1
|
Huda S, Weigelin B, Wolf K, Tretiakov KV, Polev K, Wilk G, Iwasa M, Emami FS, Narojczyk JW, Banaszak M, Soh S, Pilans D, Vahid A, Makurath M, Friedl P, Borisy GG, Kandere-Grzybowska K, Grzybowski BA. Lévy-like movement patterns of metastatic cancer cells revealed in microfabricated systems and implicated in vivo. Nat Commun 2018; 9:4539. [PMID: 30382086 PMCID: PMC6208440 DOI: 10.1038/s41467-018-06563-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/13/2018] [Indexed: 12/12/2022] Open
Abstract
Metastatic cancer cells differ from their non-metastatic counterparts not only in terms of molecular composition and genetics, but also by the very strategy they employ for locomotion. Here, we analyzed large-scale statistics for cells migrating on linear microtracks to show that metastatic cancer cells follow a qualitatively different movement strategy than their non-invasive counterparts. The trajectories of metastatic cells display clusters of small steps that are interspersed with long "flights". Such movements are characterized by heavy-tailed, truncated power law distributions of persistence times and are consistent with the Lévy walks that are also often employed by animal predators searching for scarce prey or food sources. In contrast, non-metastatic cancerous cells perform simple diffusive movements. These findings are supported by preliminary experiments with cancer cells migrating away from primary tumors in vivo. The use of chemical inhibitors targeting actin-binding proteins allows for "reprogramming" the Lévy walks into either diffusive or ballistic movements.
Collapse
Affiliation(s)
- Sabil Huda
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Bettina Weigelin
- Department of Cell Biology (283) RIMLS, Radboud University Medical Centre, Geert Grooteplein 28, 6525, GA, Nijmegen, The Netherlands
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Katarina Wolf
- Department of Cell Biology (283) RIMLS, Radboud University Medical Centre, Geert Grooteplein 28, 6525, GA, Nijmegen, The Netherlands
| | - Konstantin V Tretiakov
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17/19, 60-179, Poznań, Poland
| | - Konstantin Polev
- IBS Center for Soft and Living Matter, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 689-798, South Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 689-798, South Korea
| | - Gary Wilk
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Masatomo Iwasa
- Center for General Education, Aichi Institute of Technology, 1247 Yachigusa Yakusacho, Toyota, 470-0392, Japan
| | - Fateme S Emami
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Jakub W Narojczyk
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17/19, 60-179, Poznań, Poland
| | - Michal Banaszak
- Faculty of Physics and NanoBioMedicine Centre, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland
| | - Siowling Soh
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Didzis Pilans
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Amir Vahid
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Monika Makurath
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Peter Friedl
- Department of Cell Biology (283) RIMLS, Radboud University Medical Centre, Geert Grooteplein 28, 6525, GA, Nijmegen, The Netherlands
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Cancer Genomics Centre Netherlands (CG.nl), Utrecht, Netherlands
| | - Gary G Borisy
- The Forsyth Institute, 245 First St., Cambridge, MA, 02142, USA
| | - Kristiana Kandere-Grzybowska
- IBS Center for Soft and Living Matter, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 689-798, South Korea.
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 689-798, South Korea.
| | - Bartosz A Grzybowski
- IBS Center for Soft and Living Matter, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 689-798, South Korea.
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, 689-798, South Korea.
| |
Collapse
|
2
|
Ermis M, Antmen E, Hasirci V. Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioact Mater 2018; 3:355-369. [PMID: 29988483 PMCID: PMC6026330 DOI: 10.1016/j.bioactmat.2018.05.005] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Cell-substrate interactions play a crucial role in the design of better biomaterials and integration of implants with the tissues. Adhesion is the binding process of the cells to the substrate through interactions between the surface molecules of the cell membrane and the substrate. There are several factors that affect cell adhesion including substrate surface chemistry, topography, and stiffness. These factors physically and chemically guide and influence the adhesion strength, spreading, shape and fate of the cell. Recently, technological advances enabled us to precisely engineer the geometry and chemistry of substrate surfaces enabling the control of the interaction cells with the substrate. Some of the most commonly used surface engineering methods for eliciting the desired cellular responses on biomaterials are photolithography, electron beam lithography, microcontact printing, and microfluidics. These methods allow production of nano- and micron level substrate features that can control cell adhesion, migration, differentiation, shape of the cells and the nuclei as well as measurement of the forces involved in such activities. This review aims to summarize the current techniques and associate these techniques with cellular responses in order to emphasize the effect of chemistry, dimensions, density and design of surface patterns on cell-substrate interactions. We conclude with future projections in the field of cell-substrate interactions in the hope of providing an outlook for the future studies.
Collapse
Affiliation(s)
- Menekse Ermis
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biomedical Engineering, Ankara, Turkey
| | - Ezgi Antmen
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biotechnology, Ankara, Turkey
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biomedical Engineering, Ankara, Turkey
- METU, Department of Biotechnology, Ankara, Turkey
- METU, Department of Biological Sciences, Ankara, Turkey
| |
Collapse
|
3
|
Li J, Jiang H. Regulating positioning and orientation of mitotic spindles via cell size and shape. Phys Rev E 2018; 97:012407. [PMID: 29448469 DOI: 10.1103/physreve.97.012407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 06/08/2023]
Abstract
Proper location of the mitotic spindle is critical for chromosome segregation and the selection of the cell division plane. However, how mitotic spindles sense cell size and shape to regulate their own position and orientation is still largely unclear. To investigate this question systematically, we used a general model by considering chromosomes, microtubule dynamics, and forces of various molecular motors. Our results show that in cells of various sizes and shapes, spindles can always be centered and oriented along the long axis robustly in the absence of other specified mechanisms. We found that the characteristic time of positioning and orientation processes increases with cell size. Spindles sense the cell size mainly by the cortical force in small cells and by the cytoplasmic force in large cells. In addition to the cell size, the cell shape mainly influences the orientation process. We found that more slender cells have a faster orientation process, and the final orientation is not necessarily along the longest axis but is determined by the radial profile and the symmetry of the cell shape. Finally, our model also reproduces the separation and repositioning of the spindle poles during the anaphase. Therefore, our work provides a general tool for studying the mitotic spindle across the whole mitotic phase.
Collapse
Affiliation(s)
- Jingchen Li
- Department of Modern Mechanics, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hongyuan Jiang
- Department of Modern Mechanics, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
4
|
Paschoalin RT, Traldi B, Aydin G, Oliveira JE, Rütten S, Mattoso LH, Zenke M, Sechi A. Solution blow spinning fibres: New immunologically inert substrates for the analysis of cell adhesion and motility. Acta Biomater 2017; 51:161-174. [PMID: 28069500 DOI: 10.1016/j.actbio.2017.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/16/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022]
Abstract
The control of cell behaviour through material geometry is appealing as it avoids the requirement for complex chemical surface modifications. Significant advances in new technologies have been made to the development of polymeric biomaterials with controlled geometry and physico-chemical properties. Solution blow spinning technique has the advantage of ease of use allowing the production of nano or microfibres and the direct fibre deposition on any surface in situ. Yet, in spite of these advantages, very little is known about the influence of such fibres on biological functions such as immune response and cell migration. In this work, we engineered polymeric fibres composed of either pure poly(lactic acid) (PLA) or blends of PLA and polyethylene glycol (PEG) by solution blow spinning and determined their impact on dendritic cells, highly specialised cells essential for immunity and tolerance. We also determined the influence of fibres on cell adhesion and motility. Cells readily interacted with fibres resulting in an intimate contact characterised by accumulation of actin filaments and focal adhesion components at sites of cell-fibre interactions. Moreover, cells were guided along the fibres and actin and focal adhesion components showed a highly dynamic behaviour at cell-fibre interface. Remarkably, fibres did not elicit any substantial increase of activation markers and inflammatory cytokines in dendritic cells, which remained in their immature (inactive) state. Taken together, these findings will be useful for developing new biomaterials for applications in tissue engineering and regenerative medicine.
Collapse
|
5
|
Teshima T, Onoe H, Tottori S, Aonuma H, Mizutani T, Kamiya K, Ishihara H, Kanuka H, Takeuchi S. High-Resolution Vertical Observation of Intracellular Structure Using Magnetically Responsive Microplates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3366-3373. [PMID: 27185344 DOI: 10.1002/smll.201600339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/09/2016] [Indexed: 06/05/2023]
Abstract
A vertical confocal observation system capable of high-resolution observation of intracellular structure is demonstrated. The system consists of magnet-active microplates to rotate, incline, and translate single adherent cells in the applied magnetic field. Appended to conventional confocal microscopes, this system enables high-resolution cross-sectional imaging with single-molecule sensitivity in single scanning.
Collapse
Affiliation(s)
- Tetsuhiko Teshima
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hiroaki Onoe
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Soichiro Tottori
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hiroka Aonuma
- Department of Tropical Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takeomi Mizutani
- Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Koki Kamiya
- Kanagawa Academy of Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | - Hirotaka Ishihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hirotaka Kanuka
- Department of Tropical Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|