1
|
Sunbal, Alamzeb M, Omer M, Abid OUR, Ullah M, Sohail M, Ullah I. Chemical insights into the synthetic chemistry of five-membered saturated heterocycles-a transition metal-catalyzed approach. Front Chem 2023; 11:1185669. [PMID: 37564110 PMCID: PMC10411457 DOI: 10.3389/fchem.2023.1185669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Drug design and delivery is primarily based on the hunt for new potent drug candidates and novel synthetic techniques. Recently, saturated heterocycles have gained enormous attention in medicinal chemistry as evidenced by the medicinal drugs listed in the FDA Orange Book. Therefore, the demand for novel saturated heterocyclic syntheses has increased tremendously. Transition metal (TM)-catalyzed reactions have remained the prime priority in heterocyclic syntheses for the last three decades. Nowadays, TM catalysis is well adorned by combining it with other techniques such as bio- and/or enzyme-catalyzed reactions, organocatalysis, or using two different metals in a single catalysis. This review highlights the recent developments of the transition metal-catalyzed synthesis of five-membered saturated heterocycles.
Collapse
Affiliation(s)
- Sunbal
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | | | - Muhammad Omer
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | | | - Mohib Ullah
- Department of Chemistry, Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS), Quetta, Pakistan
| | - Muhammad Sohail
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Ihsan Ullah
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| |
Collapse
|
2
|
Zhi S, Yao H, Zhang W. Difunctionalization of Dienes, Enynes and Related Compounds via Sequential Radical Addition and Cyclization Reactions. Molecules 2023; 28:1145. [PMID: 36770814 PMCID: PMC9919800 DOI: 10.3390/molecules28031145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Radical reactions are powerful in creating carbon-carbon and carbon-heteroatom bonds. Designing one-pot radical reactions with cascade transformations to assemble the cyclic skeletons with two new functional groups is both synthetically and operationally efficient. Summarized in this paper is the recent development of reactions involving radical addition and cyclization of dienes, diynes, enynes, as well as arene-bridged and arene-terminated compounds for the preparation of difunctionalization cyclic compounds. Reactions carried out with radical initiators, transition metal-catalysis, photoredox, and electrochemical conditions are included.
Collapse
Affiliation(s)
- Sanjun Zhi
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huai’an 223300, China
| | - Hongjun Yao
- College of Biological Science and Technology, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| |
Collapse
|
3
|
Shi ZZ, Yu T, Ma H, Chi LX, You S, Deng C. Recent advances in radical cascade cyclization of 1,n-enynes with trifluoromethylating agents. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Łowicki D, Przybylski P. Cascade synthetic strategies opening access to medicinal-relevant aliphatic 3- and 4-membered N-heterocyclic scaffolds. Eur J Med Chem 2022; 238:114438. [PMID: 35567964 DOI: 10.1016/j.ejmech.2022.114438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 12/23/2022]
Abstract
Cascade reactions are often 'employed' by nature to construct structurally diverse nitrogen-containing heterocycles in a highly stereoselective fashion, i.e., secondary metabolites important for pharmacy. Nitrogen-containing heterocycles of three- and four-membered rings, as standalone and bicyclic compounds, inhibit different enzymes and are pharmacophores of approved drugs or drug candidates considered in many therapies, e.g. anticancer, antibacterial or antiviral. Domino transformations are in most cases in line with modern green chemistry concepts due to atom economy, one-pot procedures often without use the protective groups, time-saving and at markedly lower costs than multistep transformations. The tandem approaches can help to obtain novel N-heterocyclic scaffolds, functionalized according to structural requirements of the target in cells, taking into account the nature of functional group and stereochemistry. On the other hand cascade strategies allow to modify small N-heterocyclic rings in a systematic way, which is beneficial for structure-activity relationship (SAR) analyses. This review is focused on the biological relevance of the N-heterocyclic scaffolds with smaller 3- and 4-membered rings among approved drugs and leading structures of drug candidates. The cascade synthetic strategies offering N-heterocyclic scaffolds, at relatively good yields and high stereoselectivity, are discussed here. The review covers mainly years from 2015 to 2021.
Collapse
Affiliation(s)
- Daniel Łowicki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland.
| |
Collapse
|
5
|
De A, Majee A. Synthesis of various functionalized
2
H
‐azirines: An
updated library. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Aramita De
- Department of Chemistry Visva‐Bharati (A Central University) Santiniketan India
| | - Adinath Majee
- Department of Chemistry Visva‐Bharati (A Central University) Santiniketan India
| |
Collapse
|
6
|
Wang SC, Liu PY, Chen YX, Shen ZJ, Hao WJ, Tu SJ, Jiang B. Copper/silver co-mediated three-component bicyclization for accessing indeno[1,2- c]azepine-3,6-diones. Chem Commun (Camb) 2021; 57:7966-7969. [PMID: 34286745 DOI: 10.1039/d1cc02973h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new copper/silver-co-mediated three-component bicyclization of benzene-linked 1,6-enynes with ICF2CO2Et with TMSN3 was reported, and used to produce a wide range of hitherto unreported difluorinated tetrahydroindeno[1,2-c]azepine-3,6-diones with moderate to good yields. The mechanistic pathway consists of radical-induced 1,6-addition-cyclization, oxidative addition, reductive elimination, nitrene insertion and N-O cleavage, resulting in continuous multiple bond-forming events including C-C and C-N bonds to build up a 6/5/7 tricyclic framework.
Collapse
Affiliation(s)
- Shi-Chao Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Peng-Yu Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Yi-Xin Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Zheng-Jia Shen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China.
| |
Collapse
|
7
|
Ji WZ, Shi HN, Hao WJ, Wei P, Tu SJ, Jiang B. Generation of stereodefined (Z)-3,4-dihydronaphthalen-1(2H)-ones via copper-catalyzed annulation-cyanotrifluoromethylation of 1,7-enynes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Acetyl oxime/azirine 1, 3-dipole and strategy for the regioselective synthesis of polysubstituted pyrroles via [3 + 2] cycloaddition with alkyne utilizing Fe2O3@cellulose catalyst. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
9
|
Neto JSS, Zeni G. Transition Metal‐Catalyzed and Metal‐Free Cyclization Reactions of Alkynes with Nitrogen‐Containing Substrates: Synthesis of Pyrrole Derivatives. ChemCatChem 2020. [DOI: 10.1002/cctc.201902325] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jose S. S. Neto
- Departamento de QuímicaUniversidade Federal de Santa Catarina Florianópolis Santa Catarina 88040-900 Brazil
| | - Gilson Zeni
- Department of Biochemistry and Molecular Biology Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios, CCNEUniversidade Federal de Santa Maria Santa Maria Rio Grande do Sul 97105-900 Brazil
| |
Collapse
|
10
|
Kang QQ, Liu Y, Huang XJ, Li Q, Wei WT. Selective Cyanoalkylation and [2+2+2] Annulation of 1,6-Enynes with Azobis(alkylcarbonitriles) under Mild Conditions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Qing-Qing Kang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science; State Key Laboratory for Quality and Safety of Agro-products; School of Materials Science and Chemical Engineering; Ningbo University; 315211 Ningbo P. R. China
| | - Yi Liu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science; State Key Laboratory for Quality and Safety of Agro-products; School of Materials Science and Chemical Engineering; Ningbo University; 315211 Ningbo P. R. China
| | - Xun-Jie Huang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science; State Key Laboratory for Quality and Safety of Agro-products; School of Materials Science and Chemical Engineering; Ningbo University; 315211 Ningbo P. R. China
| | - Qiang Li
- Institution of Functional Organic Molecules and Materials; School of Chemistry and Chemical Engineering; Liaocheng University; 252059 Liaocheng P. R. China
| | - Wen-Ting Wei
- State Key Laboratory Base of Novel Functional Materials and Preparation Science; State Key Laboratory for Quality and Safety of Agro-products; School of Materials Science and Chemical Engineering; Ningbo University; 315211 Ningbo P. R. China
| |
Collapse
|
11
|
Zhang Y, Chen C, Zhao J, Liu G. Rhodium‐Catalyzed Cascade Radical Cyclization of 1,6‐Enynes with Br−CX
3
: Access to Bromine‐Containing Trihalomethylated Pyrrolidines. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yingying Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Jinghui Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| | - Guiyan Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry College of ChemistryTianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
12
|
Xie JJ, Wang ZQ, Jiang GF. Metal-free oxidative trifluoromethylation of indoles with CF 3SO 2Na on the C2 position. RSC Adv 2019; 9:35098-35101. [PMID: 35530675 PMCID: PMC9074110 DOI: 10.1039/c9ra07785e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 11/21/2022] Open
Abstract
An efficient method of synthesizing 2-trifluoromethylindoles from indoles with easy-to-handle, cheap and low-toxic CF3SO2Na under metal-free conditions is described, which selectively introduces trifluoromethyl to indoles on the C2 position. The desired product can be obtained in 0.7 g yield. A radical intermediate may be involved in this transformation. An efficient method of synthesizing 2-trifluoromethylindoles from indoles with easy-to-handle, cheap and low-toxic CF3SO2Na under metal-free conditions is described, which selectively introduces trifluoromethyl to indoles on the C2 position.![]()
Collapse
Affiliation(s)
- Jiao-Jiao Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Zhi-Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Guo-Fang Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
13
|
Ramkumar N, Voskressensky LG, Sharma UK, Van der Eycken EV. Recent approaches to the synthesis of 2H-azirines. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02539-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Kawamura S, Sodeoka M. Fluoroalkylation Methods for Synthesizing Versatile Building Blocks. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shintaro Kawamura
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikiko Sodeoka
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
15
|
Hou H, Tang D, Li H, Xu Y, Yan C, Shi Y, Chen X, Zhu S. Visible-Light-Driven Chlorotrifluoromethylative and Chlorotrichloromethylative Cyclizations of Enynes. J Org Chem 2019; 84:7509-7517. [PMID: 31094192 DOI: 10.1021/acs.joc.9b00842] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Described herein is a visible-light-driven chlorotrifluoromethylative and chlorotrichloromethylative cyclization reaction to synthesize chlorotrifluoromethylated and chlorotrichloromethylated cyclic compounds. Visible-light photochemistry was utilized to generate trifluoromethyl and trichloromethyl radicals and trigger radical addition/cyclization/chlorination sequences. The use of terminal alkene-derived enynes enables the regioselective and stereoselective synthesis of chlorotrifluoromethylated and chlorotrichloromethylated pyrrolidines, piperidines, and cyclopentanes.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry & Chemical Engineering , Yangzhou University , Yangzhou 225005 , China
| | - Daliang Tang
- School of Chemistry & Chemical Engineering , Yangzhou University , Yangzhou 225005 , China
| | - Hengxue Li
- School of Chemistry & Chemical Engineering , Yangzhou University , Yangzhou 225005 , China
| | - Yue Xu
- School of Chemistry & Chemical Engineering , Yangzhou University , Yangzhou 225005 , China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering , Yangzhou University , Yangzhou 225005 , China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering , Yangzhou University , Yangzhou 225005 , China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering , Jiangsu University of Science and Technology , Zhenjiang 212005 , China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering , Yangzhou University , Yangzhou 225005 , China
| |
Collapse
|
16
|
Khlebnikov AF, Novikov MS, Rostovskii NV. Advances in 2H-azirine chemistry: A seven-year update. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Jiao MJ, Liu D, Hu XQ, Xu PF. Photocatalytic decarboxylative [2 + 2 + 1] annulation of 1,6-enynes with N-hydroxyphthalimide esters for the synthesis of indene-containing polycyclic compounds. Org Chem Front 2019. [DOI: 10.1039/c9qo01166h] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient photoredox-mediated [2 + 2 + 1] annulation of 1,6-enynes with N-hydroxyphthalimide esters was reported for the synthesis of spiro and non-spiro indene-containing polycyclic frameworks.
Collapse
Affiliation(s)
- Meng-Jie Jiao
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Dan Liu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
18
|
Liu B, Cheng J, Li Y, Li JH. Oxidative tandem annulation of 1-(2-ethynylaryl)prop-2-en-1-ones catalyzed by cooperative iodine and TBHP. Chem Commun (Camb) 2019; 55:667-670. [DOI: 10.1039/c8cc09271k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metal-free I2-catalyzed tandem annulation of 1,6-enynes to access 1H-cyclopropa-[b]naphthalene-2,7-diones using TBHP is presented.
Collapse
Affiliation(s)
- Bang Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jiang Cheng
- School of Petrochemical Engineering
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- Changzhou University
- Changzhou 213164
- China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| |
Collapse
|
19
|
He X, Yue X, Zhang L, Wu S, Hu M, Li JH. Multiple-functionalizations of terminal alkynes with sodium sulfinates and tert-butyl nitrite: facile synthesis of 2H-azirines. Chem Commun (Camb) 2019; 55:3517-3520. [DOI: 10.1039/c9cc00625g] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new, catalyst-free tandem annulation route to 2,2-disulfonyl-2H-azirines via multiple-functionalizations of terminal alkynes with sodium sulfinates and tert-butyl nitrite is described.
Collapse
Affiliation(s)
- Xingyi He
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Xin Yue
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Lei Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Shuang Wu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Ming Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
20
|
Xia XF, He W, Zhang GW, Wang D. Iron-catalyzed reductive cyclization reaction of 1,6-enynes for the synthesis of 3-acylbenzofurans and thiophenes. Org Chem Front 2019. [DOI: 10.1039/c8qo01190g] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile synthesis of 3-acylbenzofurans and thiophenes via iron(ii)-catalyzed reductive cyclization of 1,6-enynes has been developed.
Collapse
Affiliation(s)
- Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Wei He
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Guo-Wei Zhang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| |
Collapse
|
21
|
Huang MH, Hao WJ, Jiang B. Recent Advances in Radical-Enabled Bicyclization and Annulation/1,n
-Bifunctionalization Reactions. Chem Asian J 2018; 13:2958-2977. [DOI: 10.1002/asia.201801119] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Min-Hua Huang
- School of Chemistry & Materials Science; Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; Jiangsu Normal University; Xuzhou 221116 P. R. China
- Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; Nanjing 210009, Jiangsu P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science; Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; Jiangsu Normal University; Xuzhou 221116 P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science; Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials; Jiangsu Normal University; Xuzhou 221116 P. R. China
| |
Collapse
|
22
|
Zhao Y, Zhou Y, Zhang C, Li D, Sun P, Li J, Wang H, Liu J, Qu J. Base-Controlled Regiodivergent Azidation of Trifluoromethyl Alkenyl Triflates: Transition-Metal-Free Access to CF 3-Containing Allyl Azides and Alkenyl Azides. J Org Chem 2018; 83:2858-2868. [PMID: 29384677 DOI: 10.1021/acs.joc.7b03294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A base-controlled regiodivergent azidation of trifluoromethyl alkenyl triflates providing either (E)-3-azido-1-aryl-4,4,4-trifluorobut-1-ene (CF3-containing allyl azides) or (Z)-1-azido-1-aryl-4,4,4-trifluorobut-1-ene (CF3-containing alkenyl azides) is described. Catalyzed by Et3N, the azidation of trifluoromethyl alkenyl triflates with TMSN3 gave CF3-containing allyl azides. On the other hand, using stoichiometric DBU, the regioisomeric azidation products, CF3-containing alkenyl azides, were obtained in good yield. A further transformation for CF3-containing amines, triazoles, and azirines highlights the practical applicability of this transition-metal-free protocol.
Collapse
Affiliation(s)
- Yilong Zhao
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian 116024, People's Republic of China
| | - Yuhan Zhou
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian 116024, People's Republic of China
| | - Chunxia Zhang
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian 116024, People's Republic of China
| | - Dong Li
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian 116024, People's Republic of China
| | - Puhua Sun
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian 116024, People's Republic of China
| | - Jianzhe Li
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian 116024, People's Republic of China
| | - Huan Wang
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian 116024, People's Republic of China
| | - Jianhui Liu
- School of Petroleum and Chemical Engineering, Dalian University of Technology , Panjin 124221, People's Republic of China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian 116024, People's Republic of China
| |
Collapse
|
23
|
Xia X, Yu J, Wang D. Copper/Iron‐Cocatalyzed Cascade Perfluoroalkylation/Cyclization of 1,6‐Enynes with Iodoperfluoroalkanes. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701258] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao‐Feng Xia
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Jipan Yu
- Laboratory of Nuclear Energy Chemistry Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| |
Collapse
|
24
|
He T, Gao P, Fang S, Chi Y, Chen Y. Palladium-catalyzed cycloisomerisation reaction of 1,6-enyne acetic esters to form five-membered nitrogenated heterocyclic conjugated trienes. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Li LH, Niu ZJ, Liang YM. Synthesis of Functionalized Quinolines through a Reaction of Amides and Alkynes Promoted by Triflic Anhydride/Pyridine. Chemistry 2017; 23:15300-15304. [DOI: 10.1002/chem.201703832] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Lian-Hua Li
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 730000 P. R. China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 730000 P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 730000 P. R. China
| |
Collapse
|
26
|
Meng Q, Chen F, Yu W, Han B. Copper-Catalyzed Cascade Cyclization of 1,7-Enynes toward Trifluoromethyl-Substituted 1′H-Spiro[azirine-2,4′-quinolin]-2′(3′H)-ones. Org Lett 2017; 19:5186-5189. [DOI: 10.1021/acs.orglett.7b02453] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qiang Meng
- State Key Laboratory of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Fei Chen
- State Key Laboratory of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wei Yu
- State Key Laboratory of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bing Han
- State Key Laboratory of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
27
|
Jana S, Verma A, Kadu R, Kumar S. Visible-light-induced oxidant and metal-free dehydrogenative cascade trifluoromethylation and oxidation of 1,6-enynes with water. Chem Sci 2017; 8:6633-6644. [PMID: 28989690 PMCID: PMC5625288 DOI: 10.1039/c7sc02556d] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/08/2017] [Indexed: 12/30/2022] Open
Abstract
Generally, oxy-trifluoromethylation in olefins is achieved using oxidants and transition metal catalysts. However, labile olefins remain unexplored due to their incompatibility with harsh reaction conditions. Here, unprecedented light-induced oxidant and metal-free tandem radical cyclization-trifluoromethylation and dehydrogenative oxygenation of 1,6-enynes have been achieved using a photoredox catalyst, CF3SO2Na, and phenanthrene-9,10-dione (PQ), Langlois' reagent (CF3SO2Na) and water as the oxygen source. This benign protocol allows for access to various CF3-containing C3-aryloyl/acylated benzofurans, benzothiophenes, and indoles. Moreover, the oxidized undesired products, which are inherently formed by the cleavage of the vinylic carbon and heteroatom bond, have been circumvented under oxidant free conditions. The mechanistic investigations by UV-visible and ESR spectroscopy, electrochemical studies, isotope labelling and density functional theory (DFT) suggest that light induced PQ produced a CF3 radical from CF3SO2Na. The generated CF3 radical adds to the alkene, followed by cyclization, to provide a vinylic radical that transfers an electron to PQ and generates a vinylic cation. Alternatively, electron transfer may occur from the CF3-added alkene moiety, forming a carbocation, which would undergo cationic cyclization to generate a vinylic carbocation. The subsequent addition of water to the vinylic cation, followed by the elimination of hydrogen gas, led to the formation of trifluoromethylated C3-aryloyl/acylated heterocycles.
Collapse
Affiliation(s)
- Sadhan Jana
- Department of Chemistry , Indian Institute of Science Education and Research (IISER) Bhopal , Bhopal By-pass Road, Bhauri , Bhopal-462066 , India . ; http://home.iiserbhopal.ac.in/∼sangitkumar/
| | - Ajay Verma
- Department of Chemistry , Indian Institute of Science Education and Research (IISER) Bhopal , Bhopal By-pass Road, Bhauri , Bhopal-462066 , India . ; http://home.iiserbhopal.ac.in/∼sangitkumar/
| | - Rahul Kadu
- Department of Chemistry , Indian Institute of Science Education and Research (IISER) Bhopal , Bhopal By-pass Road, Bhauri , Bhopal-462066 , India . ; http://home.iiserbhopal.ac.in/∼sangitkumar/
| | - Sangit Kumar
- Department of Chemistry , Indian Institute of Science Education and Research (IISER) Bhopal , Bhopal By-pass Road, Bhauri , Bhopal-462066 , India . ; http://home.iiserbhopal.ac.in/∼sangitkumar/
| |
Collapse
|
28
|
Liu X, Qian P, Wang Y, Pan Y. Metal-free sequential decarbonylative annulation of N-cyanamides for the construction of 2,3-dihydropyrrolo[2,1-b]quinazolin-9(1H)-ones. Org Chem Front 2017. [DOI: 10.1039/c7qo00677b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A convenient metal-free sequential decarbonylative annulation of unactivated alkenes for the construction of quinazolinones and dihydroisoquinolinones has been developed.
Collapse
Affiliation(s)
- Xueke Liu
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Ping Qian
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Yi Wang
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing
- China
| | - Yi Pan
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry & Chemical Engineering
- Nanjing University
- Nanjing
- China
| |
Collapse
|
29
|
Yu LZ, Wei Y, Shi M. Copper-catalyzed trifluoromethylazidation and rearrangement of aniline-linked 1,7-enynes: access to CF3-substituted azaspirocyclic dihydroquinolin-2-ones and furoindolines. Chem Commun (Camb) 2017; 53:8980-8983. [DOI: 10.1039/c7cc04748g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A set of reactions involving copper-catalyzed trifluoromethylazidation and then rearrangement of aniline-linked 1,7-enynes was developed, and provided facile access to azaspirocyclic dihydroquinolin-2-ones, furoindolines and functionalized aziridines.
Collapse
Affiliation(s)
- Liu-Zhu Yu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry
- University of Chinese Academy of Science
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
30
|
Affiliation(s)
- Tuo Xi
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
31
|
Wang Q, He YT, Zhao JH, Qiu YF, Zheng L, Hu JY, Yang YC, Liu XY, Liang YM. Palladium-Catalyzed Regioselective Difluoroalkylation and Carbonylation of Alkynes. Org Lett 2016; 18:2664-7. [DOI: 10.1021/acs.orglett.6b01038] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiang Wang
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu-Tao He
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jia-Hui Zhao
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yi-Feng Qiu
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lan Zheng
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jing-Yuan Hu
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu-Chen Yang
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xue-Yuan Liu
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yong-Min Liang
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
- State
Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical
Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|