1
|
Hu H, Zhou Y, Xi B, Li Y. Polymer Mechanochemistry in Confined Spaces. Angew Chem Int Ed Engl 2024:e202417357. [PMID: 39365280 DOI: 10.1002/anie.202417357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/05/2024]
Abstract
With the development of mechanophores, polymer mechanochemistry has emerged as a powerful tool for creating force-responsive materials with a variety of desired functions, ranging from color change to molecular release. However, it remains challenging to improve the efficiency of mechanochemical activation, especially for mechanophores embedded within polymer networks, which has profound implications for translating mechanochemical responses into materials-centered applications. The physical and chemical conditions under spatial confinement differ significantly from those in the surrounding bulk environment, offering opportunities to facilitate mechanochemical activation. In this Minireview, we discuss and summarize recent progress in polymer mechanochemistry within confined spaces including surfaces/interfaces, polymer assemblies, and other nanostructures, specifically focusing on the effects of spatial confinement on the enhancement of mechanophore activation. We envision that combining confinement effects with advances in molecular and materials engineering will further improve the activation efficiency, capitalizing more fully on the potential of mechanophores toward practical applications.
Collapse
Affiliation(s)
- Hui Hu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yang Zhou
- School of Textile Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, China
| | - Bin Xi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuanchao Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Hsu CC, Hsia FC, Weber B, de Rooij MB, Bonn D, Brouwer AM. Local Shearing Force Measurement during Frictional Sliding Using Fluorogenic Mechanophores. J Phys Chem Lett 2022; 13:8840-8844. [PMID: 36112048 PMCID: PMC9531245 DOI: 10.1021/acs.jpclett.2c02010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
When two macroscopic objects touch, the real contact typically consists of multiple surface asperities that are deformed under the pressure that holds the objects together. Application of a shear force makes the objects slide along each other, breaking the initial contacts. To investigate how the microscopic shear force at the asperity level evolves during the transition from static to dynamic friction, we apply a fluorogenic mechanophore to visualize and quantify the local interfacial shear force. When a contact is broken, the shear force is released and the molecules return to their dark state, allowing us to dynamically observe the evolution of the shear force at the sliding contacts. We find that the macroscopic coefficient of friction describes the microscopic friction well, and that slip propagates from the edge toward the center of the macroscopic contact area before sliding occurs. This allows for a local understanding of how surfaces start to slide.
Collapse
Affiliation(s)
- Chao-Chun Hsu
- van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Feng-Chun Hsia
- Advanced
Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
- van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bart Weber
- Advanced
Research Center for Nanolithography, Science Park 106, 1098 XG Amsterdam, The Netherlands
- van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Matthijn B. de Rooij
- Laboratory
for Surface Technology and Tribology, Department of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Daniel Bonn
- van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Albert M. Brouwer
- van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
3
|
Lai Y, Chen M, Wu Y, Zhang Y, Zhao X, Chen Z. Epoxy thermosets with a multicolor switching during both compression and recovery processes. J Appl Polym Sci 2022. [DOI: 10.1002/app.52898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yingsheng Lai
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang China
| | - Mao Chen
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang China
| | - Yeping Wu
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang China
| | - Yinyu Zhang
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang China
| | - Xiuli Zhao
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang China
| | - Zhongtao Chen
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang China
| |
Collapse
|
4
|
Vu H, Woodcock JW, Krishnamurthy A, Obrzut J, Gilman JW, Coughlin EB. Visualization of Polymer Dynamics in Cellulose Nanocrystal Matrices Using Fluorescence Lifetime Measurements. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10793-10804. [PMID: 35179343 DOI: 10.1021/acsami.1c21906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polymer nanocomposites containing self-assembled cellulose nanocrystals (CNCs) are ideal for advanced applications requiring both strength and toughness as the helicoidal structure of the CNCs deflects crack propagation and the polymer matrix dissipates impact energy. However, any adsorbed water layer surrounding the CNCs may compromise the interfacial adhesion between the polymer matrix and the CNCs, thus impacting stress transfer at that interface. Therefore, it is critical to study the role of water at the interface in connecting the polymer dynamics and the resulting mechanical performance of the nanocomposite. Here, we explore the effect of polymer confinement and water content on polymer dynamics in CNC nanocomposites by covalently attaching a fluorogenic water-sensitive dye to poly(diethylene glycol methyl ether methacrylate) (PMEO2MA), to provide insights into the observed mechanical performance. Utilizing fluorescence lifetime imaging microscopy (FLIM), the lifetime of dye fluorescence decay was measured to probe the polymer chain dynamics of PMEO2MA in CNC nanocomposite films. The PMEO2MA chains experienced distinct regions of differing dynamics within Bouligand structures. A correlation was observed between the average fluorescence lifetime and the mechanical performance of CNC films, indicating that polymer chains with high mobility improved the strain and toughness. These studies demonstrated FLIM as a method to investigate polymer dynamics at the nanosecond timescale that can readily be applied to other composite systems.
Collapse
Affiliation(s)
- Huyen Vu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jeremiah W Woodcock
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
| | - Ajay Krishnamurthy
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
| | - Jan Obrzut
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
| | - Jeffrey W Gilman
- Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
| | - E Bryan Coughlin
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
5
|
Chen Z, Ye F, Shao T, Wu Y, Chen M, Zhang Y, Zhao X, Zou B, Ma Y. Stress-Dependent Multicolor Mechanochromism in Epoxy Thermosets Based on Rhodamine and Diaminodiphenylmethane Mechanophores. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zhongtao Chen
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Fangjun Ye
- Beijing National Laboratory for Molecular Science, College of Chemistry, Peking University, Beijing 100871, China
| | - Tianyin Shao
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yeping Wu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Mao Chen
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yinyu Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiuli Zhao
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Science, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Stratigaki M, Baumann C, Göstl R. Confocal Microscopy Visualizes Particle–Crack Interactions in Epoxy Composites with Optical Force Probe-Cross-Linked Rubber Particles. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Stratigaki
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Christoph Baumann
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Robert Göstl
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| |
Collapse
|
7
|
Davis CS, Rencheck ML, Woodcock JW, Beams R, Wang M, Stranick S, Forster AM, Gilman JW. Activation of Mechanophores in a Thermoset Matrix by Instrumented Scratch. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55498-55506. [PMID: 34780164 DOI: 10.1021/acsami.1c15004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Scratches in polymer coatings and barrier layers negatively impact optical properties (haze, light transmission, etc.), initiate routes of degradation or corrosion (moisture permeability), and nucleate delamination of the coating. Detecting scratches in coatings on advanced materials systems is an important component of structural health monitoring but can be difficult if the defects are too small to be detected by the naked eye. The primary focus of the present work is to investigate scratch damage using fluorescence lifetime imaging microscopy (FLIM) and mechanical activation of a mechanophore (MP)-containing transparent epoxy coating. The approach utilizes a Berkovich tip to scratch MP-epoxy coatings under a linearly increasing normal load. The goal is to utilize the fluorescent behavior of activated MPs to enable the detection of microscale scratches and molecular scale changes in polymeric systems. Taking advantage of the amine functionality present in a polyetheramine/bisphenol A epoxy network, a modified rhodamine dye is covalently bonded into a transparent, thermoset polymer network. Following instrumented scratch application, subsequent fluorescence imaging of the scratched MP-epoxy reveals the extent of fluorescence activation induced by the mechanical deformation. In this work, the rhodamine-based mechanophore is used to identify both ductile and fracture-dominated processes during the scratch application. The fluorescence intensity increases linearly with the applied normal load and is sensitive to fracture dominated processes. Fluorescence lifetime and hyperspectral imaging of damage zones provide additional insight into the local (nanoscopic) environment and molecular structure of the MP around the fracture process zone, respectively. The mechanophore/scratch deformation approach allows a fluorescence microscope to probe local yielding and fracture events in a powerful way that enhances the optical characterization of damage zones formed by standard scratch test methods and leads to novel defect detection strategies.
Collapse
Affiliation(s)
- Chelsea S Davis
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2045, United States
| | - Mitchell L Rencheck
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907-2045, United States
| | - Jeremiah W Woodcock
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
| | - Ryan Beams
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
| | - Muzhou Wang
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
| | - Stephan Stranick
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
| | - Aaron M Forster
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
| | - Jeffrey W Gilman
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
| |
Collapse
|
8
|
Wang M, Schwindt A, Wu K, Qin Y, Kwan A, Tongay S, Green MD. Damage detection through Förster Resonance Energy Transfer in mechanoresponsive polymer nanocomposites. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Chen Y, Mellot G, van Luijk D, Creton C, Sijbesma RP. Mechanochemical tools for polymer materials. Chem Soc Rev 2021; 50:4100-4140. [DOI: 10.1039/d0cs00940g] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review aims to provide a field guide for the implementation of mechanochemistry in synthetic polymers by summarizing the molecules, materials, and methods that have been developed in this field.
Collapse
Affiliation(s)
- Yinjun Chen
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Gaëlle Mellot
- Laboratoire Sciences et Ingénierie de la Matière Molle
- ESPCI Paris
- PSL University
- Sorbonne Université
- CNRS
| | - Diederik van Luijk
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle
- ESPCI Paris
- PSL University
- Sorbonne Université
- CNRS
| | - Rint P. Sijbesma
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|
10
|
Zhang Y, Lund E, Gossweiler GR, Lee B, Niu Z, Khripin C, Munch E, Couty M, Craig SL. Molecular Damage Detection in an Elastomer Nanocomposite with a Coumarin Dimer Mechanophore. Macromol Rapid Commun 2020; 42:e2000359. [PMID: 32761960 DOI: 10.1002/marc.202000359] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Molecular force probes that generate optical responses to critical levels of mechanical stress (mechanochromophores) are increasingly attractive tools for identifying molecular sites that are most prone to failure. Here, a coumarin dimer mechanophore whose mechanical strength is comparable to that of the sulfur-sulfur bonds found in vulcanized rubbers is reported. It is further shown that the strain-induced scission of the coumarin dimer within the matrix of a particle-reinforced polybutadiene-based co-polymer can be detected and quantified by fluorescence spectroscopy, when cylinders of the nanocomposite are subjected to unconstrained uniaxial stress. The extent of the scission suggests that the coumarin dimers are molecular "weak links" within the matrix, and, by analogy, sulfur bridges are likely to be the same in vulcanized rubbers. The mechanophore is embedded in polymer main chains, grafting agent, and cross-linker positions in a polymer composite in order to generate experimental data to understand how macroscopic mechanical stress is transferred at the molecular scale especially in highly entangled cross-linked polymer nanocomposite. Finally, the extent of activation is enhanced by approximately an order of magnitude by changing the regiochemistry and stereochemistry of the coumarin dimer and embedding the mechanophore at the heterointerface of the particle-reinforced elastomer.
Collapse
Affiliation(s)
- Yudi Zhang
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Ethen Lund
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, 06511, USA
| | | | - Bobin Lee
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Zhenbin Niu
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | | | - Etienne Munch
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes Dechaux, 63000, Clermont-Ferrand, France
| | - Marc Couty
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes Dechaux, 63000, Clermont-Ferrand, France
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
11
|
Deneke N, Rencheck ML, Davis CS. An engineer's introduction to mechanophores. SOFT MATTER 2020; 16:6230-6252. [PMID: 32567642 DOI: 10.1039/d0sm00465k] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mechanophores (MPs) are a class of stimuli-responsive materials that are of increasing interest to engineers due to their potential applications as stress sensors. These mechanically responsive molecules change color or become fluorescent upon application of a mechanical stimulus as they undergo a chemical reaction when a load is applied. By incorporating MPs such as spirolactam, spiropyran, or dianthracene into a material system, the real-time stress distribution of the matrix can be directly observed through a visual response, ideal for damage and failure sensing applications. A wide array of applications that require continuous structural health monitoring could benefit from MPs including flexible electronics, protective coatings, and polymer matrix composites. However, there are significant technical challenges preventing MP implementation in industry. Effective strategies to quantitatively calibrate the photo response of the MP with applied stress magnitudes must be developed. Additionally, environmental conditions, including temperature, humidity, and ultraviolet light exposure can potentially impact the performance of MPs. By addressing these limitations, engineers can work to move MPs from the synthetic chemistry bench to the field. This review aims to highlight recent progress in MP research, discuss barriers to implementation, and provide an outlook on the future of MPs, specifically focused on polymeric material systems. Although the focus is on engineering MPs for bulk materials, a brief overview of mechanochemistry will be discussed followed by methods for activation and quantification of MP photo response (concentrating specifically on fluorescently active species). Finally, current challenges and future directions in MP research will be addressed.
Collapse
Affiliation(s)
- Naomi Deneke
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Mitchell L Rencheck
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, USA.
| | - Chelsea S Davis
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, USA.
| |
Collapse
|
12
|
Kelley M, Abdol N, Soroushian P, Keating K, Balachandra AM, Meldrum T. Monitoring real‐time curing of epoxies in situ using single‐sided NMR. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Kristina Keating
- Department of Earth and Environmental SciencesRutgers University Newark New Jersey
| | | | - Tyler Meldrum
- Department of ChemistryWilliam & Mary Williamsburg Virginia
| |
Collapse
|
13
|
Wang LJ, Yang KX, Zhou Q, Yang HY, He JQ, Zhang XY. Rhodamine Mechanophore Functionalized Mechanochromic Double Network Hydrogels with High Sensitivity to Stress. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2293-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Sulkanen AR, Sung J, Robb MJ, Moore JS, Sottos NR, Liu GY. Spatially Selective and Density-Controlled Activation of Interfacial Mechanophores. J Am Chem Soc 2019; 141:4080-4085. [DOI: 10.1021/jacs.8b10257] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Audrey R. Sulkanen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | | | - Maxwell J. Robb
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | | | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
15
|
Wang L, Zhou W, Tang Q, Yang H, Zhou Q, Zhang X. Rhodamine-Functionalized Mechanochromic and Mechanofluorescent Hydrogels with Enhanced Mechanoresponsive Sensitivity. Polymers (Basel) 2018; 10:E994. [PMID: 30960921 PMCID: PMC6403975 DOI: 10.3390/polym10090994] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 01/17/2023] Open
Abstract
Smart materials responsible to external stimuli such as temperature, pH, solvents, light, redox agents, and mechanical or electric/magnetic field, have drawn considerable attention recently. Herein, we described a novel rhodamine (Rh) mechanophore-based mechanoresponsive micellar hydrogel with excellent mechanochromic and mechanofluorescent properties. We found with astonishment that, due to the favorable activation of rhodamine spirolactam in the presence of water, together with the stress concentration effect, the mechanoresponsive sensitivity of this hydrogel was enhanced significantly. As a result, the stress needed to trigger the mechanochromic property of Rh in the hydrogel was much lower than in its native polymer matrix reported before. The hydrogel based on Rh, therefore, exhibited excellent mechanochromic property even at lower stress. Moreover, due to the reversibility of color on/off, the hydrogel based on Rh could be used as a reusable and erasable material for color printing/writing. Of peculiar importance is that the hydrogel could emit highly bright fluorescence under sufficient stress or strain. This suggested that the stress/strain of hydrogel could be detected quantificationally and effectively by the fluorescence data. We also found that the hydrogel could respond to acid/alkali and exhibited outstanding properties of acidichromism and acidifluorochromism. Up to now, hydrogels with such excellent mechanochromic and mechanofluorescent properties have rarely been reported. Our efforts may be essentially beneficial to the design of the mechanochromic and mechanofluorescent hydrogels with enhanced mechanoresponsive sensitivity, fostering their potential applications in a number of fields such as damage or stress/strain detection.
Collapse
Affiliation(s)
- Lijun Wang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Wanfu Zhou
- Oil Production Technology Institute, Daqing Oilfield Company Ltd., Daqing 163453, China.
| | - Quan Tang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Haiyang Yang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Qiang Zhou
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Xingyuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
16
|
Rifaie-Graham O, Apebende EA, Bast LK, Bruns N. Self-Reporting Fiber-Reinforced Composites That Mimic the Ability of Biological Materials to Sense and Report Damage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705483. [PMID: 29573286 DOI: 10.1002/adma.201705483] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/29/2017] [Indexed: 06/08/2023]
Abstract
Sensing of damage, deformation, and mechanical forces is of vital importance in many applications of fiber-reinforced polymer composites, as it allows the structural health and integrity of composite components to be monitored and microdamage to be detected before it leads to catastrophic material failure. Bioinspired and biomimetic approaches to self-sensing and self-reporting materials are reviewed. Examples include bruising coatings and bleeding composites based on dye-filled microcapsules, hollow fibers, and vascular networks. Force-induced changes in color, fluorescence, or luminescence are achieved by mechanochromic epoxy resins, or by mechanophores and force-responsive proteins located at the interface of glass/carbon fibers and polymers. Composites can also feel strain, stress, and damage through embedded optical and electrical sensors, such as fiber Bragg grating sensors, or by resistance measurements of dispersed carbon fibers and carbon nanotubes. Bioinspired composites with the ability to show autonomously if and where they have been damaged lead to a multitude of opportunities for aerospace, automotive, civil engineering, and wind-turbine applications. They range from safety features for the detection of barely visible impact damage, to the real-time monitoring of deformation of load-bearing components.
Collapse
Affiliation(s)
- Omar Rifaie-Graham
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Edward A Apebende
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Livia K Bast
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| |
Collapse
|