1
|
Farooq A, Wanyan H, Lu S, Mosisa MT, Zhou X, Xiao H, Liu K, Huang L, Chen L, Wu H. A review on cellulose-based derivatives and composites for sustainable rechargeable batteries. Int J Biol Macromol 2025; 308:142528. [PMID: 40157673 DOI: 10.1016/j.ijbiomac.2025.142528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Batteries have become an integral part of today's life and are presented as the most appropriate approach for energy storage; however, the environmental impacts of their vast usage need to be considered. Therefore, it is essential to incorporate eco-friendly materials to design batteries. Cellulose, the most abundant natural polymer, comprises excellent physical, mechanical, and chemical properties. It presents a broad group of functional materials ranging from macro to nanoscale composites that exhibit their potential in energy-related fields. This review provides a comprehensive summary of structural features, the influence of cellulose-based materials on electrochemical performance, and potential applications of cellulose derivatives as separators, electrolytes, binders, and electrodes in advanced energy storage devices, including sodium-ion, zinc-ion, lithium-ion, and lithium‑sulfur batteries and gives an insight of the effects of derivatization on application and electrochemical performance of batteries. This review aims to comprehensively understand the vast applications of cellulose derivatives as vital parts of batteries. At last, an outlook of the current issues and future challenges for applications of cellulose-based materials in batteries is presented.
Collapse
Affiliation(s)
- Ambar Farooq
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China
| | - Hongying Wanyan
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China
| | - Shengchang Lu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China.
| | - Mentgistu Tadesse Mosisa
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China
| | - Xiaxing Zhou
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| | - He Xiao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Kai Liu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Liulian Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
2
|
Wu J, Ye H, Hu Y, Huang W, Zhu X, Chang W, Li Y, Pan B, Li Y, Lu J. Xanthate-Mediated Oxidation of Li 2S as the Lithium-Containing Cathode in Lithium-Sulfur Batteries with Extremely Low Overpotential. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411525. [PMID: 39404006 DOI: 10.1002/adma.202411525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/27/2024] [Indexed: 11/29/2024]
Abstract
Lithium-sulfide (Li2S) has long been pursued as a lithium-containing cathode material for high-energy-density lithium-sulfur (Li-S) batteries. Unfortunately, its direct oxidation generally has a large overpotential, giving rise to low energy efficiency. The use of redox mediators to accelerate the conversion of solid Li2S to polysulfides represents a possible solution to lower the initial oxidation overpotential. However, most reported redox mediators exhibit significantly higher redox potentials than the desirable value. Herein, it is serendipitously found that lithium ethyl xanthate (LiEX) formed from the reaction among Li2S, ethanol, and CS2 at room temperature is an efficient redox mediator. It has a redox potential (≈2.3 V vs Li+/Li) close to the electrochemical oxidation potential of Li2S (2.25 V vs Li+/Li), which enables fast Li2S oxidation reaction kinetics, and more importantly, lowers the Li2S oxidation potential from ≈3.6 to ≈2.3 V. When further integrated with an Ni-NC catalyst in a tandem catalysis scheme, a remarkable specific capacity of ≈1100 mAh g-1 at 0.2 mA cm-2 and long cycle life of 1400 cycles with ∼73% capacity retention is achieved, outperforming those of other Li2S-based cathode materials from recent literature.
Collapse
Affiliation(s)
- Jialing Wu
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Hualin Ye
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yongpan Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Wei Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Xinxin Zhu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wanwan Chang
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Ya Li
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Baojun Pan
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
| | - Yanguang Li
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
3
|
Ouyang Z, Wang S, Wang Y, Muqaddas S, Geng S, Yao Z, Zhang X, Yuan B, Zhao X, Xu Q, Tang S, Zhang Q, Li J, Sun H. An Ultralight Composite Current Collector Enabling High-Energy-Density and High-Rate Anode-Free Lithium Metal Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407648. [PMID: 38900369 DOI: 10.1002/adma.202407648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Anode-free lithium (Li) metal batteries are promising alternatives to current Li-ion batteries due to their advantages such as high energy density, low cost, and convenient production. However, the copper (Cu) current collector accounts for more than 25 wt% of the total weight of the anode-free battery without capacity contribution, which severely reduces the energy and power densities. Here, a new family of ultralight composite current collectors with a low areal density of 0.78 mg cm-2, representing significant weight reduction of 49%-91% compared with the Cu-based current collectors for high-energy Li batteries, is presented. Rational molecular engineering of the polyacylsemicarbazide substrate enables enhanced interfacial interaction with the sputtered Cu layer, which results in excellent interfacial stability, flexibility, and safety for the obtained anode-free batteries. The battery-level energy density has been significantly improved by 36%-61%, and a maximum rate capability reaches 5 C (10 mA cm-2) attributed to the homogeneous Li+ flux and smooth Li deposition on the nanostructured Cu layer. The results not only open a new avenue to improve the energy and power densities of anode-free batteries via composite current collector innovation but, in a broader context, provide a new paradigm to pursue high-performance, high-safety, and flexible batteries.
Collapse
Affiliation(s)
- Zhaofeng Ouyang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuo Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sheza Muqaddas
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shitao Geng
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhibo Yao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Yuan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoju Zhao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiuchen Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shanshan Tang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Sun
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Park J, Seong H, Yuk C, Lee D, Byun Y, Lee E, Lee W, Kim BJ. Design of Fluorinated Elastomeric Electrolyte for Solid-State Lithium Metal Batteries Operating at Low Temperature and High Voltage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403191. [PMID: 38713915 DOI: 10.1002/adma.202403191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/28/2024] [Indexed: 05/09/2024]
Abstract
This work demonstrates the low-temperature operation of solid-state lithium metal batteries (LMBs) through the development of a fluorinated and plastic-crystal-embedded elastomeric electrolyte (F-PCEE). The F-PCEE is formed via polymerization-induced phase separation between the polymer matrix and plastic crystal phase, offering a high mechanical strain (≈300%) and ionic conductivity (≈0.23 mS cm-1) at -10 °C. Notably, strong phase separation between two phases leads to the selective distribution of lithium (Li) salts within the plastic crystal phase, enabling superior elasticity and high ionic conductivity at low temperatures. The F-PCEE in a Li/LiNi0.8Co0.1Mn0.1O2 full cell maintains 74.4% and 42.5% of discharge capacity at -10 °C and -20 °C, respectively, compared to that at 25 °C. Furthermore, the full cell exhibits 85.3% capacity retention after 150 cycles at -10 °C and a high cut-off voltage of 4.5 V, representing one of the highest cycling performances among the reported solid polymer electrolytes for low-temperature LMBs. This work attributes the prolonged cycling lifetime of F-PCEE at -10 °C to the great mechanical robustness to suppress the Li-dendrite growth and ability to form superior LiF-rich interphases. This study establishes the design strategies of elastomeric electrolytes for developing solid-state LMBs operating at low temperatures and high voltages.
Collapse
Affiliation(s)
- Jinseok Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyeonseok Seong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Chanho Yuk
- Department of Polymer Science and Engineering, Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Dongkyu Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Youyoung Byun
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Wonho Lee
- Department of Polymer Science and Engineering, Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Ouyang Z, Wang Y, Wang S, Geng S, Zhao X, Zhang X, Xu Q, Yuan B, Tang S, Li J, Wang F, Yao G, Sun H. Programmable DNA Interphase Layers for High-Performance Anode-Free Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401114. [PMID: 38549402 DOI: 10.1002/adma.202401114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/01/2024] [Indexed: 04/05/2024]
Abstract
Anode-free lithium (Li) metal batteries are promising candidates for advanced energy storage, attributed to their appealing characteristics such as high energy density, low cost, and convenient production. However, their major challenges lie in the poor cycling and rate performance owing to the inferior reversibility and kinetics of Li plating and stripping, which significantly hinder their real-world applications. Here, it is demonstrated that deoxyribonucleic acid (DNA), the most important genetic material in nature, can serve as a highly programmable interphase layer for innovation of anode-free Li metal batteries. It is found that the abundant base pairs in DNA can contribute transient Li-N bonds that facilitate homogeneous Li+ flux, thus resulting in excellent Li plating/stripping kinetics and reversibility even at a harsh areal current of 15 mA cm-2. The anode-free LiFePO4 full batteries based on an ultrathin (0.12 µm) and ultralight (≈0.01 mg cm-2) DNA interphase layer show high CEs (≈99.1%) over 400 cycles, corresponding to an increase of ≈186% compared with bare copper (Cu) foil. These results shed light on the excellent programmability of DNA as a new family of interphase materials for anode-free batteries, and provide a new paradigm for future battery innovation toward high programmability, high sustainability, and remarkable electrochemical performance.
Collapse
Affiliation(s)
- Zhaofeng Ouyang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuo Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shitao Geng
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoju Zhao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiao Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiuchen Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Yuan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shanshan Tang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangbao Yao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Sun
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|