing charge-hole separation. As a result, the removal capacity of CoWO4/TpDD increases from 515.2 mg/g in the dark to 1754.6 mg/g under light conditions. Thus, constructing a p-n heterojunction proves to be an effective strategy for remediating uranium-contaminated environments.
Collapse
Affiliation(s)
- Rui-Xiang Bi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Zhi-Hai Peng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Lan Lei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Xiao-Xing Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China.
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, PR China.
| |
Collapse
|
17
|
Wang J, Wang Z, Zhang J, Mamatkulov S, Dai K, Ruzimuradov O, Low J. Two-Dimensional High-Entropy Selenides for Boosting Visible-Light-Driven Photocatalytic Performance. ACS NANO 2024. [PMID: 39042820 DOI: 10.1021/acsnano.4c06954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
High-entropy materials (HEMs) have garnered extensive attention owing to their diverse and captivating physicochemical properties. Yet, fine-tuning morphological properties of HEMs remains a formidable challenge, constraining their potential applications. To address this, we present a rapid, low-energy consumption diethylenetriamine (DETA)-assisted microwave hydrothermal method for synthesizing a series of two-dimensional high-entropy selenides (HESes). Subsequently, the obtained HESes are harnessed for photocatalytic water splitting. Noteworthy is the optimized HESes, Cd0.9Zn1.2Mn0.4Cu1.8Cr1.2Se4.5, showcasing an output rate of hydrogen of 16.08 mmol h-1 g-1 and a quantum efficiency of ca. 30% under 420 nm monochromatic LED irradiation. It is revealed that the photocatalytic performance of these HESes stems not only from the enlarged specific surface area and enhanced photogenerated charge carrier utilization efficiency but also from the promoted formation of the Cd-Hads bond, influenced by multiple principal elements on the Cd. These findings provide a guide for the design of HEMs tailored for various applications.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| | - Zhongliao Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| | - Jinfeng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| | | | - Kai Dai
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, Anhui, P. R. China
| | - Olim Ruzimuradov
- Turin Polytechnic University in Tashkent, Tashkent 100095, Uzbekistan
| | - Jingxiang Low
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
18
|
Ghosh A, Pramanik A, Pal S, Sarkar P. Emergence of Z-Scheme Photocatalysis for Total Water Splitting: An Improvised Route to High Efficiency. J Phys Chem Lett 2024; 15:6841-6851. [PMID: 38917061 DOI: 10.1021/acs.jpclett.4c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Photocatalytic water splitting to spontaneously produce H2 and O2 is a long-standing goal in solar energy conversion, presenting a significant challenge without using sacrificial electron donors or external biases. Inspired by natural photosynthesis, the design of artificial Z-scheme photocatalytic systems is at the forefront of this field. These systems achieve higher redox potential by separating photogenerated electrons and holes through a fast interlayer recombination process between valence and conduction band edges. Z-scheme photocatalysis involves using two different semiconductors with distinct bandgap energies. Here, we explore potential systems based on two-dimensional (2D) heterostructures composed of carbon, nitrogen, or similar main group elements. The advantages and disadvantages of these systems are discussed, with a focus on enhancing their efficiency through strategic design. Special emphasis is placed on the dynamics of excited charge carrier transfer and recombination processes, which are crucial for developing efficient photocatalytic systems for overall water splitting.
Collapse
Affiliation(s)
- Atish Ghosh
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia 723104, India
| | - Sougata Pal
- Department of Chemistry, University of Gour Banga, Malda 732103, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|
19
|
Yin Y, Xiang P, Zhou Y, Meng H, Xiao X, Shao Y, Zhang X, Zhou J, Li Q, Guo C, Ma X, Zhang L, Zhang L, Zhang Q, Jiang B. Creation of Interfacial S 4-Sn-N 2 Electron Pathways for Efficient Light-Driven Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310664. [PMID: 38342707 DOI: 10.1002/smll.202310664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Establishing effective charge transfer channels between two semiconductors is key to improving photocatalytic activity. However, controlling hetero-structures in situ and designing binding modes pose significant challenges. Herein, hydrolytic SnCl2·2H2O is selected as the metal source and loaded in situ onto a layered carbon nitriden supramolecular precursor. A composite photocatalyst, S4-Sn-N2, with electron pathways of SnS2 and tubular carbon nitriden (TCN) is prepared through pyrolysis and vulcanization processes. The contact interface of SnS2-TCN is increased significantly, promoting the formation of S4-Sn-N2 micro-structure in a Z-scheme charge transfer channel. This structure accelerates the separation and transport of photogenerated carriers, maintains the stronger redox ability, and improves the stability of SnS2 in this series of heterojunctions. Therefore, the catalyst demonstrated exceptional photocatalytic hydrogen production efficiency, achieving a reaction rate of 86.4 µmol h-1, which is 3.15 times greater than that of bare TCN.
Collapse
Affiliation(s)
- Yihang Yin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Peng Xiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Yujie Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huiyuan Meng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
- School of Safety Engineering, Heilongjiang University of Science and Technology, Harbin, Heilongjiang, China
| | - Xudong Xiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Yugui Shao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xinxin Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Jing Zhou
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Qi Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Chuanyu Guo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Xuena Ma
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Luoming Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Liping Zhang
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - Qun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
20
|
Huang J, Wu S, Wang Y, Shen J, Wang C, Zheng Y, Chu PK, Liu X. Dual elemental doping activated signaling pathway of angiogenesis and defective heterojunction engineering for effective therapy of MRSA-infected wounds. Bioact Mater 2024; 37:14-29. [PMID: 38515610 PMCID: PMC10951428 DOI: 10.1016/j.bioactmat.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Multi-drug resistant bacterial infections pose a significant threat to human health. Thus, the development of effective bactericidal strategies is a pressing concern. In this study, a ternary heterostructure (Zn-CN/P-GO/BiS) comprised of Zn-doped graphite phase carbon nitride (g-C3N4), phosphorous-doped graphene oxide (GO) and bismuth sulphide (Bi2S3) is constructed for efficiently treating methicillin-resistant Staphylococcus aureus (MRSA)-infected wound. Zn doping-induced defect sites in g-C3N4 results in a reduced band gap (ΔE) and a smaller energy gap (ΔEST) between the singlet state S1 and triplet state T1, which favours two-photon excitation and accelerates electron transfer. Furthermore, the formation of an internal electric field at the ternary heterogeneous interface optimizes the charge transfer pathway, inhibits the recombination of electron-hole pairs, improves the photodynamic effect of g-C3N4, and enhances its catalytic performance. Therefore, the Zn-CN/P-GO/BiS significantly augments the production of reactive oxygen species and heat under 808 nm NIR (0.67 W cm-2) irradiation, leading to the elimination of 99.60% ± 0.07% MRSA within 20 min. Additionally, the release of essential trace elements (Zn and P) promotes wound healing by activating hypoxia-inducible factor-1 (HIF-1) and peroxisome proliferator-activated receptors (PPAR) signaling pathways. This work provides unique insight into the rapid antibacterial applications of trace element doping and two-photon excitation.
Collapse
Affiliation(s)
- Jin Huang
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Yi Wang
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Paul K. Chu
- Department of Physics and Department of Materials Science and Engineering, City University of Hong Kong, 999077, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
21
|
Li S, Mao Y, Yang J, Li Y, Dong J, Wang Z, Jiang L, He S. Efficient integration of covalent triazine frameworks (CTFs) for augmented photocatalytic efficacy: A review of synthesis, strategies, and applications. Heliyon 2024; 10:e32202. [PMID: 38947430 PMCID: PMC11214378 DOI: 10.1016/j.heliyon.2024.e32202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Heterogeneous photocatalysis emerges as an exceptionally appealing technological avenue for the direct capture, conversion, and storage of renewable solar energy, facilitating the generation of sustainable and ecologically benign solar fuels and a spectrum of other pertinent applications. Heterogeneous nanocomposites, incorporating Covalent Triazine Frameworks (CTFs), exhibit a wide-ranging spectrum of light absorption, well-suited electronic band structures, rapid charge carrier mobility, ample resource availability, commendable chemical robustness, and straightforward synthetic routes. These attributes collectively position them as highly promising photocatalysts with applicability in diverse fields, including but not limited to the production of photocatalytic solar fuels and the decomposition of environmental contaminants. As the field of photocatalysis through the hybridization of CTFs undergoes rapid expansion, there is a pressing and substantive need for a systematic retrospective analysis and forward-looking evaluation to elucidate pathways for enhancing performance. This comprehensive review commences by directing attention to diverse synthetic methodologies for the creation of composite materials. And then it delves into a thorough exploration of strategies geared towards augmenting performance, encompassing the introduction of electron donor-acceptor (D-A) units, heteroatom doping, defect Engineering, architecture of Heterojunction and optimization of morphology. Following this, it systematically elucidates applications primarily centered around the efficient generation of photocatalytic hydrogen, reduction of carbon dioxide through photocatalysis, and the degradation of organic pollutants. Ultimately, the discourse turns towards unresolved challenges and the prospects for further advancement, offering valuable guidance for the potent harnessing of CTFs in high-efficiency photocatalytic processes.
Collapse
Affiliation(s)
- Shuqi Li
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yintian Mao
- Hangzhou Environmental Group Company, Hangzhou, China
| | - Jian Yang
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Yin Li
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Jun Dong
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Zhen Wang
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Lixian Jiang
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Shilong He
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
22
|
Zhang H, Gu H, Huang Y, Wang X, Gao L, Li Q, Li Y, Zhang Y, Cui Y, Gao R, Dai WL. Rational design of covalent organic frameworks/NaTaO 3 S-scheme heterostructure for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 664:916-927. [PMID: 38503077 DOI: 10.1016/j.jcis.2024.03.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/02/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
As a typical perovskite material, NaTaO3 has been regarded as a potential catalyst for photocatalytic hydrogen evolution (PHE) process, due to its excellent photoelectric property and superior chemical stability. However, the photocatalytic activity of pure NaTaO3 was largely restricted by its poor visible-light absorption ability and rapid recombination of photogenerated charge carriers. Therefore, a covalently bonded TpBpy covalent organic framework (COF)/NaTaO3 (TpBpy/NaTaO3) heterostructure was designed and synthesized by the post modification strategy with (3-aminopropyl) triethoxysilane (APTES) and the in situ solvothermal process. Benefiting from the enhanced built-in electric field by the interfacial covalent bonds and the formation of S-scheme heterostructure between TpBpy and NaTaO3, which were proved by the Ar+-cluster depth profile and X-ray photoelectron spectroscopy (XPS), as well as density functional theory (DFT) calculation results, both the charge transfer efficiency and the PHE performance of the TpBpy/NaTaO3 composites were significantly improved. Additionally, the composites exhibited an excellent absorption performance in the visible region, which was also beneficial for the photocatalytic process. As expected, the optimal TpBpy/20%NaTaO3 composite achieved a remarkable hydrogen evolution rate of 17.3 mmol·g-1·h-1 (10 mg of catalyst) under simulated sunlight irradiation, which was about 173 and 2.4 times higher than that of pure NaTaO3 and TpBpy, respectively. This work provided a novel strategy for constructing highly effective and stable semiconductor/COFs heterostructures with strong interfacial interaction for photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Huihui Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China
| | - Huajun Gu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China
| | - Yamei Huang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China
| | - Xinglin Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China
| | - Linlin Gao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China
| | - Qin Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China
| | - Yu Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China
| | - Yu Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China
| | | | - Ruihua Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, PR. China.
| | - Wei-Lin Dai
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
23
|
Chen B, Xu J, Shi S, Kong L, Zhang X, Li L. UV-Vis-NIR Broadband Self-Powered CuInS 2/SnO 2 Photodetectors and the Application in Encrypted Optical Communication. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28917-28927. [PMID: 38801104 DOI: 10.1021/acsami.4c05896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Photodetectors (PDs) with broadband photoresponse can meet the demand for multiband detection in complex environments, overcoming the technological complexity issue of integrated narrow-band PDs. Self-powered heterojunction PDs having ultraviolet-visible-near-infrared broadband photoresponse were constructed by using SnO2 nanopillars and CuInS2 nanoflakes. The dimension, crystalline quality, and energy level structure of the SnO2 nanopillars were regulated by changing the concentration of Sn ions in the precursor solution. The optimized interfacial energy band structure of the heterojunction can increase the transfer ability of the photogenerated carrier. The optimum performance is achieved for the CuInS2/SnO2(0.025M) PD prepared at 0.025 M Sn ion concentration in the precursor solution with the responsivities of 1.15, 6.13, and 1.02 mA/W, and detectivities of 1.19 × 1010, 6.35 × 1010, and 1.02 × 1010 Jones under 254 nm solar-blind ultraviolet light, 475 nm visible light, and 940 nm near-infrared light. Furthermore, a proof-of-concept solar-blind ultraviolet-visible-near-infrared encrypted communication system utilizing a broadband self-powered CuInS2/SnO2 PD as the receiving terminal and solar-blind ultraviolet light, ultraviolet light, visible light, and near-infrared light as the carrier and encryption protocol is proposed. The PD has great potential for applications in the field of encrypted optical communication.
Collapse
Affiliation(s)
- Bei Chen
- Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics, School of Science, Tianjin University of Technology, Tianjin 300384, China
| | - Jianping Xu
- Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics, School of Science, Tianjin University of Technology, Tianjin 300384, China
| | - Shaobo Shi
- School of Science, Tianjin University of Technology and Education, Tianjin 300222, China
| | - Lina Kong
- School of Materials Science and Engineering, Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaosong Zhang
- School of Materials Science and Engineering, Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Lan Li
- School of Materials Science and Engineering, Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, and Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
24
|
Yang L, Guo J, Chen S, Li A, Tang J, Guo N, Yang J, Zhang Z, Zhou J. Tailoring the catalytic sites by regulating photogenerated electron/hole pairs separation spatially for simultaneous selective oxidation of benzyl alcohol and hydrogen evolution. J Colloid Interface Sci 2024; 659:776-787. [PMID: 38215614 DOI: 10.1016/j.jcis.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Photocatalytic selective oxidation of alcohols into aldehydes and H2 is a green strategy for obtaining both value-added chemicals and clean energy. Herein, a dual-purpose ZnIn2S4@CdS photocatalyst was designed and constructed for efficient catalyzing benzyl alcohol (BA) into benzaldehyde (BAD) with coupled H2 evolution. To address the deep-rooted problems of pure CdS, such as high recombination of photogenerated carriers and severe photo-corrosion, while also preserving its superiority in H2 production, ZnIn2S4 with a suitable band structure and adequate oxidizing capability was chosen to match CdS by constructing a coupled reaction. As designed, the photoexcited holes (electrons) in the CdS (ZnIn2S4) were spatially separated and transferred to the ZnIn2S4 (CdS) by electrostatic pull from the built-in electric field, leading to expected BAD production (12.1 mmol g-1 h-1) at the ZnIn2S4 site and H2 generation (12.2 mmol g-1 h-1) at the CdS site. This composite photocatalyst also exhibited high photostability due to the reasonable hole transfer from CdS to ZnIn2S4. The experimental results suggest that the photocatalytic transform of BA into BAD on ZnIn2S4@CdS is via a carbon-centered radical mechanism. This work may extend the design of advanced photocatalysts for more chemicals by replacing H2 evolution with N2 fixation or CO2 reduction in the coupled reactions.
Collapse
Affiliation(s)
- Lifang Yang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China.
| | - Jiao Guo
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Siyan Chen
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Aoqi Li
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Jun Tang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Ning Guo
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Jie Yang
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, College of Chemistry, Fuzhou University, Fuzhou 350108, PR China.
| | - Jianwei Zhou
- College of Chemistry and Materials Engineering, Xinxiang University, Xinxiang 453003, PR China
| |
Collapse
|
25
|
Ruan X, Meng D, Huang C, Xu M, Jiao D, Cheng H, Cui Y, Li Z, Ba K, Xie T, Zhang L, Zhang W, Leng J, Jin S, Ravi SK, Jiang Z, Zheng W, Cui X, Yu J. Artificial Photosynthetic System with Spatial Dual Reduction Site Enabling Enhanced Solar Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309199. [PMID: 38011897 DOI: 10.1002/adma.202309199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Although S-scheme artificial photosynthesis shows promise for photocatalytic hydrogen production, traditional methods often overly concentrate on a single reduction site. This limitation results in inadequate redox capability and inefficient charge separation, which hampers the efficiency of the photocatalytic hydrogen evolution reaction. To overcome this limitation, a double S-scheme system is proposed that leverages dual reduction sites, thereby preserving energetic photo-electrons and holes to enhance apparent quantum efficiency. The design features a double S-scheme junction consisting of CdS nanospheres decorated with anatase TiO2 nanoparticles coupled with graphitic C3 N4 . The as-prepared catalyst exhibits a hydrogen evolution rate of 26.84 mmol g-1 h-1 and an apparent quantum efficiency of 40.2% at 365 nm. This enhanced photocatalytic hydrogen evolution is ascribed to the efficient charge separation and transport induced by the double S-scheme. Both theoretical calculations and comprehensive spectroscopy tests (both in situ and ex situ) affirm the efficient charge transport across the catalyst interface. Moreover, substituting the reduction-type catalyst CdS with other similar sulfides like ZnIn2 S4 , ZnS, MoS2 and In2 S3 further confirms the feasibility of the proposed double S-scheme configuration. The findings provide a pathway to designing more effective double S-scheme artificial photosynthetic systems, opening up fresh perspectives in enhancing photocatalytic hydrogen evolution performance.
Collapse
Affiliation(s)
- Xiaowen Ruan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Depeng Meng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Chengxiang Huang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Minghua Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Dongxu Jiao
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Hui Cheng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yi Cui
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhiyun Li
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Kaikai Ba
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Tengfeng Xie
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Lei Zhang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Wei Zhang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Zhifeng Jiang
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
26
|
Zhang ZW, Yang Y, Wu H, Zhang T. Advances in the two-dimensional layer materials for cancer diagnosis and treatment: unique advantages beyond the microsphere. Front Bioeng Biotechnol 2023; 11:1278871. [PMID: 37840663 PMCID: PMC10576562 DOI: 10.3389/fbioe.2023.1278871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
In recent years, two-dimensional (2D) layer materials have shown great potential in the field of cancer diagnosis and treatment due to their unique structural, electronic, and chemical properties. These non-spherical materials have attracted increasing attention around the world because of its widely used biological characteristics. The application of 2D layer materials like lamellar graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BPs) and so on have been developed for CT/MRI imaging, serum biosensing, drug targeting delivery, photothermal therapy, and photodynamic therapy. These unique applications for tumor are due to the multi-variable synthesis of 2D materials and the structural characteristics of good ductility different from microsphere. Based on the above considerations, the application of 2D materials in cancer is mainly carried out in the following three aspects: 1) In terms of accurate and rapid screening of tumor patients, we will focus on the enrichment of serum markers and sensitive signal transformation of 2D materials; 2) The progress of 2D nanomaterials in tumor MRI and CT imaging was described by comparing the performance of traditional contrast agents; 3) In the most important aspect, we will focus on the progress of 2D materials in the field of precision drug delivery and collaborative therapy, such as photothermal ablation, sonodynamic therapy, chemokinetic therapy, etc. In summary, this review provides a comprehensive overview of the advances in the application of 2D layer materials for tumor diagnosis and treatment, and emphasizes the performance difference between 2D materials and other types of nanoparticles (mainly spherical). With further research and development, these multifunctional layer materials hold great promise in the prospects, and challenges of 2D materials development are discussed.
Collapse
Affiliation(s)
- Zheng-Wei Zhang
- Department of Hepatopancreatobiliary Surgery, Xinghua People’s Hospital, Yangzhou University, Xinghua, Jiangsu, China
| | - Yang Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Han Wu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Tong Zhang
- Department of Hepatopancreatobiliary Surgery, Xinghua People’s Hospital, Yangzhou University, Xinghua, Jiangsu, China
| |
Collapse
|