1
|
Li H, Sheng W, Chen J. Visible light-induced cascade sulfonylation/annulation of ortho-allyloxy chalcones with sodium sulfinates for the synthesis of sulfonated chromane derivatives. Org Biomol Chem 2024; 22:8827-8831. [PMID: 39397714 DOI: 10.1039/d4ob01319k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A visible-light-induced radical cascade reaction for the synthesis of structurally diverse sulfonated chromanes is described. The protocol involves the addition of sulfonyl radicals to ortho-allyloxy chalcones and intramolecular Michael addition reactions in the presence of eosin Y as a photocatalyst. Additionally, this protocol shows that it is also an effective method to construct seven-membered oxygen-containing heterocycles. The method features a wide substrate scope, the use of easily accessible materials and excellent functional group tolerance with high to excellent yields. Control experiments and mechanistic studies indicate that a visible light-induced radical cascade process is involved in the transformation.
Collapse
Affiliation(s)
- Huimin Li
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wenli Sheng
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Junmin Chen
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
2
|
Yu J, Yan X, Chen Y, Guo K, Wang S, Ma X. Pd-Catalyzed Aerobic Synthesis of Allylic Sulfones from Allylic Alcohols and Sulfonyl Hydrazines in Water. J Org Chem 2024; 89:10344-10348. [PMID: 38984991 DOI: 10.1021/acs.joc.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
A mild and green synthesis of allylic sulfones from allylic alcohols and sulfonyl hydrazines was developed in water media. The simple and commercially available Pd(PPh3)4 is used as the best catalyst, and the reaction can proceed smoothly at 40 °C under air. This new method does not require the common nitrogen protection and organic media, and can be readily scaled up in gram scale, showing the good practicality value.
Collapse
Affiliation(s)
- Jing Yu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xiaoyu Yan
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yuying Chen
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Kexin Guo
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shuo Wang
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xiantao Ma
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| |
Collapse
|
3
|
Chang CY, Aponick A. Enantioselective Synthesis of Allylic Sulfones via Rhodium-Catalyzed Direct Hydrosulfonylation of Allenes and Alkynes. J Am Chem Soc 2024; 146:16996-17002. [PMID: 38875709 DOI: 10.1021/jacs.4c05629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
A highly regio- and enantioselective hydrosulfonylation using commercially available sodium sulfinates is reported, providing the first direct asymmetric rhodium-catalyzed hydrosulfonylation of allenes/alkynes to synthesize chiral allylic sulfones. Ligand screening studies demonstrated the indispensable role of the C1-symmetric P,N-ligand (Rax,S,S)-StackPhim for achieving both high regioselecitivity (>20:1) and enantioselectivity (up to 97% ee). Notably, the operationally simple method and mild conditions allow for the rapid preparation of chiral allylic sulfones with a wide scope of functional groups. Moreover, the use of sodium tert-butyldimethylsilyloxymethanesulfinate enables the collective synthesis of various chiral sulfone derivatives after simple transformations of the protected hydroxymethyl product.
Collapse
Affiliation(s)
- Chieh-Yu Chang
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Aaron Aponick
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
4
|
Yang Y, Zhu H, Gong B, Yang H, Fan Q, Le ZG, Xie Z. Neutral nickel-catalyzed dehydrosulfonylation of unactivated allylic alcohols under mild conditions. Chem Commun (Camb) 2024; 60:2516-2519. [PMID: 38324066 DOI: 10.1039/d3cc06036e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Allyl sulfones are important sulfur-containing compounds that have widespread applications in organic synthesis, medicinal chemistry and materials science. Herein, nickel-catalysed dehydrosulfonylation of unactivated allyl alcohols with aryl sulfonyl hydrazides without additional active agents under mild conditions was developed. A variety of functional allyl sulfones could be efficiently synthesized in the presence of air-stable Ni(acac)2 as the catalyst and 1,1'-bis(diphenylphosphino)ferrocene (DPPF) as the ligand.
Collapse
Affiliation(s)
- Yahui Yang
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Haibo Zhu
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Bozhen Gong
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Hong Yang
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Qiangwen Fan
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Zhang-Gao Le
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Zongbo Xie
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| |
Collapse
|
5
|
Cao JM, Zhu WC, Liu XY, Rao W, Shen SS, Sheng DP, Wang SY. Simultaneous Preparation of Sulfides/Selenides and Sulfones via Synergistic Nickel-Catalyzed Reductive Coupling and S N2 Reaction. Org Lett 2023; 25:9207-9212. [PMID: 38113225 DOI: 10.1021/acs.orglett.3c03777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Sulfone compounds and thioether compounds are two highly valuable classes of compounds, but it is challenging to prepare sulfone and thioether compounds simultaneously and efficiently. Here we report that sulfides/selenides and sulfones can be obtained simultaneously using allyl bromide/benzyl bromide-activated alkyl bromides and thiosulfonates/selenosulfonates using a nickel-catalyzed reductive coupling and SN2 synergistic strategy, which is characterized by excellent atom and step economy, mild reaction conditions, broad functional group compatibility, and excellent yields.
Collapse
Affiliation(s)
- Ji-Min Cao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Wei-Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xin-Yu Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99 Xuefu Road, Huqiu District, Suzhou 215009, P. R. China
| | - Dao-Peng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Li MD, Wang ZH, Zhu H, Wang XR, Wang JR, Lin TY. Copper-Catalyzed Remote Enantioselective Sulfonylation of Yne-Allylic Esters with Sodium Sulfinates. Angew Chem Int Ed Engl 2023; 62:e202313911. [PMID: 37953441 DOI: 10.1002/anie.202313911] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Impressive progress has been made in the copper-catalyzed asymmetric propargylic substitution (APS) reaction, but its use in remote asymmetric yne-allylic substitution remains a challenging topic. Herein, we report the first remote enantioselective copper-catalyzed sulfonylation of yne-allylic esters with sodium sulfinates. The reaction is assumed to occur via a copper-vinylvinylidene species as the key reactive intermediate. The use of readily available starting materials, the mild reaction conditions, and the excellent regio-, enantio- and stereoselectivity, as well as broad substrate scope (>70 examples), show the practicality and attractiveness of this method.
Collapse
Affiliation(s)
- Meng-Die Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Zi-Han Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Hui Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Xin-Ru Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Jia-Run Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Tao-Yan Lin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| |
Collapse
|
7
|
Wang Y, Wu G, Yan K, Qin J, Liu R, Rong N, Tang Y, Loh TP, Xie P. Sulfination of Unactivated Allylic Alcohols via Sulfinate-Sulfone Rearrangement. Org Lett 2023. [PMID: 38059565 DOI: 10.1021/acs.orglett.3c03709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
A dehydrative cross-coupling of unactivated allylic alcohols with sulfinic acids was achieved under catalyst-free conditions. This reaction proceeded via allyl sulfination and concomitant allyl sulfinate-sulfone rearrangement. Various allylic sulfones could be obtained in good to excellent yields with water as the only byproduct. This study expands the synthetic toolbox for constructing allylic sulfone molecules.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guangming Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kaiyu Yan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiaheng Qin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rui Liu
- Anhui JinTung Fine Chemical Co., Ltd, Cihu Economic & Technical Development Zone, Maanshan 243000, China
| | - Nannan Rong
- Anhui JinTung Fine Chemical Co., Ltd, Cihu Economic & Technical Development Zone, Maanshan 243000, China
| | - Yongming Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
8
|
Rehman SU, Li C. Rhodium-Catalyzed Regio- and Enantioselective Allylic Sulfonylation from Sulfonyl Hydrazides. Org Lett 2023; 25:3693-3697. [PMID: 37184285 DOI: 10.1021/acs.orglett.3c01124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A highly regio- and enantioselective allylic sulfonylation has been developed with rhodium and bisoxazolinephosphine (NPN*) ligands from racemic branched allylic carbonates and readily available sulfonyl hydrazides under neutral conditions. Branch-selective allylic sulfones with a >20:1 branch:linear ratio and >99% ee could be synthesized in ≤96% yield. Both Z and E linear allylic carbonates could also be converted into the same chiral branched allylic sulfones with high regio- and enantioselectivities.
Collapse
Affiliation(s)
- Sajid Ur Rehman
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
9
|
Xiang YJ, Liu S, Zhou J, Lin JH, Yao X, Xiao JC. Dehydroxylative Sulfonylation of Alcohols. J Org Chem 2023; 88:4818-4828. [PMID: 36913713 DOI: 10.1021/acs.joc.2c03085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Described here is the R3P/ICH2CH2I-promoted dehydroxylative sulfonylation of alcohols with a variety of sulfinates. In contrast to previous dehydroxylative sulfonylation methods, which are usually limited to active alcohols, such as benzyl, allyl, and propargyl alcohols, our protocol can be extended to both active and inactive alcohols (alkyl alcohols). Various sulfonyl groups can be incorporated, such as CF3SO2 and HCF2SO2, which are fluorinated groups of interest in pharmaceutical chemistry and the installation of which has received increasing attention. Notably, all reagents are cheap and widely available, and moderate to high yields were obtained within 15 min of reaction time.
Collapse
Affiliation(s)
- Yi-Jun Xiang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, PR China
| | - Shun Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China
| | - Jing Zhou
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, PR China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, PR China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, PR China
| |
Collapse
|
10
|
Li X, Liao J, Zhuo X, Wang H, Chai X, Zou Y, Zhao Q. Enantioselective [3+2] cycloadditions of terminal allenoates with β-sulfonyl-α,β-unsaturated ketones. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
Luo Z, Liu ZQ, Yang TT, Zhuang X, Hong CM, Zou FF, Xue ZY, Li QH, Liu TL. 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP)-Assisted Catalyst-Free Sulfonation of Allylic Alcohols with Sulfinyl Amides. Org Lett 2022; 24:741-745. [PMID: 34989575 DOI: 10.1021/acs.orglett.1c04206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A highly regioselective and catalyst-free sulfonation of allylic alcohols with sulfinyl amides has been realized. Such a mix-and-go procedure provides a convenient approach to synthetically various allylic sulfones under mild reaction conditions. Furthermore, this novel reaction shows ample substrate scope and outstanding functional group tolerance and could also be scaled-up. Meanwhile, it is the first example that sulfinyl amides act as a powerful sulfur nucleophile in the reactions. 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) as a solvent plays a critical role in allylic sulfonation.
Collapse
Affiliation(s)
- Zhen Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zheng-Qiang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ting-Ting Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhuang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fei-Fei Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi-Yong Xue
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Palladium-catalyzed substitution of allylic alcohols with sulfinate salts: A synthesis of bicalutamide. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Reddy RJ, Kumari AH. Synthesis and applications of sodium sulfinates (RSO 2Na): a powerful building block for the synthesis of organosulfur compounds. RSC Adv 2021; 11:9130-9221. [PMID: 35423435 PMCID: PMC8695481 DOI: 10.1039/d0ra09759d] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/31/2021] [Indexed: 12/15/2022] Open
Abstract
This review highlights the preparation of sodium sulfinates (RSO2Na) and their multifaceted synthetic applications. Substantial progress has been made over the last decade in the utilization of sodium sulfinates emerging as sulfonylating, sulfenylating or sulfinylating reagents, depending on reaction conditions. Sodium sulfinates act as versatile building blocks for preparing many valuable organosulfur compounds through S-S, N-S, and C-S bond-forming reactions. Remarkable advancement has been made in synthesizing thiosulfonates, sulfonamides, sulfides, and sulfones, including vinyl sulfones, allyl sulfones, and β-keto sulfones. The significant achievement of developing sulfonyl radical-triggered ring-closing sulfonylation and multicomponent reactions is also thoroughly discussed. Of note, the most promising site-selective C-H sulfonylation, photoredox catalytic transformations and electrochemical synthesis of sodium sulfinates are also demonstrated. Holistically, this review provides a unique and comprehensive overview of sodium sulfinates, which summarizes 355 core references up to March 2020. The chemistry of sodium sulfinate salts is divided into several sections based on the classes of sulfur-containing compounds with some critical mechanistic insights that are also disclosed.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University Hyderabad 500 007 India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University Hyderabad 500 007 India
| |
Collapse
|
14
|
Liu G, Yin C, Yang X, Li A, Wang M, Zhang X, Dong XQ. Highly Chemo- and Enantioselective Rh-Catalyzed Hydrogenation of β-Sulfonyl-α,β-unsaturated Ketones: Access to Chiral γ-Ketosulfones. Org Lett 2021; 23:19-24. [PMID: 33352045 DOI: 10.1021/acs.orglett.0c03517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rh-catalyzed highly chemo- and enantioselective hydrogenation of β-sulfonyl-α,β-unsaturated ketones was first successfully developed. Remarkably, a variety of enantioenriched γ-ketosulfones were generated in good to high yields with excellent chemo/enantioselectivities (82-99% yields, >99:1 chemoselectivity, 88 to >99% ee). Moreover, the gram-scale asymmetric hydrogenation was carried out smoothly in 97% yield and 97% ee. Preliminary DFT computations furnished a reasonable explanation for the high chemoselectivity and enantioselectivity.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Congcong Yin
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Xuanliang Yang
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Anqi Li
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Xumu Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Xiu-Qin Dong
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China.,Suzhou Institute of Wuhan University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
15
|
Li M, Cheng L, Xiao L, Xie J, Zhou Q. Palladium‐Catalyzed Asymmetric Hydrosulfonylation of 1,3‐Dienes with Sulfonyl Hydrazides. Angew Chem Int Ed Engl 2020; 60:2948-2951. [DOI: 10.1002/anie.202012485] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Ming‐Ming Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Lei Cheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Li‐Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jian‐Hua Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Qi‐Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
16
|
Li M, Cheng L, Xiao L, Xie J, Zhou Q. Palladium‐Catalyzed Asymmetric Hydrosulfonylation of 1,3‐Dienes with Sulfonyl Hydrazides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ming‐Ming Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Lei Cheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Li‐Jun Xiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jian‐Hua Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Qi‐Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
17
|
Yu J, Chang X, Ma R, Zhou Q, Wei M, Cao X, Ma X. Water‐Promoted Dehydrative Tsuji–Trost Reaction of Non‐Derivatized Allylic Alcohols with Sulfinic Acids. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jing Yu
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Xueping Chang
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Ruitian Ma
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Mengmeng Wei
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Xiantao Ma
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| |
Collapse
|
18
|
Xu Y, Salman M, Khan S, Zhang J, Khan A. Tungsten-Catalyzed Allylic Substitution with a Heteroatom Nucleophile: Reaction Development and Synthetic Applications. J Org Chem 2020; 85:11501-11510. [PMID: 32803977 DOI: 10.1021/acs.joc.0c01632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A tungsten-catalyzed allylic allylation of sodium sulfinate as the heteroatom nucleophile was developed. The reaction utilizes inexpensive and readily available (CH3CN)3W(CO)3 as a precatalyst and proceeds at 60 °C temperature in the presence of 2,2'-bipyridine and its derivatives as ligand. The synthetic utility of allylic sulfones as electrophile was further demonstrated through Suzuki-Miyaura cross-coupling as showcased by the formal synthesis of (±)-hinokiresinol.
Collapse
Affiliation(s)
- Yaoyao Xu
- Department of Applied Chemistry, School of Science and Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Muhammad Salman
- Department of Applied Chemistry, School of Science and Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Shahid Khan
- Department of Applied Chemistry, School of Science and Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Junjie Zhang
- Department of Applied Chemistry, School of Science and Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ajmal Khan
- Department of Applied Chemistry, School of Science and Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| |
Collapse
|
19
|
Zhang MN, Khan S, Zhang J, Khan A. Palladium nanoparticles as efficient catalyst for C-S bond formation reactions. RSC Adv 2020; 10:31022-31026. [PMID: 35520647 PMCID: PMC9056434 DOI: 10.1039/d0ra05848c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/14/2020] [Indexed: 12/19/2022] Open
Abstract
The development of green, economical and sustainable chemical processes is one of the primary challenges in organic synthesis. Herein, we report an efficient and heterogeneous palladium-catalyzed sulfonylation of vinyl cyclic carbonates with sodium sulfinates via decarboxylative cross-coupling. Both aliphatic and aromatic sulfinate salts react with various vinyl cyclic carbonates to deliver the desired allylic sulfones featuring tri- and even tetrasubstituted olefin scaffolds in high yields with excellent selectivity. The process needs only 2 mol% of Pd2(dba)3 and the in situ formed palladium nano-particles are found to be the active catalyst.
Collapse
Affiliation(s)
- Mei-Na Zhang
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Shahid Khan
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Junjie Zhang
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Ajmal Khan
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| |
Collapse
|
20
|
Xie P, Sun Z, Li S, Cai X, Qiu J, Fu W, Gao C, Wu S, Yang X, Loh TP. Reciprocal-Activation Strategy for Allylic Sulfination with Unactivated Allylic Alcohols. Org Lett 2020; 22:4893-4897. [DOI: 10.1021/acs.orglett.0c01747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Peizhong Xie
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zuolian Sun
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Shuangshuang Li
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xinying Cai
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ju Qiu
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Weishan Fu
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Cuiqing Gao
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Shisheng Wu
- CNPC Northeast Refining & Chemical Engineering Company, Ltd., Shenyang Company, Shengyang 110167, P. R. China
| | - Xiaobo Yang
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Nanjing Tech University, Nanjing 211816, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
21
|
Salman M, Xu Y, Khan S, Zhang J, Khan A. Regioselective molybdenum-catalyzed allylic substitution of tertiary allylic electrophiles: methodology development and applications. Chem Sci 2020; 11:5481-5486. [PMID: 34094074 PMCID: PMC8159339 DOI: 10.1039/d0sc01763a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The first molybdenum-catalyzed allylic sulfonylation of tertiary allylic electrophiles is described. The method employs a readily accessible catalyst (Mo(CO)6/2,2′-bipyridine, both are commercially available) and represents the first example of the use of a group 6 transition metal-catalyst for allylic sulfonylation of substituted tertiary allylic electrophiles to form carbon–sulfur bonds. This atom economic and operationally simple methodology is characterized by its relatively mild conditions, wide substrate scope, and excellent regioselectivity profile, thus unlocking a new platform to forge sulfone moieties, even in the context of late-stage functionalization and providing ample opportunities for further derivatization through traditional Suzuki cross-coupling reactions. The first general example of Mo-catalyzed allylic sulfonylation of tertiary allylic electrophile provides an efficient way to forge sulfone moieties, and providing ample opportunities for further transformation through traditional Suzuki cross-coupling.![]()
Collapse
Affiliation(s)
- Muhammad Salman
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Yaoyao Xu
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Shahid Khan
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Junjie Zhang
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Ajmal Khan
- Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiao Tong University Xi'an 710049 P. R. China
| |
Collapse
|
22
|
Khan A, Zhao H, Zhang M, Khan S, Zhao D. Regio‐ and Enantioselective Synthesis of Sulfone‐Bearing Quaternary Carbon Stereocenters by Pd‐Catalyzed Allylic Substitution. Angew Chem Int Ed Engl 2019; 59:1340-1345. [DOI: 10.1002/anie.201910378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/07/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ajmal Khan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Heng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Meina Zhang
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Shahid Khan
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
23
|
Khan A, Zhao H, Zhang M, Khan S, Zhao D. Regio‐ and Enantioselective Synthesis of Sulfone‐Bearing Quaternary Carbon Stereocenters by Pd‐Catalyzed Allylic Substitution. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ajmal Khan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Heng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Meina Zhang
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Shahid Khan
- Department of Applied Chemistry School of Science Xi'an Key Laboratory of Sustainable Energy Materials Chemistry Xi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
24
|
Cai A, Kleij AW. Regio‐ and Enantioselective Preparation of Chiral Allylic Sulfones Featuring Elusive Quaternary Stereocenters. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aijie Cai
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science & Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institute of Research and Advanced Studies (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
25
|
Cai A, Kleij AW. Regio- and Enantioselective Preparation of Chiral Allylic Sulfones Featuring Elusive Quaternary Stereocenters. Angew Chem Int Ed Engl 2019; 58:14944-14949. [PMID: 31394028 DOI: 10.1002/anie.201908318] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/08/2019] [Indexed: 12/19/2022]
Abstract
We describe here the first general asymmetric synthesis of sterically encumbered α,α-disubstituted allylic sulfones via Pd-catalyzed allylic substitution. The design and application of a new and highly efficient phosphoramidite ligand (L10) proved to be crucial, and a wide variety of challenging allylic sulfones featuring quaternary stereocenters could be obtained in good yields and with good to excellent levels of regio- and enantioselectivities under attractive process conditions. The developed methodology employs easily accessible chemical feedstock including racemic allylic precursors and sodium sulfinates. The utility of the method is further demonstrated by the synthesis of the sesquiterpene (-)-Agelasidine A.
Collapse
Affiliation(s)
- Aijie Cai
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science & Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
26
|
Ma X, Yu J, Zhou Q, Yan R, Zheng L, Wang L. Substrate Self-Assisted Secondary Bond Activation of Allylic Alcohol in a Tsuji-Trost Reaction Revealed by NMR Methods. J Org Chem 2019; 84:7468-7473. [PMID: 31091095 DOI: 10.1021/acs.joc.9b00616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The first experimental evidence for the palladium-catalyzed secondary bond activation of allylic alcohols in a Tsuji-Trost reaction was provided by NMR methods, such as variable-temperature 1H NMR, diffusion-ordered spectroscopy (DOSY), Job's method, 1H NMR titration, and nuclear Overhauser enhancement spectroscopy (NOESY). The experimental results revealed that the substrate self-assisted activation of allylic alcohols is probably performed via a 1:1 binding six-membered-ring complex, which are formed by the formation of the secondary bonds, the hydrogen bond and P···O noncovalent bond between allylic alcohol and phosphonium ylide.
Collapse
Affiliation(s)
- Xiantao Ma
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Jing Yu
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Qiuju Zhou
- Analysis & Testing Center , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Ran Yan
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Lingyun Zheng
- Analysis & Testing Center , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Lingling Wang
- Analysis & Testing Center , Xinyang Normal University , Xinyang , Henan 464000 , China
| |
Collapse
|
27
|
Ye S, Li X, Xie W, Wu J. Three‐Component Reaction of Potassium Alkyltrifluoroborates, Sulfur Dioxide and Allylic Bromides under Visible‐Light Irradiation. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900172] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shengqing Ye
- Institute for Advanced StudiesTaizhou University 1139 Shifu Avenue Taizhou 318000 China
| | - Xiaofang Li
- School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 China
| | - Wenlin Xie
- School of Chemistry and Chemical EngineeringHunan University of Science and Technology Xiangtan 411201 China
| | - Jie Wu
- Institute for Advanced StudiesTaizhou University 1139 Shifu Avenue Taizhou 318000 China
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
28
|
Aegurla B, Peddinti RK. Dehydrative C‐ and S‐Alkylation: Access to Highly Substituted 1‐Sulfonylpropanes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201800587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Balakrishna Aegurla
- Department of ChemistryIndian Institute of Technology Roorkee Roorkee- 247 667, Uttarakhand India
| | - Rama Krishna Peddinti
- Department of ChemistryIndian Institute of Technology Roorkee Roorkee- 247 667, Uttarakhand India
| |
Collapse
|
29
|
Dehydrative Synthesis of Functionalized Skipped Dienes from Stabilized Phosphonium Ylides and Allylic Alcohols in Water. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Zhang J, Zhou K, Qiu G, Wu J. Photoinduced synthesis of allylic sulfones using potassium metabisulfite as the source of sulfur dioxide. Org Chem Front 2019. [DOI: 10.1039/c8qo01048j] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthesis of allylic sulfones through a photoinduced three-component reaction of aryl/alkyl halides, potassium metabisulfite, and allylic bromides under ultraviolet irradiation at room temperature is developed. Diverse allylic sulfones are generated in moderate to good yields.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Kaida Zhou
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Guanyinsheng Qiu
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
- College of Biological
| | - Jie Wu
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
31
|
Xue L, Liu Y, Qin W, Yan H. Enantioselective one-pot synthesis of β-sulfonyl ketones and trisubstituted tetrahydrothiophenes via β-elimination/cycloaddition sequence. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.01.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Xie P, Wang J, Liu Y, Fan J, Wo X, Fu W, Sun Z, Loh TP. Water-promoted C-S bond formation reactions. Nat Commun 2018; 9:1321. [PMID: 29615622 PMCID: PMC5883052 DOI: 10.1038/s41467-018-03698-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/05/2018] [Indexed: 11/10/2022] Open
Abstract
Allylic sulfones, owning to their widespread distributions in biologically active molecules, received increasing attention in the past few years. However, the synthetic method under mild conditions is still a challenging task. In this paper, we report a sulfinic acids ligation with allylic alcohols via metal-free dehydrative cross-coupling. Both aliphatic and aromatic sulfinic acids react with various allylic alcohols to deliver the desired allylic sulfones in high yields with excellent selectivity. This carbon-sulfur bond formation reaction is highly efficient and practical since it works under metal-free, neutral, aqueous media and at room temperature in which the products even can be obtained by simple filtration without the need for organic extraction or column chromatography. Water is found to be essential for the success of this carbon-sulfur bond formation reaction. DFT calculations imply that water acts as promoter in this transformation via intermolecular hydrogen bonds.
Collapse
Affiliation(s)
- Peizhong Xie
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.
| | - Jinyu Wang
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Yanan Liu
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Jing Fan
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Xiangyang Wo
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Weishan Fu
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Zuolian Sun
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering, Institute of Advanced Synthesis, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China. .,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
33
|
Wu W, Yi S, Yu Y, Huang W, Jiang H. Synthesis of Sulfonylated Lactones via Ag-Catalyzed Cascade Sulfonylation/Cyclization of 1,6-Enynes with Sodium Sulfinates. J Org Chem 2017; 82:1224-1230. [DOI: 10.1021/acs.joc.6b02416] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wanqing Wu
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Songjian Yi
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yue Yu
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wei Huang
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional
Molecular Engineering of Guangdong Province, School of Chemistry and
Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
34
|
Yan L, Xu JK, Huang CF, He ZY, Xu YN, Tian SK. Kinetic Resolution of Racemic Allylic Alcohols by Catalytic Asymmetric Substitution of the OH Group with Monosubstituted Hydrazines. Chemistry 2016; 22:13041-5. [DOI: 10.1002/chem.201601747] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Liang Yan
- Department of Chemistry; University of Science and Technology of China; Hefei, Anhui 230026 P. R. China
| | - Jing-Kun Xu
- Department of Chemistry; University of Science and Technology of China; Hefei, Anhui 230026 P. R. China
| | - Chao-Fan Huang
- Department of Chemistry; University of Science and Technology of China; Hefei, Anhui 230026 P. R. China
| | - Zeng-Yang He
- Department of Chemistry; University of Science and Technology of China; Hefei, Anhui 230026 P. R. China
| | - Ya-Nan Xu
- Department of Chemistry; University of Science and Technology of China; Hefei, Anhui 230026 P. R. China
| | - Shi-Kai Tian
- Department of Chemistry; University of Science and Technology of China; Hefei, Anhui 230026 P. R. China
| |
Collapse
|
35
|
Ji YZ, Wang M, Li HJ, Liu Y, Wu YC. Direct Sulfination of Nonactivated Alcohols with Arylsulfonylmethyl Isocyanides. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yuan-Zhao Ji
- School of Marine Science and Technology; Harbin Institute of Technology; No. 2, Wenhuaxi Road 264209 Weihai P. R. China
| | - Meirong Wang
- School of Materials Science and Engineering; Harbin Institute of Technology; No. 2, Wenhuaxi Road 264209 Weihai P. R. China
| | - Hui-Jing Li
- School of Marine Science and Technology; Harbin Institute of Technology; No. 2, Wenhuaxi Road 264209 Weihai P. R. China
| | - Ying Liu
- School of Marine Science and Technology; Harbin Institute of Technology; No. 2, Wenhuaxi Road 264209 Weihai P. R. China
| | - Yan-Chao Wu
- School of Marine Science and Technology; Harbin Institute of Technology; No. 2, Wenhuaxi Road 264209 Weihai P. R. China
- Beijing National Laboratory for Molecular Sciences (BNLMS); Institute of Chemistry Chinese Academy of Sciences; No.2, 1st North Street, Zhongguancun 100190 Beijing P. R. China
| |
Collapse
|
36
|
Liao J, Guo W, Zhang Z, Tang X, Wu W, Jiang H. Metal-Free Catalyzed Regioselective Allylic Trifluoromethanesulfonylation of Aromatic Allylic Alcohols with Sodium Trifluoromethanesulfinate. J Org Chem 2016; 81:1304-9. [DOI: 10.1021/acs.joc.5b02674] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jianhua Liao
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- School
of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Wei Guo
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhenming Zhang
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaodong Tang
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanqing Wu
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- School
of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
37
|
Gerhards F, Griebel N, Runsink J, Raabe G, Gais HJ. Chiral Lithiated Allylic α-Sulfonyl Carbanions: Experimental and Computational Study of Their Structure, Configurational Stability, and Enantioselective Synthesis. Chemistry 2015; 21:17904-20. [PMID: 26494207 DOI: 10.1002/chem.201503123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Indexed: 11/06/2022]
Abstract
X-ray crystal structure analysis of the lithiated allylic α-sulfonyl carbanions [CH2 CHC(Me)SO2 Ph]Li⋅diglyme, [cC6 H8 SO2 tBu]Li⋅PMDETA and [cC7 H10 SO2 tBu]Li⋅PMDETA showed dimeric and monomeric CIPs, having nearly planar anionic C atoms, only OLi bonds, almost planar allylic units with strong CC bond length alternation and the s-trans conformation around C1C2. They adopt a C1S conformation, which is similar to the one generally found for alkyl and aryl substituted α-sulfonyl carbanions. Cryoscopy of [EtCHCHC(Et)SO2 tBu]Li in THF at 164 K revealed an equilibrium between monomers and dimers in a ratio of 83:17, which is similar to the one found by low temperature NMR spectroscopy. According to NMR spectroscopy the lone-pair orbital at C1 strongly interacts with the CC double bond. Low temperature (6) Li,(1) H NOE experiments of [EtCHCHC(Et)SO2 tBu]Li in THF point to an equilibrium between monomeric CIPs having only OLi bonds and CIPs having both OLi and C1Li bonds. Ab initio calculation of [MeCHCHC(Me)SO2 Me]Li⋅(Me2 O)2 gave three isomeric CIPs having the s-trans conformation and three isomeric CIPs having the s-cis conformation around the C1C2 bond. All s-trans isomers are more stable than the s-cis isomers. At all levels of theory the s-trans isomer having OLi and C1Li bonds is the most stable one followed by the isomer which has two OLi bonds. The allylic unit of the C,O,Li isomer shows strong bond length alternation and the C1 atom is in contrast to the O,Li isomer significantly pyramidalized. According to NBO analysis of the s-trans and s-cis isomers, the interaction of the lone pair at C1 with the π* orbital of the CC double bond is energetically much more favorable than that with the "empty" orbitals at the Li atom. The C1S and C1C2 conformations are determined by the stereoelectronic effects nC -σSR * interaction and allylic conjugation. (1) H DNMR spectroscopy of racemic [EtCHCHC(Et)SO2 tBu]Li, [iPrCHCHC(iPr)SO2 tBu]Li and [EtCHC(Me)C(Et)SO2 tBu]Li in [D8 ]THF gave estimated barriers of enantiomerization of ΔG(≠) =13.2 kcal mol(-1) (270 K), 14.2 kcal mol(-1) (291 K) and 14.2 kcal mol(-1) (295 K), respectively. Deprotonation of sulfone (R)-EtCHCHCH(Et)SO2 tBu (94 % ee) with nBuLi in THF at -105 °C occurred with a calculated enantioselectivity of 93 % ee and gave carbanion (M)-[EtCHCHC(Et)SO2 tBu]Li, the deuteration and alkylation of which with CF3 CO2 D and MeOCH2 I, respectively, proceeded with high enantioselectivities. Time-dependent deuteration of the enantioenriched carbanion (M)-[EtCHCHC(Et)SO2 tBu]Li in THF gave a racemization barrier of ΔG(≠) =12.5 kcal mol(-1) (168 K), which translates to a calculated half-time of racemization of t1/2 =12 min at -105 °C.
Collapse
Affiliation(s)
- Frank Gerhards
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany).,Present address: Philipp Reis Strasse 12, 40215 Düsseldorf (Germany)
| | - Nicole Griebel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany).,Present address: Kaiserstrasse 66, 52080 Aachen (Germany)
| | - Jan Runsink
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)
| | - Gerhard Raabe
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany)
| | - Hans-Joachim Gais
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen (Germany).
| |
Collapse
|
38
|
Li L, Liu Y, Peng Y, Yu L, Wu X, Yan H. Kinetic Resolution of β-Sulfonyl Ketones through Enantioselective β-Elimination using a Cation-Binding Polyether Catalyst. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Li L, Liu Y, Peng Y, Yu L, Wu X, Yan H. Kinetic Resolution of β-Sulfonyl Ketones through Enantioselective β-Elimination using a Cation-Binding Polyether Catalyst. Angew Chem Int Ed Engl 2015; 55:331-5. [DOI: 10.1002/anie.201508127] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/14/2015] [Indexed: 11/05/2022]
|
40
|
Li HJ, Wang R, Gao J, Wang YY, Luo DH, Wu YC. Bismuth(III) Bromide-Catalysed Substitution of Benzyl Alcohols with Arylsulfonylmethyl Isocyanides: An Unexpected Access to Sulfinates. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201401173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|