1
|
Yadav AK, Gładysiak A, Wolpert EH, Ganose AM, Samel-Garloff B, Koley D, Jelfs KE, Stylianou KC. Solvatomorphic diversity dictates the stability and solubility of metal-organic polyhedra. Chem Sci 2024:d4sc05037a. [PMID: 39759940 PMCID: PMC11697376 DOI: 10.1039/d4sc05037a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
The reaction between molybdenum(ii) acetate and 5-aminoisophthalic acid (H2Iso-NH2) afforded [Mo12O12(μ2-O)12(Iso-NH2)12]12-, a novel molybdenum(v) metal-organic polyhedron (MOP) with a triangular antiprismatic shape stabilized by intramolecular N-H⋯O hydrogen bonds. The synthesis conditions, particularly the choice of solvent and reaction time, led to the precipitation of the Mo(v)-MOP in five distinct crystalline forms. These forms vary in their packing arrangements, co-crystallized solvent molecules, and counter-cations, with three phases containing dimethylammonium (dma+) and the other two containing diethylammonium (dea+). Each solvatomorph exhibits unique physical properties, including differences in porosity, and stability. These properties were discerned through empirical observations and supported by density functional theory calculations. Remarkably, the solubility of these MOP solvatomorphs in water was determined for the first time, with values of 4.30(2) g L-1 for a (dma)12[Mo(v)-MOP] phase, and 10.25(7) g L-1 and 14.41(10) g L-1 for two (dea)12[Mo(v)-MOP] phases. Additionally, aqueous solutions of the Mo(v)-MOP were found to conduct electricity as weak electrolytes, showcasing their potential for applications in fields requiring partially ionized species.
Collapse
Affiliation(s)
- Ankit K Yadav
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Andrzej Gładysiak
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Emma H Wolpert
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane W12 0BZ UK
| | - Alex M Ganose
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane W12 0BZ UK
| | | | - Dipankar Koley
- Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus, 82 Wood Lane W12 0BZ UK
| | - Kyriakos C Stylianou
- Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University Corvallis OR 97331 USA
| |
Collapse
|
2
|
Piskorz T, Lee B, Zhan S, Duarte F. Metallicious: Automated Force-Field Parameterization of Covalently Bound Metals for Supramolecular Structures. J Chem Theory Comput 2024; 20:9060-9071. [PMID: 39373209 PMCID: PMC11500408 DOI: 10.1021/acs.jctc.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Metal ions play a central, functional, and structural role in many molecular structures, from small catalysts to metal-organic frameworks (MOFs) and proteins. Computational studies of these systems typically employ classical or quantum mechanical approaches or a combination of both. Among classical models, only the covalent metal model reproduces both geometries and charge transfer effects but requires time-consuming parameterization, especially for supramolecular systems containing repetitive units. To streamline this process, we introduce metallicious, a Python tool designed for efficient force-field parameterization of supramolecular structures. Metallicious has been tested on diverse systems including supramolecular cages, knots, and MOFs. Our benchmarks demonstrate that parameters accurately reproduce the reference properties obtained from quantum calculations and crystal structures. Molecular dynamics simulations of the generated structures consistently yield stable simulations in explicit solvent, in contrast to similar simulations performed with nonbonded and cationic dummy models. Overall, metallicious facilitates the atomistic modeling of supramolecular systems, key for understanding their dynamic properties and host-guest interactions. The tool is freely available on GitHub (https://github.com/duartegroup/metallicious).
Collapse
Affiliation(s)
| | - Bernadette Lee
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
| | - Shaoqi Zhan
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
- Department
of Chemistry—Ångström, Ångströmlaboratoriet Box
523, Uppsala S-751 20, Sweden
| | - Fernanda Duarte
- Department
of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
| |
Collapse
|
3
|
Complementarity and Preorganisation in the Assembly of Heterometallic–Organic Cages via the Metalloligand Approach—Recent Advances. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The design of new metallocage polyhedra towards pre-determined structures can offer both practical as well as intellectual challenges. In this mini-review we discuss a selection of recent examples in which the use of the metalloligand approach has been employed to overcome such challenges. An attractive feature of this approach is its stepwise nature that lends itself to the design and rational synthesis of heterometallic metal–organic cages, with the latter often associated with enhanced functionality.
Collapse
|
4
|
Norjmaa G, Himo F, Maréchal J, Ujaque G. Catalysis by [Ga 4 L 6 ] 12- Metallocage on the Nazarov Cyclization: The Basicity of Complexed Alcohol is Key. Chemistry 2022; 28:e202201792. [PMID: 35859038 PMCID: PMC9804567 DOI: 10.1002/chem.202201792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 01/05/2023]
Abstract
The Nazarov cyclization is investigated in solution and within K12 [Ga4 L6 ] supramolecular organometallic cage by means of computational methods. The reaction needs acidic condition in solution but works at neutral pH in the presence of the metallocage. The reaction steps for the process are analogous in both media: (a) protonation of the alcohol group, (b) water loss and (c) cyclization. The relative Gibbs energies of all the steps are affected by changing the environment from solvent to the metallocage. The first step in the mechanism, the alcohol protonation, turns out to be the most critical one for the acceleration of the reaction inside the metallocage. In order to calculate the relative stability of protonated alcohol inside the cavity, we propose a computational scheme for the calculation of basicity for species inside cavities and can be of general use. These results are in excellent agreement with the experiments, identifying key steps of catalysis and providing an in-depth understanding of the impact of the metallocage on all the reaction steps.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| | - Fahmi Himo
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Jean‐Didier Maréchal
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| | - Gregori Ujaque
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| |
Collapse
|
5
|
|
6
|
|
7
|
Xiao H, Wang H, Zhang M, Chen J, Lai Y, Yang J, Yin JF, Yin P. Controllable gelation of coordination nanocages from the physical interactions among surface grafted cholesteryl groups. SOFT MATTER 2022; 18:6264-6269. [PMID: 35959721 DOI: 10.1039/d2sm00766e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coordination nanocage (CNC) incorporated gels have attracted enormous attention for the effective integration of micro-porosity, mechanical flexibility and processability; however, the understanding of their microscopic structure-property relationships remains unclear. Herein, CNCs with 24 surface grafted cholesterol groups are constructed precisely and their gelation can be manipulated upon the tunning of solvent polarities. Optically homogeneous organogels can be formed by introducing a certain amount of bad solvents into the solutions of hairy CNCs and the gelation can be reversed through temperature variation. Suggested from scattering and molecular dynamics studies, the solvophobic interaction-driven aggregation of cholesterol units contributes to the physical crosslinking of CNCs and finally the gelation of CNC solutions. The mechanical strength of the obtained gels is observed to be highly dependent on the flexibility of the organic linkers that bond the cholesterol units on the CNC surface. The effective interaction and dense packing of the cholesterol units in their aggregates highly rely on the degree of freedom of the cholesterol, which is controlled by the flexibility of the organic linkers that bond them on the CNC surface. The observed viscoelastic performance accompanied by the well-controlled mechanical strength of the organogels unambiguously demonstrates the potential for exploiting the synergistic physical correlations to fabricate novel functional materials from CNCs.
Collapse
Affiliation(s)
- Haiyan Xiao
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Huihui Wang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Mingxin Zhang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Jiadong Chen
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Yuyan Lai
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Junsheng Yang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Jia-Fu Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Neutron Scattering Science and Technology, Zhongziyuan Road, Dalang, Dongguan, 523803, China
| |
Collapse
|
8
|
Kondinski A, Menon A, Nurkowski D, Farazi F, Mosbach S, Akroyd J, Kraft M. Automated Rational Design of Metal-Organic Polyhedra. J Am Chem Soc 2022; 144:11713-11728. [PMID: 35731954 PMCID: PMC9264355 DOI: 10.1021/jacs.2c03402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metal-organic polyhedra (MOPs) are hybrid organic-inorganic nanomolecules, whose rational design depends on harmonious consideration of chemical complementarity and spatial compatibility between two or more types of chemical building units (CBUs). In this work, we apply knowledge engineering technology to automate the derivation of MOP formulations based on existing knowledge. For this purpose we have (i) curated relevant MOP and CBU data; (ii) developed an assembly model concept that embeds rules in the MOP construction; (iii) developed an OntoMOPs ontology that defines MOPs and their key properties; (iv) input agents that populate The World Avatar (TWA) knowledge graph; and (v) input agents that, using information from TWA, derive a list of new constructible MOPs. Our result provides rapid and automated instantiation of MOPs in TWA and unveils the immediate chemical space of known MOPs, thus shedding light on new MOP targets for future investigations.
Collapse
Affiliation(s)
- Aleksandar Kondinski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Angiras Menon
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Daniel Nurkowski
- CMCL
Innovations, Sheraton House, Castle Park, Cambridge CB3 0AX, U.K.
| | - Feroz Farazi
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Sebastian Mosbach
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Jethro Akroyd
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Markus Kraft
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
- CMCL
Innovations, Sheraton House, Castle Park, Cambridge CB3 0AX, U.K.
- CARES, Cambridge Centre for Advanced Research and Education
in Singapore, 1 Create
Way, CREATE Tower, #05-05, Singapore 138602
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459
- The
Alan Turing Institute, 2QR, John Dodson House, 96 Euston Road, London NW1 2DB, U.K.
| |
Collapse
|
9
|
Abstract
Supramolecular metal–organic cages, a class of molecular containers formed via coordination-driven self-assembly, have attracted sustained attention for their applications in catalysis, due to their structural aesthetics and unique properties. Their inherent confined cavity is considered to be analogous to the binding pocket of enzymes, and the facile tunability of building blocks offers a diverse platform for enzyme mimics to promote organic reactions. This minireview covers the recent progress of supramolecular metal–organic coordination cages for boosting organic reactions as reaction vessels or catalysts. The developments in the utilizations of the metal–organic cages for accelerating the organic reactions, improving the selectivity of the reactions are summarized. In addition, recent developments and successes in tandem or cascade reactions promoted by supramolecular metal–organic cages are discussed.
Collapse
|
10
|
Vatsadze SZ, Maximov AL, Bukhtiyarov VI. Supramolecular Effects and Systems in Catalysis. A Review. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Liu J, Wang Z, Cheng P, Zaworotko MJ, Chen Y, Zhang Z. Post-synthetic modifications of metal–organic cages. Nat Rev Chem 2022; 6:339-356. [PMID: 37117929 DOI: 10.1038/s41570-022-00380-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/18/2022]
Abstract
Metal-organic cages (MOCs) are discrete, supramolecular entities that consist of metal nodes and organic linkers, which can offer solution processability and high porosity. Thereby, their predesigned structures can undergo post-synthetic modifications (PSMs) to introduce new functional groups and properties by modifying the linker, metal node, pore or surface environment. This Review explores current PSM strategies used for MOCs, including covalent, coordination and noncovalent methods. The effects of newly introduced functional groups or generated complexes upon the PSMs of MOCs are also detailed, such as improving structural stability or endowing desired functionalities. The development of the aforementioned design principles has enabled systematic approaches for the development and characterization of families of MOCs and, thereby, provides insight into structure-function relationships that will guide future developments.
Collapse
|
12
|
Tarzia A, Jelfs KE. Unlocking the computational design of metal-organic cages. Chem Commun (Camb) 2022; 58:3717-3730. [PMID: 35229861 PMCID: PMC8932387 DOI: 10.1039/d2cc00532h] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Metal-organic cages are macrocyclic structures that can possess an intrinsic void that can hold molecules for encapsulation, adsorption, sensing, and catalysis applications. As metal-organic cages may be comprised from nearly any combination of organic and metal-containing components, cages can form with diverse shapes and sizes, allowing for tuning toward targeted properties. Therefore, their near-infinite design space is almost impossible to explore through experimentation alone and computational design can play a crucial role in exploring new systems. Although high-throughput computational design and screening workflows have long been known as powerful tools in drug and materials discovery, their application in exploring metal-organic cages is more recent. We show examples of structure prediction and host-guest/catalytic property evaluation of metal-organic cages. These examples are facilitated by advances in methods that handle metal-containing systems with improved accuracy and are the beginning of the development of automated cage design workflows. We finally outline a scope for how high-throughput computational methods can assist and drive experimental decisions as the field pushes toward functional and complex metal-organic cages. In particular, we highlight the importance of considering realistic, flexible systems.
Collapse
Affiliation(s)
- Andrew Tarzia
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
13
|
Ghosh AC, Legrand A, Rajapaksha R, Craig GA, Sassoye C, Balázs G, Farrusseng D, Furukawa S, Canivet J, Wisser FM. Rhodium-Based Metal-Organic Polyhedra Assemblies for Selective CO 2 Photoreduction. J Am Chem Soc 2022; 144:3626-3636. [PMID: 35179874 DOI: 10.1021/jacs.1c12631] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heterogenization of molecular catalysts via their immobilization within extended structures often results in a lowering of their catalytic properties due to a change in their coordination sphere. Metal-organic polyhedra (MOP) are an emerging class of well-defined hybrid compounds with a high number of accessible metal sites organized around an inner cavity, making them appealing candidates for catalytic applications. Here, we demonstrate a design strategy that enhances the catalytic properties of dirhodium paddlewheels heterogenized within MOP (Rh-MOP) and their three-dimensional assembled supramolecular structures, which proved to be very efficient catalysts for the selective photochemical reduction of carbon dioxide to formic acid. Surprisingly, the catalytic activity per Rh atom is higher in the supramolecular structures than in its molecular sub-unit Rh-MOP or in the Rh-metal-organic framework (Rh-MOF) and yields turnover frequencies of up to 60 h-1 and production rates of approx. 76 mmole formic acid per gram of the catalyst per hour, unprecedented in heterogeneous photocatalysis. The enhanced catalytic activity is investigated by X-ray photoelectron spectroscopy and electrochemical characterization, showing that self-assembly into supramolecular polymers increases the electron density on the active site, making the overall reaction thermodynamically more favorable. The catalyst can be recycled without loss of activity and with no change of its molecular structure as shown by pair distribution function analysis. These results demonstrate the high potential of MOP as catalysts for the photoreduction of CO2 and open a new perspective for the electronic design of discrete molecular architectures with accessible metal sites for the production of solar fuels.
Collapse
Affiliation(s)
- Ashta C Ghosh
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON-UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Alexandre Legrand
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, 606-8501 Kyoto, Japan
| | - Rémy Rajapaksha
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON-UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Gavin A Craig
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, 606-8501 Kyoto, Japan.,Department of Pure and Applied Chemistry, University of Strathclyde, G11XL Glasgow, Scotland
| | - Capucine Sassoye
- Sorbonne Université, Chimie de la Matière Condensée de Paris-UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - David Farrusseng
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON-UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, 606-8501 Kyoto, Japan
| | - Jérôme Canivet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON-UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Florian M Wisser
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
14
|
Norjmaa G, Maréchal J, Ujaque G. Origin of the Rate Acceleration in the C-C Reductive Elimination from Pt(IV)-complex in a [Ga 4 L 6 ] 12- Supramolecular Metallocage. Chemistry 2021; 27:15973-15980. [PMID: 34545974 PMCID: PMC9293218 DOI: 10.1002/chem.202102250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 12/29/2022]
Abstract
The reductive elimination on [(Me3 P)2 Pt(MeOH)(CH3 )3 ]+ , 2P, complex performed in MeOH solution and inside a [Ga4 L6 ]12- metallocage are computationally analysed by mean of QM and MD simulations and compared with the mechanism of gold parent systems previously reported [Et3 PAu(MeOH)(CH3 )2 ]+ , 2Au. The comparative analysis between the encapsulated Au(III) and Pt(IV)-counterparts shows that there are no additional solvent MeOH molecules inside the cavity of the metallocage for both systems. The Gibbs energy barriers for the 2P reductive elimination calculated at DFT level are in good agreement with the experimental values for both environments. The effect of microsolvation and encapsulation on the rate acceleration are evaluated and shows that the latter is far more relevant, conversely to 2Au. Energy decomposition analysis indicates that the encapsulation is the main responsible for most of the energy barrier reduction. Microsolvation and encapsulation effects are not equally contributing for both metal systems and consequently, the reasons of the rate acceleration are not the same for both metallic systems despite the similarity between them.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelonaCataloniaSpain
| | - Jean‐Didier Maréchal
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelonaCataloniaSpain
| | - Gregori Ujaque
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelonaCataloniaSpain
| |
Collapse
|
15
|
Virovets AV, Peresypkina E, Scheer M. Structural Chemistry of Giant Metal Based Supramolecules. Chem Rev 2021; 121:14485-14554. [PMID: 34705437 DOI: 10.1021/acs.chemrev.1c00503] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review presents a bird-eye view on the state of research in the field of giant nonbiological discrete metal complexes and ions of nanometer size, which are structurally characterized by means of single-crystal X-ray diffraction, using the crystal structure as a common key feature. The discussion is focused on the main structural features of the metal clusters, the clusters containing compact metal oxide/hydroxide/chalcogenide core, ligand-based metal-organic cages, and supramolecules as well as on the aspects related to the packing of the molecules or ions in the crystal and the methodological aspects of the single-crystal neutron and X-ray diffraction of these compounds.
Collapse
Affiliation(s)
- Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Zhu XW, Zhuang FL, Chen ZY, Zhou S, Wei YB, Zhou XP, Li D. Heterometal-Organic Cages as Photo-Fenton-like Catalysts. Inorg Chem 2021; 60:14721-14730. [PMID: 34520203 DOI: 10.1021/acs.inorgchem.1c01841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metal-organic cages, a class of supramolecular containers constructed by the self-assembly of metal ions and organic ligands, show great promise as catalytic agents. In this work, we designed and synthesized a series of rhombic dodecahedral Ni-Cu heterometal imidazolate cages (Ni8Cu6L24) that can act as highly active photo-Fenton-like catalysts. These cages possess a high ability to generate hydroxyl radicals (•OH) under visible light in the presence of H2O2, which can rapidly degrade organic pollutants (e.g., rhodamine B, methylene blue, and methyl orange) into CO2 and H2O. Besides, they are robust catalysts, with high catalytic activity and reusability under conditions in high H2O2 concentration, providing potentially advanced materials for degrading persistent organic pollutants.
Collapse
Affiliation(s)
- Xiao-Wei Zhu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Fen-Ling Zhuang
- Department of Chemistry, Shantou University, Shantou 515063, P. R. China
| | - Zi-Ye Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Shu Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Yu-Bai Wei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
17
|
Qi X, Zhong R, Chen M, Sun C, You S, Gu J, Shan G, Cui D, Wang X, Su Z. Single Metal–Organic Cage Decorated with an Ir(III) Complex for CO 2 Photoreduction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01974] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiangjuan Qi
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Ronglin Zhong
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Mengmeng Chen
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Chunyi Sun
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Siqi You
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Jianxia Gu
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Guogang Shan
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Dongxu Cui
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xinlong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zhongmin Su
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
18
|
Ansari T, Jasinski JB, Leahy DK, Handa S. Metal-Micelle Cooperativity: Phosphine Ligand-Free Ultrasmall Palladium(II) Nanoparticles for Oxidative Mizoroki-Heck-type Couplings in Water at Room Temperature. JACS AU 2021; 1:308-315. [PMID: 34467295 PMCID: PMC8395633 DOI: 10.1021/jacsau.0c00087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 05/08/2023]
Abstract
The amphiphile PS-750-M generates stable, phosphine ligand-free, and catalytically active ultrasmall Pd(II) nanoparticles (NPs) from Pd(OAc)2, preventing their precipitation, polymerization, and oxidation state changes. PS-750-M directly interacts with Pd(II) NP surfaces, as confirmed by high-resolution mass spectrometry and IR spectroscopy, resulting in their high stability. The Pd cations in NPs are most likely held together by hydroxides and acetate ions. The NPs were characterized by HRTEM, revealing their morphology and particle size distribution, and by HRMS and IR, providing evidence for NP-amphiphile interaction. The NP catalytic activity was examined in the context of oxidative Mizoroki-Heck-type couplings in water at room temperature. Hot filtration, hot extraction, and three-phase tests indicate heterogeneous catalysis occurring at the micellar interface rather than homogeneous catalysis occurring in the solution. NMR studies indicate that the catalytic activity stems from metal cation-π interactions of the styrene along with transmetalation by the arylboronic acid, followed by insertion and β-H elimination to furnish the coupled product along with the reoxidation of Pd by benzoquinone to complete the catalytic cycle. This method is very mild and sustainable, both in terms of NP synthesis and subsequent catalysis, and shows broad substrate scope while circumventing the need for organic solvents for this important class of couplings.
Collapse
Affiliation(s)
- Tharique
N. Ansari
- Department
of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Jacek B. Jasinski
- Conn
Center for Renewable Energy Research, University
of Louisville, Louisville, Kentucky 40292, United States
| | - David K. Leahy
- Process
Chemistry Development, Takeda Pharmaceuticals
International, Cambridge, Massachusetts 02139, United States
| | - Sachin Handa
- Department
of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
19
|
Lai Y, Li M, Zhang M, Li X, Yuan J, Wang W, Zhou Q, Huang M, Yin P. Confinement Effect on the Surface of a Metal–Organic Polyhedron: Tunable Thermoresponsiveness and Water Permeability. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuyan Lai
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Mingxin Zhang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xinpei Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jun Yuan
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Weiyu Wang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Qianjie Zhou
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
20
|
Norjmaa G, Maréchal J, Ujaque G. Reaction Rate Inside the Cavity of [Ga
4
L
6
]
12−
Supramolecular Metallocage is Regulated by the Encapsulated Solvent. Chemistry 2020; 26:6988-6992. [PMID: 32125031 DOI: 10.1002/chem.201905608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química Universitat Autònoma de Barcelona 08193 Cerdanyola del Valles, Barcelona Catalonia, and Centro de Innovaciónen Química Avanzada (ORFEO-CINQA Spain
| | - Jean‐Didier Maréchal
- Departament de Química Universitat Autònoma de Barcelona 08193 Cerdanyola del Valles, Barcelona Catalonia, and Centro de Innovaciónen Química Avanzada (ORFEO-CINQA Spain
| | - Gregori Ujaque
- Departament de Química Universitat Autònoma de Barcelona 08193 Cerdanyola del Valles, Barcelona Catalonia, and Centro de Innovaciónen Química Avanzada (ORFEO-CINQA Spain
| |
Collapse
|
21
|
Tang J, Cai M, Xie G, Bao S, Ding S, Wang X, Tao J, Li G. Amino‐Induced 2D Cu‐Based Metal–Organic Framework as an Efficient Heterogeneous Catalyst for Aerobic Oxidation of Olefins. Chemistry 2020; 26:4333-4340. [DOI: 10.1002/chem.201905249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/26/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Jia Tang
- School of Environment and Civil Engineering Dongguan University of Technology Dongguan 523808 P. R. China
- Department of Applied Chemistry School of Science Xi'an Jiaotong University Xi'an 710049 P. R. China
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Mengke Cai
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Guanqun Xie
- School of Environment and Civil Engineering Dongguan University of Technology Dongguan 523808 P. R. China
| | - Shixiong Bao
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Shujiang Ding
- Department of Applied Chemistry School of Science Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Xiaoxia Wang
- School of Environment and Civil Engineering Dongguan University of Technology Dongguan 523808 P. R. China
| | - Jinzhang Tao
- Guangdong Research Institute of Rare Metals Guangzhou 510651 P. R. China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
22
|
El-Sayed ESM, Yuan D. Metal-Organic Cages (MOCs): From Discrete to Cage-based Extended Architectures. CHEM LETT 2020. [DOI: 10.1246/cl.190731] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- El-Sayed M. El-Sayed
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
- Chemical Refining Laboratory, Refining Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
23
|
Fulong CRP, Kim S, Friedman AE, Cook TR. Coordination-Driven Self-Assembly of Silver(I) and Gold(I) Rings: Synthesis, Characterization, and Photophysical Studies. Front Chem 2019; 7:567. [PMID: 31475134 PMCID: PMC6705220 DOI: 10.3389/fchem.2019.00567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/26/2019] [Indexed: 11/13/2022] Open
Abstract
In this work, we investigate the self-assembly between Ag(I) and Au(I) centers and pyridyl donors to form hexagonal metallacycles and related linear complexes. The precipitation of hexagonal metallacycles upon assembly in chloroform/methanol mixtures results in high solid-state photo-stability. Whereas, the Ag(I) species have fast kinetics and high formation constants in acetone, this solvent interferes in the formation of the analogous Au(I) complexes. The photophysical properties of this suite of metallacycles was investigated including steady-state absorption, emission, and time-resolved lifetime measurements. All ligands and hexagons exhibited ligand-centered singlet emissions with ground-state absorption and emission perturbed upon coordination. The ligand-based fluorescent photoluminescence was affected by the heavy-atom effect when halide or metals are present, attenuating quantum yields as evidenced by increases in the experimentally measured non-radiative rate constants. The formation of group 11 metallacycles is motivated by their potential applications in mixed-matrix materials wherein metal ions can interact with substrate to facilitate separations chemistry with reduced energy requirements, in particular the isolation of ethylene and light olefins. Existing processes involve cryogenic distillation, an energy intensive and inefficient method.
Collapse
Affiliation(s)
- Cressa Ria P Fulong
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Sewon Kim
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Alan E Friedman
- Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States
| |
Collapse
|
24
|
Norjmaa G, Maréchal JD, Ujaque G. Microsolvation and Encapsulation Effects on Supramolecular Catalysis: C-C Reductive Elimination inside [Ga 4L 6] 12- Metallocage. J Am Chem Soc 2019; 141:13114-13123. [PMID: 31390202 DOI: 10.1021/jacs.9b04909] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The host effect of the supramolecular [Ga4L6]12- tetrahedral metallocage on reductive elimination of substrate by encapsulated Au(III) complexes is investigated by means of computational methods. The behavior of the reactants in solution and within the metallocage is initially evaluated by means of classical molecular dynamics simulations. These results guided the selection of proper computational models to describe the reaction in solution and inside the metallocage at the DFT level. The calculated Gibbs energy barriers are in very good agreement with experiment both in solution and inside the metallocage. The analysis in solution revealed that microsolvation around the Au(III) complex increases the Gibbs energy barrier. The analysis within the metallocage shows that its encapsulation favors the reaction. The process can be formally described as removing explicit microsolvation around the gold complex and encapsulating the metal complex inside the metallocage. Both processes are important for the reaction, but the removal of the solvent molecules surrounding the Au(III) metal complex is fundamental for the reduction of the reaction barrier. The energy decomposition analysis of the barrier among strain, interaction, and thermal terms shows that strain term is very low whereas the contribution of thermal (entropic) effects is moderate. Interestingly, the key term responsible for reducing the Gibbs energy barrier is the interaction. This term can be mainly associated with electrostatic interactions in agreement with previous examples in the literature.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Universitat Autònoma de Barcelona , Cerdanyola del Valles , 08193 Barcelona , Catalonia , Spain
| | - Jean-Didier Maréchal
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Universitat Autònoma de Barcelona , Cerdanyola del Valles , 08193 Barcelona , Catalonia , Spain
| | - Gregori Ujaque
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Universitat Autònoma de Barcelona , Cerdanyola del Valles , 08193 Barcelona , Catalonia , Spain
| |
Collapse
|
25
|
Bursch M, Neugebauer H, Grimme S. Structure Optimisation of Large Transition-Metal Complexes with Extended Tight-Binding Methods. Angew Chem Int Ed Engl 2019; 58:11078-11087. [PMID: 31141262 DOI: 10.1002/anie.201904021] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 01/16/2023]
Abstract
Large transition-metal complexes are used in numerous areas of chemistry. Computer-aided theoretical investigations of such complexes are limited by the sheer size of real systems often consisting of hundreds to thousands of atoms. Accordingly, the development and thorough evaluation of fast semi-empirical quantum chemistry methods that are universally applicable to a large part of the periodic table is indispensable. Herein, we report on the capability of the recently developed GFNn-xTB method family for full quantum-mechanical geometry optimisation of medium to very large transition-metal complexes and organometallic supramolecular structures. The results for a specially compiled benchmark set of 145 diverse closed-shell transition-metal complex structures for all metals up to Hg are presented. Further the GFNn-xTB methods are tested on three established benchmark sets regarding reaction energies and barrier heights of organometallic reactions.
Collapse
Affiliation(s)
- Markus Bursch
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| |
Collapse
|
26
|
Bursch M, Neugebauer H, Grimme S. Structure Optimisation of Large Transition‐Metal Complexes with Extended Tight‐Binding Methods. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Markus Bursch
- Mulliken Center for Theoretical ChemistryInstitute for Physical and Theoretical ChemistryUniversity of Bonn Beringstr. 4 53115 Bonn Germany
| | - Hagen Neugebauer
- Mulliken Center for Theoretical ChemistryInstitute for Physical and Theoretical ChemistryUniversity of Bonn Beringstr. 4 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryInstitute for Physical and Theoretical ChemistryUniversity of Bonn Beringstr. 4 53115 Bonn Germany
| |
Collapse
|
27
|
Vardhan H, Nafady A, Al-Enizi AM, Khandker K, El-Sagher HM, Verma G, Acevedo-Duncan M, Alotaibi TM, Ma S. Investigation of the Anticancer Activity of Coordination-Driven Self-AssembledTwo-Dimensional Ruthenium Metalla-Rectangle. Molecules 2019; 24:E2284. [PMID: 31248221 PMCID: PMC6630691 DOI: 10.3390/molecules24122284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/04/2019] [Accepted: 06/18/2019] [Indexed: 12/26/2022] Open
Abstract
Coordination-driven self-assembly is an effective synthetic tool for the construction of spatially and electronically tunable supramolecular coordination complexes (SCCs), which are useful in various applications. Herein, we report the synthesis of a two-dimensional discrete metalla-rectangle [(η6-p-cymene)4Ru4(C6H2O4)2(2)2](CF3SO3)4 (3) by the reaction of a dinuclear half-sandwich ruthenium (II) complex [Ru2(η6-p-cymene)2(C6H2O4)Cl2] (1) and bis-pyridyl amide linker (2) in the presence of AgO3SCF3. This cationic ruthenium metalla-rectangle (3) has been isolated as its triflate salt and characterized by analytical techniques including elemental analysis, Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H-NMR), carbon nuclear magnetic resonance spectroscopy (13C-NMR), 1H-1H correlation spectroscopy (COSY), 1H-1H nuclear Overhauser effect spectroscopy (NOESY), diffusion ordered spectroscopy (DOSY), and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Significantly, the 2D cationic ruthenium metalla-rectangle showed better anticancer activity towards three different cell lines (A549, Caki-1 and Lovo) as compared with the parent ruthenium complex (1) and the commercially used drug, cisplatin.
Collapse
Affiliation(s)
- Harsh Vardhan
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Khalid Khandker
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | - Hussein M El-Sagher
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Gaurav Verma
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | - Mildred Acevedo-Duncan
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | - Tawfiq M Alotaibi
- King Abdullah City for Atomic and Renewable Energy, Riyadh 11451, Saudi Arabia.
| | - Shengqian Ma
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| |
Collapse
|
28
|
Boer SA, White KF, Slater B, Emerson AJ, Knowles GP, Donald WA, Thornton AW, Ladewig BP, Bell TDM, Hill MR, Chaffee AL, Abrahams BF, Turner DR. A Multifunctional, Charge‐Neutral, Chiral Octahedral M
12
L
12
Cage. Chemistry 2019; 25:8489-8493. [DOI: 10.1002/chem.201901681] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Indexed: 12/31/2022]
Affiliation(s)
| | - Keith F. White
- School of Molecular Science La Trobe University Wodonga VIC 3690 Australia
| | - Benjamin Slater
- Barrer Centre Department of Chemical Engineering Imperial College London SW7 2AZ UK
- CSIRO Private Bag 10 Clayton South MDC VIC 3189 Australia
| | | | | | - William A. Donald
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| | | | - Bradley P. Ladewig
- Barrer Centre Department of Chemical Engineering Imperial College London SW7 2AZ UK
- Institute for Micro Process Engineering Karlsruhe Institute of Technology 76344 Eggenstein-Leopoldshafen Germany
| | - Toby D. M. Bell
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | - Matthew R. Hill
- CSIRO Private Bag 10 Clayton South MDC VIC 3189 Australia
- School of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Alan L. Chaffee
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | | | - David R. Turner
- School of Chemistry Monash University Clayton VIC 3800 Australia
| |
Collapse
|
29
|
Li F, Lindoy LF. Metalloligand Strategies for Assembling Heteronuclear Nanocages – Recent Developments. Aust J Chem 2019. [DOI: 10.1071/ch19279] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of metalloligands as building blocks for the assembly of metallo-organic cages has received increasing attention over the past two decades or so. In part, the popularity of this approach reflects its stepwise nature that lends itself to the predesigned construction of metallocages and especially heteronuclear metallocages. The focus of the present discussion is on the use of metalloligands for the construction of discrete polyhedral cages, very often incorporating heterometal ions as structural elements. The metalloligand approach uses metal-bound multifunctional ligand building blocks that display predesigned structural properties for coordination to a second metal ion such that the rational design and construction of both homo- and heteronuclear metal–organic cages are facilitated. The present review covers published literature in the area from early 2015 to early 2019.
Collapse
|
30
|
Vardhan H, Verpoort F. UV–Vis absorption studies of coordination-driven self-assembled 2D metalla-rectangle towards multi-carboxylation anions. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Qin Y, Chen LL, Pu W, Liu P, Liu SX, Li Y, Liu XL, Lu ZX, Zheng LY, Cao QE. A hydrogel directly assembled from a copper metal–organic polyhedron for antimicrobial application. Chem Commun (Camb) 2019; 55:2206-2209. [DOI: 10.1039/c8cc09000a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A hydrogel was directly assembled from a Cu-MOP by a facile procedure without adding any polymers for the first time, and it exhibited excellent antibacterial activity towards both Gram-negative and Gram-positive bacteria.
Collapse
|
32
|
Rota Martir D, Zysman-Colman E. Photoactive supramolecular cages incorporating Ru(ii) and Ir(iii) metal complexes. Chem Commun (Camb) 2019; 55:139-158. [DOI: 10.1039/c8cc08327d] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cage compounds incorporating phosphorescent Ru(ii) and Ir(iii) metal complexes possess a highly desirable set of optoelectronic and physical properties. This feature article summarizes the recent work on cage assemblies containing these metal complexes as photoactive units, highlighting our contribution to this growing field.
Collapse
Affiliation(s)
- Diego Rota Martir
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews
- UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre
- EaStCHEM School of Chemistry
- University of St Andrews
- St Andrews
- UK
| |
Collapse
|
33
|
Yun YN, Sohail M, Moon JH, Kim TW, Park KM, Chun DH, Park YC, Cho CH, Kim H. Defect-Free Mixed-Matrix Membranes with Hydrophilic Metal-Organic Polyhedra for Efficient Carbon Dioxide Separation. Chem Asian J 2018; 13:631-635. [DOI: 10.1002/asia.201701647] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Yang No Yun
- Korea Institute of Energy Research (KIER); Daejeon 34129 Republic of Korea
- Graduate School of Energy Science and Technology; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Muhammad Sohail
- Korea Institute of Energy Research (KIER); Daejeon 34129 Republic of Korea
- Advanced Energy and Technology; University of Science and Technology (UST); Daejeon 34113 Republic of Korea
| | - Jong-Ho Moon
- Korea Institute of Energy Research (KIER); Daejeon 34129 Republic of Korea
| | - Tae Woo Kim
- Korea Institute of Energy Research (KIER); Daejeon 34129 Republic of Korea
| | - Kyeng Min Park
- Center for Self-assembly and Complexity (CSC); Institute for Basic Science (IBS); Pohang 37673 Republic of Korea
| | - Dong Hyuk Chun
- Korea Institute of Energy Research (KIER); Daejeon 34129 Republic of Korea
| | - Young Cheol Park
- Korea Institute of Energy Research (KIER); Daejeon 34129 Republic of Korea
| | - Churl-Hee Cho
- Graduate School of Energy Science and Technology; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Hyunuk Kim
- Korea Institute of Energy Research (KIER); Daejeon 34129 Republic of Korea
- Graduate School of Energy Science and Technology; Chungnam National University; Daejeon 34134 Republic of Korea
- Advanced Energy and Technology; University of Science and Technology (UST); Daejeon 34113 Republic of Korea
| |
Collapse
|
34
|
Abeykoon B, Devic T, Grenèche JM, Fateeva A, Sorokin AB. Confinement of Fe–Al-PMOF catalytic sites favours the formation of pyrazoline from ethyl diazoacetate with an unusual sharp increase of selectivity upon recycling. Chem Commun (Camb) 2018; 54:10308-10311. [DOI: 10.1039/c8cc06082g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalysis inside a porphyrinic MOF resulted in the formation of pyrazoline from ethyl diazoacetate which was not observed in the presence of a homogeneous iron porphyrin.
Collapse
Affiliation(s)
- Brian Abeykoon
- Univ. Lyon
- Université Claude Bernard Lyon 1
- Laboratoire des Multimatériaux et Interfaces (LMI)
- UMR CNRS 5615
- F-69622 Villeurbanne
| | - Thomas Devic
- Institut des Matériaux Jean Rouxel (IMN)
- UMR 6502
- Université de Nantes
- CNRS
- 44322 Nantes Cedex 3
| | - Jean-Marc Grenèche
- Institut des Molécules et des Matériaux du Mans (IMMM)
- UMR CNRS 6283
- Le Mans Université
- 72085 Le Mans Cedex
- France
| | - Alexandra Fateeva
- Univ. Lyon
- Université Claude Bernard Lyon 1
- Laboratoire des Multimatériaux et Interfaces (LMI)
- UMR CNRS 5615
- F-69622 Villeurbanne
| | - Alexander B. Sorokin
- Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON)
- UMR 5256
- Université Claude Bernard Lyon 1 – CNRS
- 69626 Villeurbanne
- France
| |
Collapse
|
35
|
|
36
|
Supracolloidal Self-Assembly of Micro-Hosts and -Guests on Substrates. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Mai HD, Kang P, Kim JK, Yoo H. A Cobalt Supramolecular Triple-Stranded Helicate-based Discrete Molecular Cage. Sci Rep 2017; 7:43448. [PMID: 28262690 PMCID: PMC5337952 DOI: 10.1038/srep43448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/23/2017] [Indexed: 12/19/2022] Open
Abstract
We report a strategy to achieve a discrete cage molecule featuring a high level of structural hierarchy through a multiple-assembly process. A cobalt (Co) supramolecular triple-stranded helicate (Co-TSH)-based discrete molecular cage (1) is successfully synthesized and fully characterized. The solid-state structure of 1 shows that it is composed of six triple-stranded helicates interconnected by four linking cobalt species. This is an unusual example of a highly symmetric cage architecture resulting from the coordination-driven assembly of metallosupramolecular modules. The molecular cage 1 shows much higher CO2 uptake properties and selectivity compared with the separate supramolecular modules (Co-TSH, complex 2) and other molecular platforms.
Collapse
Affiliation(s)
- Hien Duy Mai
- Department of Chemistry, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Philjae Kang
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jin Kyung Kim
- Department of Chemistry, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Hyojong Yoo
- Department of Chemistry, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| |
Collapse
|
38
|
Jansze SM, Wise MD, Vologzhanina AV, Scopelliti R, Severin K. Pd II2L 4-type coordination cages up to three nanometers in size. Chem Sci 2017; 8:1901-1908. [PMID: 28567267 PMCID: PMC5444114 DOI: 10.1039/c6sc04732g] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
The utilization of large ligands in coordination-based self-assembly represents an attractive strategy for the construction of supramolecular assemblies more than two nanometers in size. However, the implementation of this strategy is hampered by the fact that the preparation of such ligands often requires substantial synthetic effort. Herein, we describe a simple one-step protocol, which allows large bipyridyl ligands with a bent shape to be synthesized from easily accessible and/or commercially available starting materials. The ligands were used to construct PdII2L4-type coordination cages of unprecedented size. Furthermore, we provide evidence that these cages may be stabilized by close intramolecular packing of lipophilic ligand side chains. Packing effects of this kind are frequently encountered in protein assemblies, but they are seldom used as a design element in metallasupramolecular chemistry.
Collapse
Affiliation(s)
- Suzanne M Jansze
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Matthew D Wise
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences , 119991 Moscow , Russia
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland .
| |
Collapse
|
39
|
Taylor CGP, Cullen W, Collier OM, Ward MD. A Quantitative Study of the Effects of Guest Flexibility on Binding Inside a Coordination Cage Host. Chemistry 2017; 23:206-213. [PMID: 27879015 PMCID: PMC6680264 DOI: 10.1002/chem.201604796] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 12/29/2022]
Abstract
We have performed a systematic investigation of the effects of guest flexibility on their ability to bind in the cavity of a coordination cage host in water, using two sets of isomeric aliphatic ketones that differ only in the branching patterns of their alkyl chains. Apart from the expected increase in binding strength for C9 over C7 ketones associated with their greater hydrophobic surface area, within each isomeric set there is a clear inverse correlation between binding free energy and guest flexibility, associated with loss of conformational entropy. This can be parameterized by the number of rotatable C-C bonds in the guest, with each additional rotatable bond resulting in a penalty of around 2 kJ mol-1 in the binding free energy, in good agreement with values obtained from protein/ligand binding studies. We used the binding data for the new flexible guests to improve the scoring function that we had previously developed that allowed us to predict binding constants of relatively rigid guests in the cage cavity using the molecular docking programme GOLD (Genetic Optimisation of Ligand Docking). This improved scoring function resulted in a significant improvement in the ability of GOLD to predict binding constants for flexible guests, without any detriment to its ability to predict binding for more rigid guests.
Collapse
Affiliation(s)
| | - William Cullen
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | | | - Michael D. Ward
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| |
Collapse
|
40
|
Qin Y, Zhang Q, Li Y, Liu X, Lu Z, Zheng L, Liu S, Cao QE, Ding Z. Copper metal–organic polyhedra nanorods with high intrinsic peroxidase-like activity at physiological pH for bio-sensing. J Mater Chem B 2017; 5:9365-9370. [DOI: 10.1039/c7tb02388j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Copper metal–organic polyhedra (Cu-MOP) nanorods exhibited high peroxidase-mimicking activity at a physiological pH value.
Collapse
Affiliation(s)
- Yu Qin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education
- Functional Molecules Analysis and Biotransformation Key laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
| | - Qin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education
- Functional Molecules Analysis and Biotransformation Key laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
| | - Yande Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education
- Functional Molecules Analysis and Biotransformation Key laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
| | - Xiaolan Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education
- Functional Molecules Analysis and Biotransformation Key laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
| | - Zhixiang Lu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education
- Functional Molecules Analysis and Biotransformation Key laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
| | - Liyan Zheng
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education
- Functional Molecules Analysis and Biotransformation Key laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
| | - Shixi Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education
- Functional Molecules Analysis and Biotransformation Key laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
| | - Qiu-e Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education
- Functional Molecules Analysis and Biotransformation Key laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
| | - Zhongtao Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University)
- Ministry of Education
- Functional Molecules Analysis and Biotransformation Key laboratory of Universities in Yunnan Province
- School of Chemical Science and Technology
- Yunnan University
| |
Collapse
|
41
|
Kumar R, Rao CNR. Novel properties of 0D metal–organic polyhedra bonded to the surfaces of 2D graphene and 1D single-walled carbon nanotubes. Dalton Trans 2017; 46:7998-8003. [DOI: 10.1039/c7dt00583k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stabilization of individual 0D metal–organic polyhedra (MOP) on 2D graphene and 1D single-walled carbon nanotube (SWNT) surfaces results in a significant improvement of porosity, surface area and catalytic activity of the composites.
Collapse
Affiliation(s)
- Ram Kumar
- International Centre for Materials Science
- Chemistry and Physics of Materials Unit and CSIR Centre of Excellence in Chemistry
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore-560064
- India
| | - C. N. R. Rao
- International Centre for Materials Science
- Chemistry and Physics of Materials Unit and CSIR Centre of Excellence in Chemistry
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore-560064
- India
| |
Collapse
|
42
|
Sarma BB, Avram L, Neumann R. Encapsulation of Arenes within a Porous Molybdenum Oxide {Mo132} Nanocapsule. Chemistry 2016; 22:15231-15236. [DOI: 10.1002/chem.201603596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Bidyut Bikash Sarma
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Liat Avram
- Department of Chemical Research Support; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Ronny Neumann
- Department of Organic Chemistry; Weizmann Institute of Science; Rehovot 76100 Israel
| |
Collapse
|
43
|
|
44
|
Lebedeva MA, Chamberlain TW, Thomas A, Thomas BE, Stoppiello CT, Volkova E, Suyetin M, Khlobystov AN. Chemical reactions at the graphitic step-edge: changes in product distribution of catalytic reactions as a tool to explore the environment within carbon nanoreactors. NANOSCALE 2016; 8:11727-11737. [PMID: 27222094 DOI: 10.1039/c6nr03360a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A series of explorative cross-coupling reactions have been developed to investigate the local nanoscale environment around catalytically active Pd(ii)complexes encapsulated within hollow graphitised nanofibers (GNF). Two new fullerene-containing and fullerene-free Pd(ii)Salen catalysts have been synthesised, and their activity and selectivity towards different substrates has been explored in nanoreactors. The catalysts not only show a significant increase in activity and stability upon heterogenisation at the graphitic step-edges inside the GNF channel, but also exhibit a change in selectivity affected by the confinement which alters the distribution of isomeric products of the reaction. Furthermore, the observed selectivity changes reveal unprecedented details regarding the location and orientation of the catalyst molecules inside the GNF nanoreactor, inaccessible by any spectroscopic or microscopic techniques, thus shedding light on the precise reaction environment inside the molecular catalyst-GNF nanoreactor.
Collapse
Affiliation(s)
- Maria A Lebedeva
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK. and Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK
| | - Thomas W Chamberlain
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK. and School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Alice Thomas
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Bradley E Thomas
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Craig T Stoppiello
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Evgeniya Volkova
- Institute of Mechanics of Ural Branch of Russian Academy of Sciences, T. Baramzinoy St., 34, Izhevsk, 426067, Russian Federation
| | - Mikhail Suyetin
- Institute of Mechanics of Ural Branch of Russian Academy of Sciences, T. Baramzinoy St., 34, Izhevsk, 426067, Russian Federation
| | - Andrei N Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK. and Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
45
|
Hosono N, Gochomori M, Matsuda R, Sato H, Kitagawa S. Metal–Organic Polyhedral Core as a Versatile Scaffold for Divergent and Convergent Star Polymer Synthesis. J Am Chem Soc 2016; 138:6525-31. [DOI: 10.1021/jacs.6b01758] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nobuhiko Hosono
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Mika Gochomori
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Ryotaro Matsuda
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Hiroshi Sato
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Susumu Kitagawa
- Institute
for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
- Department
of Synthetic Chemistry and Biological Chemistry, Graduate School of
Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
46
|
Qiu X, Zhong W, Bai C, Li Y. Encapsulation of a Metal–Organic Polyhedral in the Pores of a Metal–Organic Framework. J Am Chem Soc 2016; 138:1138-41. [DOI: 10.1021/jacs.5b12189] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuan Qiu
- School of Chemistry and Chemical
Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wei Zhong
- School of Chemistry and Chemical
Engineering, South China University of Technology, Guangzhou 510640, China
| | - Cuihua Bai
- School of Chemistry and Chemical
Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yingwei Li
- School of Chemistry and Chemical
Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
47
|
Ghorbani-Vaghei R, Davood Azarifar DA, Daliran S, Oveisi AR. The UiO-66-SO3H metal–organic framework as a green catalyst for the facile synthesis of dihydro-2-oxypyrrole derivatives. RSC Adv 2016. [DOI: 10.1039/c6ra00463f] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The multicomponent domino reaction synthesis of dihydro-2-oxopyrroles has been performed using the sulfonated metal–organic framework, UiO-66-SO3H (UiO is the University of Oslo), as a highly efficient acid catalyst.
Collapse
Affiliation(s)
| | | | - Saba Daliran
- Faculty of Chemistry
- Bu-Ali Sina University
- Hamedan
- Iran
| | - Ali Reza Oveisi
- Department of Chemistry
- Faculty of Science
- University of Zabol
- Zabol
- Iran
| |
Collapse
|
48
|
Metherell AJ, Ward MD. Stepwise synthesis of mixed-metal assemblies using pre-formed Ru(ii) ‘complex ligands’ as building blocks. RSC Adv 2016. [DOI: 10.1039/c5ra22694e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A stepwise approach to assembly of heteropolynuclear complexes is reported, including a Ru4Co4 cubic cage which encapsulates a {Na(BF4)4}3− complex anion.
Collapse
Affiliation(s)
| | - Michael D. Ward
- Department of Chemistry
- University of Sheffield
- Sheffield S3 7HF
- UK
| |
Collapse
|
49
|
Wragg AB, Metherell AJ, Cullen W, Ward MD. Stepwise assembly of mixed-metal coordination cages containing both kinetically inert and kinetically labile metal ions: introduction of metal-centred redox and photophysical activity at specific sites. Dalton Trans 2015; 44:17939-49. [PMID: 26406288 DOI: 10.1039/c5dt02957k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Stepwise preparation of the heterometallic octanuclear coordination cages [(M(a))4(M(b))4L12](16+) is reported, in which M(a) = Ru or Os and M(b) = Cd or Co (all in their +2 oxidation state). This requires initial preparation of the kinetically inert mononuclear complexes [(M(a))L3](2+) in which L is a ditopic ligand with two bidentate chelating pyrazolyl-pyridine units: in the complexes [(M(a))L3](2+) one terminus of each ligand is bound to the metal ion, such that the complex has three pendant bidentate sites at which cage assembly can propagate by coordination to additional labile ions M(b) in a separate step. Thus, combination of four [(M(a))L3](2+) units and four [M(b)](2+) ions results in assembly of the complete cages [(M(a))4(M(b))4L12](16+) in which a metal ion lies at each of the eight vertices, and a bridging ligand spans each of the twelve edges, of a cube. The different types of metal ion necessarily alternate around the periphery with each bridging ligand bound to one metal ion of each type. All four cages have been structurally characterised: in the Ru(ii)/Cd(ii) cage (reported in a recent communication) the Ru(ii) and Cd(ii) ions are crystallographically distinct; in the other three cages [Ru(ii)/Co(ii), Os(ii)/Cd(ii) and Os(ii)/Co(ii), reported here] the ions are disordered around the periphery such that every metal site refines as a 50 : 50 mixture of the two metal atom types. The incorporation of Os(ii) units into the cages results in both redox activity [a reversible Os(ii)/Os(iii) couple for all four metal ions simultaneously, at a modest potential] and luminescence [the Os(ii) units have luminescent (3)MLCT excited states which will be good photo-electron donors] being incorporated into the cage superstructure.
Collapse
Affiliation(s)
- Ashley B Wragg
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK.
| | | | | | | |
Collapse
|
50
|
Augustyniak AW, Fandzloch M, Domingo M, Łakomska I, Navarro JAR. A vanadium(IV) pyrazolate metal-organic polyhedron with permanent porosity and adsorption selectivity. Chem Commun (Camb) 2015; 51:14724-7. [PMID: 26291304 DOI: 10.1039/c5cc05913e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A vanadium(IV) pyrazolate-based open metal-organic polyhedron of [V3(μ3-O)O(OH)2(μ4-BPD)1.5(μ-HCOO)3] (BDP = benzene-1,4-bipyrazolate) formulation gives rise to a porous crystal structure exhibiting micro and mesoporosity which is useful for selective adsorption of gases.
Collapse
Affiliation(s)
- A W Augustyniak
- Institute of Public Health and Environmental Protection, Batystowa 1B, 02-835 Warsaw, Poland.
| | | | | | | | | |
Collapse
|