1
|
Lu Z, Li J, Chen Q, Xu L, Yun J, Su G, Wu C, Du X, Cao X, Rao H, Wang Y, Sun M. Multifunctional (Co 3Fe)(S 2) 4-ion-microneedle patch: Synergistic antimicrobial, anti-inflammatory and cell proliferation for accelerating wound healing. J Colloid Interface Sci 2025; 685:1027-1040. [PMID: 39884091 DOI: 10.1016/j.jcis.2025.01.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Preventing bacterial infection and accelerating wound closure are critical for wound healing. Herein, a novel multifunctional polyvinyl alcohol-polyvinylpyrrolidone (PVA-PVP) microneedle (MN) patch embedded with enzyme-like activity (Co3Fe)(S2)4 (CFS) nanoparticles and metal ions (Co2+ and Fe3+) was systematically synthesized for the management of bacteria-infected wounds. CFS regulated redox homeostasis and achieved bacterial eradication while concomitantly alleviating oxidative damage. Specifically, CFS generated reactive oxygen species (ROS) to eliminate bacteria and concurrently attenuated cellular inflammation by scavenging ROS through their superoxide dismutase-like (SOD) activity. Meanwhile, the results of RNA transcriptome sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) analyses indicated that Co2+ and Fe3+ can inhibit inflammatory responses in mice by modulating the IL-17 and NF-κB signaling pathways. Therefore, CFS-ion-MN significantly enhanced the healing of wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) in mice model without eliciting systemic toxicity. Overall, this study offers an innovative methodology for the development of composite materials for the effective treatment of wounds.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Jinrong Li
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Qingliang Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Lixiao Xu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Jie Yun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Xiaodan Du
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Xiaohan Cao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
2
|
Ye J, Wang H, Zheng J, Ning S, Zhu D, Shi J, Shi R. Cold Exposure Therapy Enhances Single-Atom Nanozyme-Mediated Cancer Vaccine Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11752-11763. [PMID: 39945542 DOI: 10.1021/acsami.4c20487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Single-atom nanozymes are highly effective in the preparation of tumor vaccines (TV) due to their superior peroxidase (POD) activity and excellent biocompatibility. However, the immunosuppressive environment within tumors can diminish the efficacy of these vaccines. Cold exposure (CE) therapy, a noninvasive and straightforward antitumor method, not only suppresses tumor metabolism but also ameliorates the immunosuppressive tumor milieu. In this study, we developed personalized TV using copper single-atom nanozyme (Cu SAZ) and enhanced their long-term antitumor efficacy by introducing CE. We initially synthesized the Cu SAZ via high-temperature carbonization, which demonstrated robust POD activity and photothermal characteristics. Upon exposure to 808 nm laser irradiation, the nanozyme generated reactive oxygen species (ROS) and heat, inducing immunogenic cell death in 4T1 breast cancer cells or CT26 colon cancer cells and facilitating TV production. In our in vivo tumor prevention and treatment model, we noted that CE significantly boosted the efficacy of the TV. The primary mechanism involves CE's ability to lower the ratio of myeloid-derived suppressor cells (MDSCs), decrease glucose metabolism in tumor cells, and increase the proportions of CD8+ T cells and memory T cells. Collectively, our findings offer promising avenues for designing innovative TV systems.
Collapse
Affiliation(s)
- Jinjun Ye
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Shenzhen 518100, China
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hongwei Wang
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Shenzhen 518100, China
| | - Jingzhi Zheng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Daoming Zhu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Runze Shi
- The Second Ward of Breast Surgery, Cancer Hospital Affiliated to Harbin Medical University, Harbin 150086, China
| |
Collapse
|
3
|
Chen L, Cheng H, Hu R, Zhao Y, Huang J, Liu JH, Huang CZ, Yang T. Kirkendall Effect-Mediated Transformation of ZIF-67 to NiCo-LDH Nanocages as Oxidase Mimics for Multicolor Point-of-Care Testing of β-Galactosidase Activity and Escherichia coli. Anal Chem 2025; 97:2853-2862. [PMID: 39869181 DOI: 10.1021/acs.analchem.4c05379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Early and portable detection of pathogenic bacteria is crucial for ensuring food safety, monitoring product quality, and tracing the sources of bacterial infections. Moving beyond traditional plate-culture counting methods, the analysis of active bacterial components offers a rapid means of quantifying bacteria. Here, metal-organic framework (MOF)-derived NiCo-layered double hydroxide nanosheets (LDHs), synthesized via the Kirkendall effect, were employed as highly effective oxidase mimics to generate reactive oxygen species (ROS). These ROS quickly etched gold nanobipyramids (Au NBPs), producing a vivid multicolormetric response. Experimental results and theoretical calculations indicated that the exceptional oxidase-like activity of NiCo-LDHs stemmed from the presence of bimetallic active sites and oxygen vacancies modulating the local electronic structure of LDHs. Additionally, β-galactosidase (β-Gal), a biomarker of Escherichia coli, reacted with p-aminophenyl-β-d-galactopyranoside (PAPG) to form p-aminophenol (PAP), a reducing agent which consumes ROS, thereby inhibiting the etching of Au NBPs. Furthermore, a three-dimensional (3D)-printed point-of-care testing (POCT) shell was designed as a portable device to visually detect β-Gal and E. coli in conjugation with smartphones. This study not only provides a novel approach to the rational design of nanozymes but also establishes a vivid and portably visual biosensing platform for detecting β-Gal activity and pathogenic bacteria.
Collapse
Affiliation(s)
- Lu Chen
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P. R. China
| | - Huan Cheng
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P. R. China
| | - Rong Hu
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P. R. China
| | - Yan Zhao
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P. R. China
| | - Jingtao Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Jia Hui Liu
- Institute of Biomedical Engineering, Kunming Medical University, Kunming 650500, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Tong Yang
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P. R. China
| |
Collapse
|
4
|
Wang L, Zhang Y, Geng S, Ma L, Wang Y, Han D, Fan G, Zhang W, Lv Y, Ma J. A Chinese drug-compatibility-based approach to purslane hydrogels for acute eczema therapy. Front Pharmacol 2025; 16:1504120. [PMID: 39981178 PMCID: PMC11841398 DOI: 10.3389/fphar.2025.1504120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025] Open
Abstract
Purslane (Portulaca oleracea L.) with heat-clearing and detoxicating, anti-inflammatory and resolving swelling, relieving itching and astringing function, has remarkable efficacy for acute eczema. However, most of the clinical applications of purslane are freshly prepared decoction, not as easy to apply as cream, because the decoction is easy to breed bacteria and easy to oxidize. Here, based on the theory of Chinese medicines compatibility, we made a purslane-tannic acid hydrogel (PL-HATA) by simple methods under mild conditions to solve the drawbacks of easy oxidation and inconvenience of use of Purslane. The antimicrobial activity of PL-HATA hydrogel can exert an excellent antimicrobial effect, reducing the flora on the skin of acute eczema and further relieving the symptoms of acute eczema. At the same time, it creates a normal reactive oxygen species (ROS) microenvironment for acute eczema and promotes recovery from acute eczema. It also improves the symptoms of acute eczema by promoting cell proliferation and migration. Importantly, it resulted in improved skin lesion scores, scratching behavior, eosinophil infiltration, swelling and inflammation levels, immune homeostasis, and histopathological changes in rats with acute eczema. Besides, HATA hydrogel is not only suitable for Purslane's decocted metabolites but also for Purslane's freshly squeezed metabolites. This purslane application protocol solved the drawbacks of Purslane's decoction, improved its storage stability and convenience of use, which is the key issue to further promote its clinical application.
Collapse
Affiliation(s)
- Ling Wang
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Yuzhong Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Shenglin Geng
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Lan Ma
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Yiran Wang
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Dongxu Han
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Guojuan Fan
- Dermatology, Weifang Hospital of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Weifen Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
- Collaborative Innovation Center for Target Drug Delivery System, Shandong Second Medical University, Weifang, Shandong, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Yanna Lv
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Jinlong Ma
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
- Collaborative Innovation Center for Target Drug Delivery System, Shandong Second Medical University, Weifang, Shandong, China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
5
|
Li Q, Zhao Z, Wang T, Adeli M, Xu X, Luo X, Cheng C. Upgrading the Bioinspired Iron-Polyporphyrin Structures by Abiological Metals Toward New-Generation Reactive Oxygen Biocatalysts. NANO LETTERS 2025; 25:1404-1413. [PMID: 39727164 DOI: 10.1021/acs.nanolett.4c05103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Developing artificial enzymes based on organic molecules or polymers for reactive oxygen biocatalysis has broad applicability. Here, inspired by heme-based enzyme systems, we construct the abiological iron group metal-based polyporphyrin (Ru/Os-coordinated porphyrin-based biocatalyst, Ru/Os-PorBC) to serve as a new generation of efficient and versatile reactive oxygen species (ROS)-related biocatalyst. Due to the structural benefits, including excellent electron configuration, appropriate bandgap, and optimized adsorption and activation of reaction intermediates, Ru/Os-PorBC shows unparalleled ROS-production activities regarding maximum reaction rate and turnover numbers, which also demonstrates superior pH and temperature adaptability compared to natural enzymes. Impressively, the Os-PorBC manifests the most efficacious ROS-production capabilities, surpassing not only Ru/Fe-PorBC but also the existing state-of-the-art ROS-related biocatalyst. Our findings provide a pivotal direction for developing next-generation polyporphyrin-based biocatalysts, setting the stage for a new era of upgrading the artificial metalloenzymes by abiological metals.
Collapse
Affiliation(s)
- Qian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Berlin 14195, Germany
- Department of Organic Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad 68137-17133, Iran
| | - Xiaohui Xu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Endodontics, State Key Laboratory of Oral Diseases, National Center for Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Ge K, Bai Z, Wang J, Li Z, Gao F, Liu S, Zhang L, Gao F, Xie C. Engineering EVs-Mediated mRNA Delivery Regulates Microglia Function and Alleviates Depressive-Like Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2418872. [PMID: 39838773 DOI: 10.1002/adma.202418872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Indexed: 01/23/2025]
Abstract
The development of new non-neurotransmitter drugs is an important supplement to the clinical treatment of major depressive disorder. The latest development of mRNA therapy provides the possibility for the treatment of some major diseases. The endoplasmic reticulum (ER) and mitochondria constitute a highly interconnected set of fundamental organelles within cells. The interconnection between them forms specific microdomains that play pivotal roles in calcium signaling, mitochondrial dynamics, inflammation, and autophagy. Perturbations in ER-mitochondrial connections may contribute to the progression of neurological disorders and other diseases. Herein, an extracellular vesicles-based delivery system, grounded in mRNA gene therapy and integrated with nanomedicine technology is devised. This system is engineered to traverse the blood-brain barrier and specifically target the central nervous system (CNS), facilitating the simultaneous delivery of mRNA drugs and metallic nanozymes into the brain. This dual-pronged approach, targeting ER and mitochondrial crosstalk, inhibits microglial overactivation, promotes M2 polarization of microglia, and suppresses the NF-κB signaling pathway. Consequently, it significantly alleviates Lipopolysaccharides-induced neuroinflammatory responses and ameliorates anxiety- and depression-like behaviors. This study demonstrates a novel antidepressant therapeutic strategy and establishes a new paradigm for mRNA gene therapy in CNS diseases.
Collapse
Affiliation(s)
- Kezhen Ge
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Zetai Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Jiwei Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Fenfang Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Sangni Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
| | - Ling Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
| |
Collapse
|
7
|
Yu X, Zhang L, He X, Bai W, Tan H, Li Q, Shen Y, Luo Y, Yao Y, Li S, Bai H, Hu J, Zhuang W, Chen L, Sun X, Hu W. Gold Nanoparticles Decorated CoAl LDH Monolayer: A Peroxidase-Like Nanozyme for Sensitive Colorimetric Detection of Acetylcholinesterase and Inhibitors. Inorg Chem 2024; 63:24065-24070. [PMID: 39651768 DOI: 10.1021/acs.inorgchem.4c04416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Monitoring acetylcholinesterase (AChE) activity and its inhibitor is crucial yet challenging for the early diagnosis and treatment of neurological diseases. In this study, we present Au nanoparticle decorated CoAl layered double hydroxide monolayer (Au@CoAl-LDH-m) as a peroxidase-like (POD) nanozyme for the sensitive colorimetric detection of AChE and its inhibitor, thiamine pyrophosphate (TPP). Remarkably, the Au@CoAl-LDH-m nanozyme can catalyze the oxidation of chromogenic substrates through its POD-like activity, which is effectively inhibited by thiocholine (TCh, a catalytic product of AChE), thereby enabling detection of AChE and TPP through a visible colorimetric readout. The approach provides a highly sensitive and specificity assay with a broader linear response range (1-100 mU mL-1 for AChE and 1-1000 ng mL-1 for TPP) and a low detection limit (0.092 mU mL-1 for AChE and 0.201 ng mL-1 for TPP), respectively. These results highlight the significant potential of Au@CoAl-LDH-m for advancing colorimetric sensors in detecting small molecules across various biological applications.
Collapse
Affiliation(s)
- Xingzhi Yu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Limei Zhang
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Xun He
- Center for High Altitude·Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Weiyi Bai
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Huiling Tan
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Qing Li
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Yan Shen
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Yongsong Luo
- Center for High Altitude·Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yongchao Yao
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Shufen Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hao Bai
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Jie Hu
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Weihua Zhuang
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| | - Lei Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuping Sun
- Center for High Altitude·Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Wenchuang Hu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu 610213, Sichuan, China
| |
Collapse
|
8
|
Feng MH, Chen DQ, Gao SJ, Ge D, Chen X, Ma M, Shen ZL, Chu XQ. Defluorinative Diazolation-Cyclization Relay for Synthesis of Furan-Bridged Triheterocycles and Colorimetric Sensor Application. Chemistry 2024:e202404324. [PMID: 39688877 DOI: 10.1002/chem.202404324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Polyaromatics, as the assembly of diverse cyclic π-systems, exhibit unique physicochemical properties when compared to their individual constituents. In this study, we developed a strategic connection of two azacycles via a furan bridge through a defluorinative diazolation-cyclization reaction of trifluoromethyl enones and N-heterocycles. A range of modular 2,4-furan-bridged triheterocycles (FBTHs), featuring a C3-trifluoromethyl group, was synthesized with broad substrate scope and good regioselectivity under transition metal-free conditions. This three-component protocol was achieved through successive C(sp3)-F bond functionalization of one trifluoromethyl group, which is recognized for its stability and durability. Moreover, the synthetically useful functionalities such as bromide and formyl group could be easily installed on the resulting products, and the imidazole-containing FBTH could serve as a valuable ligand in the preparation of an advanced colorimetric sensor, thereby underscoring their potential applications.
Collapse
Affiliation(s)
- Man-Hang Feng
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Da-Qing Chen
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Shu-Ji Gao
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Danhua Ge
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiaojun Chen
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
9
|
Zhou J, Liu C, Zhong Y, Luo Z, Wu L. A Review of Current Developments in Functionalized Mesoporous Silica Nanoparticles: From Synthesis to Biosensing Applications. BIOSENSORS 2024; 14:575. [PMID: 39727840 PMCID: PMC11727617 DOI: 10.3390/bios14120575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/28/2024]
Abstract
Functionalized mesoporous silica nanoparticles (MSNs) have been widely investigated in the fields of nanotechnology and material science, owing to their high surface area, diverse structure, controllable cavity, high biocompatibility, and ease of surface modification. In the past few years, great efforts have been devoted to preparing functionalized MSNs for biosensing applications with satisfactory performance. The functional structure and composition in the synthesis of MSNs play important roles in high biosensing performance. With the development of material science, diverse functional units have been rationally incorporated into mesoporous structures, which endow MSNs with design flexibility and multifunctionality. Here, an overview of the recent developments of MSNs as nanocarriers is provided, including the methodologies for the preparation of MSNs and the nanostructures and physicochemical properties of MSNs, as well as the latest trends of MSNs and their use in biosensing. Finally, the prospects and challenges of MSNs are presented.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Chen Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Yujun Zhong
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China;
| | - Zhihui Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000, China;
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruit and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Wang C, Wang L, Nallathambi V, Liu Y, Kresse J, Hübner R, Reichenberger S, Gault B, Zhan J, Eychmüller A, Cai B. Structural Regulation of Au-Pt Bimetallic Aerogels for Catalyzing the Glucose Cascade Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405200. [PMID: 39136065 DOI: 10.1002/adma.202405200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/24/2024] [Indexed: 10/11/2024]
Abstract
Bimetallic nanostructures are promising candidates for the development of enzyme-mimics, yet the deciphering of the structural impact on their catalytic properties poses significant challenges. By leveraging the structural versatility of nanocrystal aerogels, this study reports a precise control of Au-Pt bimetallic structures in three representative structural configurations, including segregated, alloy, and core-shell structures. Benefiting from a synergistic effect, these bimetallic aerogels demonstrate improved peroxidase- and glucose oxidase-like catalytic performances compared to their monometallic counterparts, unleashing tremendous potential in catalyzing the glucose cascade reaction. Notably, the segregated Au-Pt aerogel shows optimal catalytic activity, which is 2.80 and 3.35 times higher than that of the alloy and core-shell variants, respectively. This enhanced activity is attributed to the high-density Au-Pt interface boundaries within the segregated structure, which foster greater substrate affinity and superior catalytic efficiency. This work not only sheds light on the structure-property relationship of bimetallic catalysts but also broadens the application scope of aerogels in biosensing and biological detections.
Collapse
Affiliation(s)
- Cui Wang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
- Physical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Lingwei Wang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | - Varatharaja Nallathambi
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141, Essen, Germany
- Max-Planck-Institut for Sustainable Materials, Max-Planck-Str.1, 40237, Düsseldorf, Germany
| | - Yuanwu Liu
- Physical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Johannes Kresse
- Physical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Sven Reichenberger
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Baptiste Gault
- Max-Planck-Institut for Sustainable Materials, Max-Planck-Str.1, 40237, Düsseldorf, Germany
- Department of Materials, Royal School of Mines, Imperial College London, London, SW72AZ, UK
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | | | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| |
Collapse
|
11
|
Chen Y, Wu Y, Xu W, Tang Y, Cai Y, Yu X, Li J, Qiu Y, Hu L, Gu W, Zhu C. Nanozyme-Based Microfluidic Chip System for pH-Regulated Pretreatment and Sensitive Sensing. Anal Chem 2024. [PMID: 39270057 DOI: 10.1021/acs.analchem.4c02415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Nanozymes, possessing nanomaterial properties and catalytic activities, offer great opportunities to design sensitive analytical detection systems. However, the low interference resistance of nanozymes poses a significant limitation on the precise detection of target substances. Herein, a nanozyme-based microfluidic chip system for pH-regulated pretreatment and sensitive sensing of cysteine (Cys) is reported. The copper metal-organic framework (Cu MOF) exhibits good cysteine oxidase-like activity at pH 7.0, while demonstrating excellent laccase-like activity at pH 8.0. Taking advantage of the pH-regulated enzyme-like activity, the integrated microfluidic device involving the immobilization of Cu MOF eliminates the interference of dopamine (DA) and accurately detects the target Cys. Compared with the untreated reaction system, the developed nanozyme system shows a significantly improved accuracy in detecting Cys, with an R2 value of 0.9914. This work provides an efficient method to enhance the interference resistance of nanozymes and broadens the application in sample pretreatment.
Collapse
Affiliation(s)
- Yifei Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yu Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yinjun Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yujia Cai
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xin Yu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jian Li
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yiwei Qiu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
12
|
Ma Y, Yi S, Gao C, Yang M, Feng D, Ren Y, Ge H. Al 2O 3-Stabilized Pt Nanozymes: Peroxidase Mimetics and Application in Glucose Detection. Chempluschem 2024; 89:e202300609. [PMID: 38031890 DOI: 10.1002/cplu.202300609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
As promising alternatives for natural enzymes, much attention has been paid to nanozymes. And our recent study showed that the medium acid sites on the support are the active sites for the adsorption and oxidation of the substrate. Thus, in this work, due to the abundance of medium acid sites, Al2O3 was chosen as the support to prepare Pt/Al2O3 nanozymes. Through the Pt/Al2O3 samples, we further proved that the distribution of the Pt clusters and the amount of the medium acid sites can significantly influence the peroxidase-like activity. Then the Pt/Al2O3 sample was used for the detection of glucose. And as low as 0.96 μM glucose could be detected with a linear range from 5-60 μM via our method. This work showed the great potential applications of the easily prepared Pt/Al2O3 samples in varieties of simple, robust, and easy-to-make analytical approaches in the future.
Collapse
Affiliation(s)
- Yawen Ma
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - Siwen Yi
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - Chuhan Gao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - Man Yang
- School of Materials Science and Engineering, Xi'an University of Technology, 710048, Xi'an, P. R. China
| | - Dan Feng
- Analytical & Testing Center, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - Yujing Ren
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| | - Huibin Ge
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, P. R. China
| |
Collapse
|
13
|
Li Q, Zhan S, Yang X, Zhang Z, Sun N, Wang X, Kang J, Du R, Hong X, Yue M, Li X, Tang Y, Liu G, Liu Y, Liu D. Choline Phosphate-Grafted Nanozymes as Universal Extracellular Vesicle Probes for Bladder Cancer Detection. ACS NANO 2024; 18:16113-16125. [PMID: 38857428 DOI: 10.1021/acsnano.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Urinary extracellular vesicles (uEVs) are regarded as highly promising liquid-biopsy biomarkers for the early diagnosis and prognosis of bladder cancer (BC). However, detection of uEVs remains technically challenging owing to their huge heterogeneity and ultralow abundance in real samples. We herein present a choline phosphate-grafted platinum nanozyme (Pt@CP) that acts as a universal EV probe for the construction of a high-throughput and high-sensitivity immunoassay, which allowed multiplex profiling of uEV protein markers for BC detection. With the Pt@CP-based immunoassays, three uEV protein markers (MUC-1, CCDC25, and GLUT1) were identified for BC, by which the BC cases (n = 48), cystitis patients (n = 27), and healthy donors (n = 24) were discriminated with high clinical sensitivity and specificity (area under curve = 98.3%). For the BC cases (n = 9) after surgery, the Pt@CP-based immunoassay could report the postoperative residual tumor that cannot be observed by cystoscopy, which is clinically significant for assessing BC recurrence. This work provides generally high sensitivity for EV detection, facilitating the discovery and clinical use of EV-based biomarkers.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Saisong Zhan
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Xiaoqing Yang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhaowei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ning Sun
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingjing Kang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rui Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoqin Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Minghao Yue
- Department of Urology, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Xiaomin Li
- Medical and Hygienic Materials Research Institute, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yujing Tang
- Medical and Hygienic Materials Research Institute, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Guangming Liu
- Department of Urology, Tianjin First Central Hospital, Nankai University, Tianjin 300192, China
| | - Yue Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry, Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Centers for Cell Responses and New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Dutta S, Sinelshchikova A, Andreo J, Wuttke S. Nanoscience and nanotechnology for water remediation: an earnest hope toward sustainability. NANOSCALE HORIZONS 2024; 9:885-899. [PMID: 38591932 DOI: 10.1039/d4nh00056k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Water pollution and the global freshwater crisis are the most alarming concerns of the 21st century, as they threaten the sustainability and ecological balance of the environment. The growth of global population, climate change, and expansion of industrial processes are the main causes of these issues. Therefore, effective remediation of polluted water by means of detoxification and purification is of paramount importance. To this end, nanoscience and nanotechnology have emerged as viable options that hold tremendous potential toward the advancement of wastewater treatment methods to enhance treatment efficiency along with augmenting water supply via utilization of unconventional water sources. Materials at the nano level have shown great promise toward water treatment applications owing to their unique physicochemical properties. In this focus article, we highlight the role of new fundamental properties at the nano scale and material properties that are drastically increased due to the nano dimension (e.g. volume-surface ratio) and highlight their impact and potential toward water treatment. We identify and discuss how nano-properties could improve the three main domains of water remediation: the identification of pollutants, their adsorption and catalytic degradation. After discussing all the beneficial aspects we further discuss the key challenges associated with nanomaterials for water treatment. Looking at the current state-of-the-art, the potential as well as the challenges of nanomaterials, we believe that in the future we will see a significant impact of these materials on many water remediation strategies.
Collapse
Affiliation(s)
- Subhajit Dutta
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Anna Sinelshchikova
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Jacopo Andreo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48950 Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
15
|
Wang M, Tian F, Xin Q, Ma H, Liu L, Yang S, Sun S, Song N, Tan K, Li Z, Zhang L, Wang Q, Feng L, Wang H, Wang Z, Zhang XD. In Vivo Toxicology of Metabolizable Atomically Precise Au 25 Clusters at Ultrahigh Doses. Bioconjug Chem 2024; 35:540-550. [PMID: 38557019 DOI: 10.1021/acs.bioconjchem.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ultrasmall Au25(MPA)18 clusters show great potential in biocatalysts and bioimaging due to their well-defined, tunable structure and properties. Hence, in vivo pharmacokinetics and toxicity of Au nanoclusters (Au NCs) are very important for clinical translation, especially at high dosages. Herein, the in vivo hematological, tissue, and neurological effects following exposure to Au NCs (300 and 500 mg kg-1) were investigated, in which the concentration is 10 times higher than in therapeutic use. The biochemical and hematological parameters of the injected Au NCs were within normal limits, even at the ultrahigh level of 500 mg kg-1. Meanwhile, no histopathological changes were observed in the Au NC group, and immunofluorescence staining showed no obvious lesions in the major organs. Furthermore, real-time near-infrared-II (NIR-II) imaging showed that most of the Au25(MPA)18 and Au24Zn1(MPA)18 can be metabolized via the kidney. The results demonstrated that Au NCs exhibit good biosafety by evaluating the manifestation of toxic effects on major organs at ultrahigh doses, providing reliable data for their application in biomedicine.
Collapse
Affiliation(s)
- Miaoyu Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Huizhen Ma
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Ling Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuyu Yang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - KeXin Tan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhenhua Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Lijie Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Liefeng Feng
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|