1
|
do Carmo Pinheiro R, Souza Marques L, Ten Kathen Jung J, Nogueira CW, Zeni G. Recent Progress in Synthetic and Biological Application of Diorganyl Diselenides. CHEM REC 2024; 24:e202400044. [PMID: 38976862 DOI: 10.1002/tcr.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Indexed: 07/10/2024]
Abstract
Diorganyl diselenides have emerged as privileged structures because they are easy to prepare, have distinct reactivity, and have broad biological activity. They have also been used in the synthesis of natural products as an electrophile in the organoselenylation of aromatic systems and peptides, reductions of alkenes, and nucleophilic substitution. This review summarizes the advancements in methods for the transformations promoted by diorganyl diselenides in the main functions of organic chemistry. Parallel, it will also describe the main findings on pharmacology and toxicology of diorganyl diselenides, emphasizing anti-inflammatory, hypoglycemic, chemotherapeutic, and antimicrobial activities. Therefore, an examination detailing the reactivity and biological characteristics of diorganyl diselenides provides valuable insights for academic researchers and industrial professionals.
Collapse
Affiliation(s)
- Roberto do Carmo Pinheiro
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Luiza Souza Marques
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Juliano Ten Kathen Jung
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| |
Collapse
|
2
|
Li J, Wang P, Dong J, Xie Z, Tan X, Zhou L, Ai L, Li B, Wang Y, Dong H. A Domino Protocol toward High-performance Unsymmetrical Dibenzo[d,d']thieno[2,3-b;4,5-b']dithiophenes Semiconductors. Angew Chem Int Ed Engl 2024; 63:e202400803. [PMID: 38414106 DOI: 10.1002/anie.202400803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
Unsymmetric organic semiconductors have many advantages such as good solubility, rich intermolecular interactions for potential various optoelectronic applications. However, their synthesis is more challenging due to intricate structures thus normally suffering tedious synthesis. Herein, we report a trisulfur radical anion (S3⋅-) triggered domino thienannulation strategy for the synthesis of dibenzo[d,d']thieno[2,3-b;4,5-b']dithiophenes (DBTDTs) using readily available 1-halo-2-ethynylbenzenes as starting materials. This domino protocol features no metal catalyst and the formation of six C-S and one C-C bonds in a one-pot reaction. Mechanistic study revealed a unique domino radical anion pathway. Single crystal structure analysis of unsymmetric DBTDT shows that its unique unsymmetric structure endows rich and multiple weak S⋅⋅⋅S interactions between molecules, which enables the large intermolecular transfer integrals of 86 meV and efficient charge transport performance with a carrier mobility of 1.52 cm2 V-1 s-1. This study provides a facile and highly efficient synthetic strategy for more high-performance unsymmetric organic semiconductors.
Collapse
Affiliation(s)
- Jiahui Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pu Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxuan Dong
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziyi Xie
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyu Tan
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Zhou
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liankun Ai
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baolin Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Abedinifar F, Babazadeh Rezaei E, Biglar M, Larijani B, Hamedifar H, Ansari S, Mahdavi M. Recent strategies in the synthesis of thiophene derivatives: highlights from the 2012-2020 literature. Mol Divers 2021; 25:2571-2604. [PMID: 32734589 DOI: 10.1007/s11030-020-10128-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
Thiophene-based analogs have been fascinated by a growing number of scientists as a potential class of biologically active compounds. Furthermore, they play a vital role for medicinal chemists to improve advanced compounds with a variety of biological effects. The current review envisioned to highlight some recent and particularly remarkable examples of the synthesis of thiophene derivatives by heterocyclization of various substrates from 2012 on.
Collapse
Affiliation(s)
- Fahimeh Abedinifar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Elham Babazadeh Rezaei
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 14176, Iran
| | - Halleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Samira Ansari
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, 14176, Iran.
| |
Collapse
|
4
|
Morajkar RV, Fatrekar AP, Mohanty A, Vernekar AA. A review on the role of transition metals in selenylation reactions. Curr Org Synth 2021; 19:366-392. [PMID: 34544346 DOI: 10.2174/1570179418666210920150142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
Organoselenium chemistry has emerged as a distinctive area of research with tremendous utility in the synthesis of biologically and pharmaceutically active molecules. Significant synthetic approaches have been made for the construction of C-Se bonds which find use in other organic transformations. This review focuses on the versatility of transition metal-mediated selenylation reactions, providing insights into various synthetic pathways and mechanistic details. Further, this review aims to offer a broad perspective for designing efficient and novel catalysts to incorporate organoselenium moiety into the inert C-H bonds.
Collapse
Affiliation(s)
- Rasmi V Morajkar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Abhijeet Mohanty
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai-600020. India
| |
Collapse
|
5
|
Wu W, Liu W, Song D, Yan L. Synthetic routes to selenophenes (biologically valuable molecules). SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1958229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wei Wu
- College of Food and Biology, Changchun Polytechnic, Changchun, Jilin, China
| | - Wei Liu
- College of Computer Science, Jilin Normal University, Siping, Jilin, China
| | - Di Song
- College of Food and Biology, Changchun Polytechnic, Changchun, Jilin, China
| | - Li Yan
- College of Chemistry, Jilin Normal University, Siping, Jilin, China
| |
Collapse
|
6
|
de Salles HD, Coelho FL, Paixão DB, Barboza CA, da Silveira Rampon D, Rodembusch FS, Schneider PH. Evidence of a Photoinduced Electron-Transfer Mechanism in the Fluorescence Self-quenching of 2,5-Substituted Selenophenes Prepared through In Situ Reduction of Elemental Selenium in Superbasic Media. J Org Chem 2021; 86:10140-10153. [PMID: 34283602 DOI: 10.1021/acs.joc.1c00874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A series of new 2,5-disubstituted selenophene derivatives are described from elemental selenium and 1,3-diynes in superbasic media. The activation of elemental selenium in a KOH/DMSO system allows cyclization with conjugated diynes at room temperature. The cyclization reaction is extended to a broad range of functional groups, for which photophysics were experimentally and theoretically investigated. The selenophene derivatives present absorption maxima in the UV-A region and fluorescence emission in the violet-to-blue region. Fluorescence decay profiles were obtained showing a monoexponential decay with fast fluorescence lifetimes (∼0.118 ns), as predicted by the Strickler-Berg relations. In general, in both investigations, no dependence on the solvent polarity on the absorption and emission maxima location was observed. On the other hand, solvents and substituents are shown to play a role in the fluorescence quantum yield values. In addition, a fluorescence self-quenching behavior could be observed, related to a photoinduced electron-transfer mechanism. Theoretical calculations performed at the MP2/ADC(2)/cc-pVDZ level of theory were performed in order to investigate the photophysical features of this series of selenophene derivatives.
Collapse
Affiliation(s)
- Helena Domingues de Salles
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Felipe Lange Coelho
- Instituto de Química, Universidade Federal de Goiás (UFG), Campus Samambaia, 74690-900 Goaînia, Goiás, Brazil
| | - Douglas Bernardo Paixão
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Daniel da Silveira Rampon
- Laboratório de Polímeros e Catálise (LAPOCA), Departamento de Química, Universidade Federal do Paraná (UFPR), P.O. Box 19061, 81531-990 Curitiba, Paraná, Brazil
| | - Fabiano Severo Rodembusch
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Henrique Schneider
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Hellwig PS, Guedes JS, Barcellos AM, Perin G, Lenardão EJ. Synthesis of 3,4-Bis(Butylselanyl)Selenophenes and 4-Alkoxyselenophenes Promoted by Oxone ®. Molecules 2021; 26:molecules26082378. [PMID: 33921844 PMCID: PMC8073937 DOI: 10.3390/molecules26082378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
We describe herein an alternative transition-metal-free procedure to access 3,4-bis(butylselanyl)selenophenes and the so far unprecedented 3-(butylselanyl)-4-alkoxyselenophenes. The protocol involves the 5-endo-dig electrophilic cyclization of 1,3-diynes promoted by electrophilic organoselenium species, generated in situ through the oxidative cleavage of the Se-Se bond of dibutyl diselenide using Oxone® as a green oxidant. The selective formation of the title products was achieved by controlling the solvent identity and the amount of dibutyl diselenide. By using 4.0 equiv of dibutyl diselenide and acetonitrile as solvent at 80 °C, four examples of 3,4-bis(butylselanyl)selenophenes were obtained in moderate to good yields (40–78%). When 3.0 equiv of dibutyl diselenide were used, in the presence of aliphatic alcohols as solvent/nucleophiles under reflux, 10 3-(butylselanyl)-4-alkoxyselenophenes were selectively obtained in low to good yields (15–80%).
Collapse
Affiliation(s)
| | | | | | - Gelson Perin
- Correspondence: (G.P.); (E.J.L.); Tel.: +55-53-3275-7356 (G.P. & E.J.L.)
| | - Eder J. Lenardão
- Correspondence: (G.P.); (E.J.L.); Tel.: +55-53-3275-7356 (G.P. & E.J.L.)
| |
Collapse
|
8
|
Win KMN, Sonawane AD, Koketsu M. Synthesis of selenated tetracyclic indoloazulenes via iodine and diorganyl diselenides. Org Biomol Chem 2021; 19:3199-3206. [PMID: 33885574 DOI: 10.1039/d1ob00268f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, we report an efficient protocol for the synthesis of selenated tetracyclic indoloazulenes. The reaction of diorganyl diselenides with molecular iodine in dichloromethane leads to the in situ formation of organo selenenyl iodide. The synthesis of selenylated tetracyclic indoloazulenes through intramolecular cascade cyclization has been achieved via organo selenenyl iodide and bisindole at room temperature under metal-free conditions in good yields. All compounds were fully characterized by the FT-IR, HRMS, and 1H, 13C and 77Se NMR spectral data.
Collapse
Affiliation(s)
- Khin Myat Noe Win
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.
| | | | | |
Collapse
|
9
|
Schumacher RF, Godoi B, Jurinic CK, Belladona AL. Diorganyl Dichalcogenides and Copper/Iron Salts: Versatile Cyclization System To Achieve Carbo- and Heterocycles from Alkynes. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1463-4098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AbstractOrganochalcogen-containing cyclic molecules have shown several promising pharmacological properties. Consequently, different strategies have been developed for their synthesis in the past few years. Particularly due to the low cost and environmental aspects, copper- and iron-promoted cyclization reactions of alkynyl substrates have been broadly and efficiently applied for this purpose. This short review presents an overview of the most recent advances in the synthesis of organochalcogen-containing carbo- and heterocycles by reacting diorganyl disulfides, diselenides, and ditellurides with alkyne derivatives in the presence of copper and iron salts to promote cyclization reactions.1 Introduction2 Synthesis of Carbo- and Heterocycles via Reactions of Alkynes with Diorganyl Dichalcogenides and Copper Salts3 Synthesis of Carbo- and Heterocycles via Reactions of Alkynes with Diorganyl Dichalcogenides and Iron Salts4 Conclusions
Collapse
Affiliation(s)
| | - Benhur Godoi
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis – PPGATS, Federal University of Fronteira Sul
| | - Carla K. Jurinic
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis – PPGATS, Federal University of Fronteira Sul
| | | |
Collapse
|
10
|
Męcik P, Pigulski B, Szafert S. Serendipitous Formation of Various Selenium Heterocycles Hidden in the Classical Synthesis of Selenophene. Org Lett 2021; 23:1066-1070. [PMID: 33502204 PMCID: PMC7874900 DOI: 10.1021/acs.orglett.0c04275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 12/26/2022]
Abstract
Synthesis of complex di(selenophen-3-yl)diselenides and 3-methylene-3H-1,2-diselenoles directly from 1-bromobutadiynes is described. The transformation is performed under conditions used before for the synthesis of simple selenophenes from butadiynes. The reaction is operationally straightforward, and complex products were obtained in high yields. Structures of the final products were unambiguously confirmed by the means of 77Se NMR and single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Patrycja Męcik
- Faculty of Chemistry, University
of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Bartłomiej Pigulski
- Faculty of Chemistry, University
of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Sławomir Szafert
- Faculty of Chemistry, University
of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| |
Collapse
|
11
|
Li Y, Wu J, Li H, Sun Q, Xiong L, Yin G. Highly regio- and stereoselective synthesis of bis-sulfanyl substituted conjugated dienes by copper–palladium cooperative catalysis. Org Chem Front 2021. [DOI: 10.1039/d0qo01256d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An efficient one-pot method for the synthesis of (Z,Z)-isomers of 1,4-bis(sulfanyl)-1,4-diaryl-1,3-butadienes by the cooperative catalysis of Cu(Xantphos)I/Pd(OAc)2 and a base has been developed.
Collapse
Affiliation(s)
- Yuan Li
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology
- College of Chemistry and Chemical Engineering
- Hubei Normal University
- Huangshi 435002
- China
| | - Jin Wu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology
- College of Chemistry and Chemical Engineering
- Hubei Normal University
- Huangshi 435002
- China
| | - Hui Li
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology
- College of Chemistry and Chemical Engineering
- Hubei Normal University
- Huangshi 435002
- China
| | - Qian Sun
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology
- College of Chemistry and Chemical Engineering
- Hubei Normal University
- Huangshi 435002
- China
| | - Lixue Xiong
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology
- College of Chemistry and Chemical Engineering
- Hubei Normal University
- Huangshi 435002
- China
| | - Guodong Yin
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology
- College of Chemistry and Chemical Engineering
- Hubei Normal University
- Huangshi 435002
- China
| |
Collapse
|
12
|
Hellwig PS, Peglow TJ, Penteado F, Bagnoli L, Perin G, Lenardão EJ. Recent Advances in the Synthesis of Selenophenes and Their Derivatives. Molecules 2020; 25:E5907. [PMID: 33322179 PMCID: PMC7764687 DOI: 10.3390/molecules25245907] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/25/2022] Open
Abstract
The selenophene derivatives are an important class of selenium-based heterocyclics. These compounds play an important role in prospecting new drugs, as well as in the development of new light-emitting materials. During the last years, several methods have been emerging to access the selenophene scaffold, employing a diversity of cyclization-based synthetic strategies, involving specific reaction partners and particularities. This review presents a comprehensive discussion on the recent advances in the synthesis of selenophene-based compounds, starting from different precursors, highlighting the main differences, the advantages, and limitations among them.
Collapse
Affiliation(s)
- Paola S. Hellwig
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil; (P.S.H.); (T.J.P.); (F.P.)
| | - Thiago J. Peglow
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil; (P.S.H.); (T.J.P.); (F.P.)
| | - Filipe Penteado
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil; (P.S.H.); (T.J.P.); (F.P.)
| | - Luana Bagnoli
- Group of Catalysis, Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy;
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil; (P.S.H.); (T.J.P.); (F.P.)
| | - Eder J. Lenardão
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900 Pelotas, RS, Brazil; (P.S.H.); (T.J.P.); (F.P.)
| |
Collapse
|
13
|
Sonawane AD, Sonawane RA, Ninomiya M, Koketsu M. Synthesis of Seleno‐Heterocycles
via
Electrophilic/Radical Cyclization of Alkyne Containing Heteroatoms. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000490] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Amol D. Sonawane
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Rohini A. Sonawane
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
14
|
Sonawane AD, Shimozuma A, Udagawa T, Ninomiya M, Koketsu M. Synthesis and photophysical properties of selenopheno[2,3-b]quinoxaline and selenopheno[2,3-b]pyrazine heteroacenes. Org Biomol Chem 2020; 18:4063-4070. [PMID: 32418998 DOI: 10.1039/d0ob00718h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this paper, we report the novel synthesis of three different heterocycles, namely 2-arylselenopheno[2,3-b]quinoxaline, 3-(aryl/alkylselanyl)-2-arylselenopheno[2,3-b]quinoxaline and 6-phenyl-7-(arylselanyl)selenopheno[2,3-b]pyrazine derivatives, from the corresponding 2,3-dichloroquinoxaline and 2,3-dichloropyrazine derivatives. Furthermore, photophysical properties were investigated to study the effect of heteroatoms on UV-absorbance and fluorescence properties.
Collapse
Affiliation(s)
- Amol D Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.
| | | | | | | | | |
Collapse
|
15
|
Sonawane AD, Sonawane RA, Win KMN, Ninomiya M, Koketsu M. In situ air oxidation and photophysical studies of isoquinoline-fused N-heteroacenes. Org Biomol Chem 2020; 18:2129-2138. [PMID: 32134103 DOI: 10.1039/d0ob00375a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient, metal free and environment friendly synthesis of isoquinoline-fused benzimidazole has been developed via in situ air oxidation. Also, syntheses of isoquinoline-fused quinazolinone heteroacenes were successfully achieved. The synthesized isoquinoline-fused benzimidazole and isoquinoline-fused quinazolinone derivatives showed λmax, Fmax and Φf values in the ranges 356-394 nm, 403-444 nm and 0.063-0.471, respectively, in CHCl3.
Collapse
Affiliation(s)
- Amol D Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.
| | | | | | | | | |
Collapse
|
16
|
Sonawane AD, Kubota Y, Koketsu M. Iron-Promoted Intramolecular Cascade Cyclization for the Synthesis of Selenophene-Fused, Quinoline-Based Heteroacenes. J Org Chem 2019; 84:8602-8614. [DOI: 10.1021/acs.joc.9b01061] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amol D. Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Yasuhiro Kubota
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
17
|
Gao WC, Cheng YF, Chang HH, Li X, Wei WL, Yang P. Synthesis of 4-Sulfenyl Isoxazoles through AlCl3-Mediated Electrophilic Cyclization and Sulfenylation of 2-Alkyn-1-one O-Methyloximes. J Org Chem 2019; 84:4312-4317. [DOI: 10.1021/acs.joc.9b00256] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Wen-Chao Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yu-Fei Cheng
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Hong-Hong Chang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Xing Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Wen-Long Wei
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Material Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
18
|
do Carmo Pinheiro R, Back DF, Zeni G. Iron(III) Chloride/Dialkyl Diselenides‐Promoted Cascade Cyclization of
ortho
‐Diynyl Benzyl Chalcogenides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roberto do Carmo Pinheiro
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNEUFSM Santa Maria, Rio Grande do Sul Brazil 97105-900
| | - Davi F. Back
- Laboratório de Materiais Inorgânicos, Departamento de QuímicaUFSM Santa Maria, Rio Grande do Sul Brazil 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNEUFSM Santa Maria, Rio Grande do Sul Brazil 97105-900
| |
Collapse
|
19
|
Abstract
Abstract
This chapter highlights the utility of electrophilic achiral and chiral organoselenium reagents in organic synthesis. A range of reactions from alkene functionalizations, the functionalization of aliphatic and aromatic C–H bonds using stoichiometric and catalytic approaches as well as rearrangement reactions are described. In addition, the utility of organotellurium reagents in organic synthesis is covered in this chapter.
Collapse
|
20
|
Win KMN, Sonawane AD, Koketsu M. Iodine mediated in situ generation of R-Se–I: application towards the construction of pyrano[4,3-b]quinoline heterocycles and fluorescence properties. Org Biomol Chem 2019; 17:9039-9049. [DOI: 10.1039/c9ob01648a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Iodine mediated in situ generation of R-Se–I and its application towards the construction of pyrano[4,3-b]quinolin-1-one derivatives.
Collapse
Affiliation(s)
- Khin Myat Noe Win
- Department of Chemistry and Biomolecular Science
- Faculty of Engineering
- Gifu University
- Gifu 501-1193
- Japan
| | - Amol D. Sonawane
- Department of Chemistry and Biomolecular Science
- Faculty of Engineering
- Gifu University
- Gifu 501-1193
- Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science
- Faculty of Engineering
- Gifu University
- Gifu 501-1193
- Japan
| |
Collapse
|
21
|
A theoretical study on the isomers of the B5TB heteroacene for improved semiconductor properties in organic electronics. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Gupta A, Flynn BL. Linear and Angular Heteroacenes from Double-Electrophilic Cyclization (DEC) and DEC-Reductive Elimination of Diynes. Org Lett 2017; 19:1939-1941. [DOI: 10.1021/acs.orglett.7b00265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Akhil Gupta
- Medicinal Chemistry, Monash
Institute of Pharmaceutical Sciences, Monash University, 381 Royal
Parade, Parkville Victoria 3052, Australia
| | - Bernard L. Flynn
- Medicinal Chemistry, Monash
Institute of Pharmaceutical Sciences, Monash University, 381 Royal
Parade, Parkville Victoria 3052, Australia
| |
Collapse
|
23
|
Ansell MB, Navarro O, Spencer J. Transition metal catalyzed element–element′ additions to alkynes. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Li CX, Liu RJ, Yin K, Wen LR, Li M. Synthesis of disulfides tethered pyrroles from β-ketothioamides via a bicyclization/ring-opening/oxidative coupling reaction. Org Biomol Chem 2017; 15:5820-5823. [DOI: 10.1039/c7ob00655a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DABCO-promoted three-component reaction of β-ketothioamides, arylglyoxals and 2-cyanoacetate to construct disulfides tethered pyrroles has been developed.
Collapse
Affiliation(s)
- Cong-Xiang Li
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Rui-Juan Liu
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Kun Yin
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|
25
|
Copper(I) Iodide-Catalyzed Sulfenylation of Maleimides and Related 3-Indolylmaleimides with Thiols. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600812] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
Neto JSS, Iglesias BA, Back DF, Zeni G. Iron-Promoted Tandem Cyclization of 1,3-Diynyl Chalcogen Derivatives with Diorganyl Dichalcogenides for the Synthesis of Benzo[b]furan-Fused Selenophenes. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600759] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- José S. S. Neto
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE; UFSM; Santa Maria Rio Grande do Sul Brazil 97105-900
| | - Bernardo A. Iglesias
- Laboratório de Materiais Inorgânicos, Departamento de Química; UFSM; Santa Maria Rio Grande do Sul Brazil 97105-900
| | - Davi F. Back
- Laboratório de Materiais Inorgânicos, Departamento de Química; UFSM; Santa Maria Rio Grande do Sul Brazil 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE; UFSM; Santa Maria Rio Grande do Sul Brazil 97105-900
| |
Collapse
|
27
|
Zhang MZ, Ji PY, Liu YF, Xu JW, Guo CC. Disulfides as Sulfonylating Precursors for the Synthesis of Sulfone-Containing Oxindoles. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600200] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ming-Zhong Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics; Advanced Catalytic Engineering Research Center of the Ministry of Education; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 People's Republic of China
- School of Chemistry and Chemical Engineering; Yangtze Normal University; Chongqing 408100 People's Republic of China
| | - Peng-Yi Ji
- State Key Laboratory of Chemo/Biosensing and Chemometrics; Advanced Catalytic Engineering Research Center of the Ministry of Education; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 People's Republic of China
| | - Yu-Feng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics; Advanced Catalytic Engineering Research Center of the Ministry of Education; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 People's Republic of China
| | - Jing-Wen Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics; Advanced Catalytic Engineering Research Center of the Ministry of Education; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 People's Republic of China
| | - Can-Cheng Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics; Advanced Catalytic Engineering Research Center of the Ministry of Education; College of Chemistry and Chemical Engineering; Hunan University; Changsha 410082 People's Republic of China
| |
Collapse
|
28
|
Yu H, Liao P. Iron chloride hexahydrate-catalyzed Friedel-Crafts akylation of cyclic ketene dithioacetals with alcohols. Chem Res Chin Univ 2016. [DOI: 10.1007/s40242-016-5482-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Grimaldi TB, Lutz G, Back DF, Zeni G. (Biphenyl-2-alkyne) derivatives as common precursors for the synthesis of 9-iodo-10-organochalcogen-phenanthrenes and 9-organochalcogen-phenanthrenes. Org Biomol Chem 2016; 14:10415-10426. [DOI: 10.1039/c6ob01807f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present here our results on the cyclization of (biphenyl-2-ethynyl) selenides to give two different types of phenanthrene derivatives, 9-iodo-10-organochalcogen-phenanthrenes and 9-organochalcogen-phenanthrenes.
Collapse
Affiliation(s)
- Tamiris B. Grimaldi
- Laboratório de Síntese
- Reatividade
- Avaliação Farmacológica e Toxicológica de Organocalcogênios
- CCNE
- UFSM
| | - Guilherme Lutz
- Laboratório de Síntese
- Reatividade
- Avaliação Farmacológica e Toxicológica de Organocalcogênios
- CCNE
- UFSM
| | - Davi F. Back
- Laboratório de Materiais Inorgânicos
- CCNE
- UFSM
- Santa Maria
- Brazil
| | - Gilson Zeni
- Laboratório de Síntese
- Reatividade
- Avaliação Farmacológica e Toxicológica de Organocalcogênios
- CCNE
- UFSM
| |
Collapse
|