1
|
Elavarasan S, Preety J, Kesavan M, Patel RB, Baskar B. Activation of enamine by photoexcited organocatalyst assisted singlet oxygen: synthesis of oxazoles and quinoxalines. Org Biomol Chem 2024; 22:4912-4921. [PMID: 38808593 DOI: 10.1039/d4ob00609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Herein, a novel transition-metal-free thiol-based donor-acceptor organophotocatalyst-assisted, singlet-oxygen-mediated tandem oxidative cyclization for the synthesis of substituted oxazoles in moderate-to-good yields is described. The developed method demonstrates applicability for the synthesis of various substituted quinoxalines in good-to-excellent yields. The metal-free methodology shows a practical route for the synthesis of oxazole and quinoxaline derivatives, which are privileged moieties prevalent in various biologically active compounds and natural products. To the best of our knowledge, both the thiol photocatalyst and synthesis of oxazoles by visible-light irradiation are reported for the first time.
Collapse
Affiliation(s)
- Selvaraj Elavarasan
- Laboratory of Sustainable Synthesis, Department of Chemistry, SRM Institute of Science and Technology, Kattankulatur, 603 203, Chengalpet (Dt), Tamilnadu, India.
| | - Jeyaraj Preety
- Laboratory of Sustainable Synthesis, Department of Chemistry, SRM Institute of Science and Technology, Kattankulatur, 603 203, Chengalpet (Dt), Tamilnadu, India.
| | - M Kesavan
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulatur, 603 203, Chengalpet (Dt), Tamilnadu, India
| | - Ravi B Patel
- Graduate School of Pharmacy, Gujarat Technological University, Ghandhinagar Campus, Ghandhinagar - 382028, Gujarat, India
| | - Baburaj Baskar
- Laboratory of Sustainable Synthesis, Department of Chemistry, SRM Institute of Science and Technology, Kattankulatur, 603 203, Chengalpet (Dt), Tamilnadu, India.
| |
Collapse
|
2
|
Sharma A, Vaid H, Kotwal R, Mughal ZN, Gurubrahamam R. Rhodium(II)-Catalyzed Alkynyl Carbene Insertion into N-H Bonds. Org Lett 2024; 26:4887-4892. [PMID: 38842489 DOI: 10.1021/acs.orglett.4c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The first insertion of an alkynyl carbene into N-H bonds under Rh-catalysis is developed. Alkynyl hydrazone carboxylates are used as donor-acceptor carbene precursors and are exquisitely inserted into the N-H bonds of various amines, amides, and 1,2-diamines. A wide variety of 3-alkynyl 3,4-dihydroquinoxalin-2(1H)-ones and densely functionalized α-alkynyl α-amino esters are obtained in good to excellent yields. Further, chemoselective N-H insertion reactions, mechanistic studies, and various synthetic transformations for obtaining valuable heterocycles are demonstrated.
Collapse
Affiliation(s)
- Akashdeep Sharma
- Department of Chemistry, Indian Institute of Technology Jammu, NH-44, PO Nagrota, Jagti, Jammu and Kashmir 181221, India
| | - Himani Vaid
- Department of Chemistry, Indian Institute of Technology Jammu, NH-44, PO Nagrota, Jagti, Jammu and Kashmir 181221, India
| | - Riya Kotwal
- Department of Chemistry, Indian Institute of Technology Jammu, NH-44, PO Nagrota, Jagti, Jammu and Kashmir 181221, India
| | - Zuhaib N Mughal
- Department of Chemistry, Indian Institute of Technology Jammu, NH-44, PO Nagrota, Jagti, Jammu and Kashmir 181221, India
| | - Ramani Gurubrahamam
- Department of Chemistry, Indian Institute of Technology Jammu, NH-44, PO Nagrota, Jagti, Jammu and Kashmir 181221, India
| |
Collapse
|
3
|
Kumar D, Unnikrishnan U, Kuram MR. Facile access to C-substituted piperazin-2-ones and mianserin derivative enabled by chemoselective carbene insertion and cyclization cascade. Chem Commun (Camb) 2024; 60:5691-5694. [PMID: 38726600 DOI: 10.1039/d4cc00959b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The chemoselective N-H insertion of unsymmetrical diamines into carbene is a longstanding challenge. A simple copper-catalyzed strategy for synthesizing C-substituted piperazinones is described, employing easily accessible diazo compounds and 1,2-diamines. The reaction proceeded via chemo-selective carbene insertion at the comparatively less nucleophilic amine, followed by instantaneous cyclization. The protocol was further extended to access NH-free piperazinone, and the synthesis of a Mianserin derivative.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Urmila Unnikrishnan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Malleswara Rao Kuram
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Sathyan A, Loman T, Deng L, Palmans ARA. Amphiphilic polymeric nanoparticles enable homogenous rhodium-catalysed NH insertion reactions in living cells. NANOSCALE 2023. [PMID: 37470373 DOI: 10.1039/d3nr02581k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Rh-catalysed NH carbene insertion reactions were exported to living cells with help of amphiphilic polymeric nanoparticles. Hereto, hydrophobic dirhodium carboxylate catalysts were efficiently encapsulated in amphiphilic polymeric nanoparticles comprising dodecyl and Jeffamine as side grafts. The developed catalytic nanoparticles promoted NH carbene insertions between α-keto diazocarbenes and 2,3-diaminonaphthalene, followed by intramolecular cyclisation to form fluorescent or biologically active benzoquinoxalines. These reactions were studied in reaction media of varying complexity. The best-performing catalyst was exported to HeLa cells, where fluorescent and cytotoxic benzoquinoxalines were synthesized in situ at low catalyst loading within a short time. Most of the developed bioorthogonal transition metal catalysts reported to date are easily deactivated by the reactive biomolecules in living cells, limiting their applications. The high catalytic efficiency of the Rh-based polymeric nanoparticles reported here opens the door to expanding the repertoire of bioorthogonal reactions and is therefore promising for biomedical applications.
Collapse
Affiliation(s)
- Anjana Sathyan
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands.
| | - Tessa Loman
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands.
| | - Linlin Deng
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands.
| | - Anja R A Palmans
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands.
| |
Collapse
|
5
|
Bruschi C, Gui X, Fuhr O, Klopper W, Bizzarri C. Reaching strong absorption up to 700 nm with new benzo[ g]quinoxaline-based heteroleptic copper(I) complexes for light-harvesting applications. Dalton Trans 2023. [PMID: 37157971 DOI: 10.1039/d3dt00902e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Heteroleptic copper(I) complexes, with a diimine as a chromophoric unit and a bulky diphosphine as an ancillary ligand, have the advantage of a reduced pseudo Jahn-Teller effect in their excited state over the corresponding homoleptic bis(diimine) complexes. Nevertheless, their lowest absorption lies generally between 350 to 500 nm. Aiming at a strong absorption in the visible by stable heteroleptic Cu(I) complexes, we designed a novel diimine based on 4-(benzo[g]quinoxal-2'-yl)-1,2,3-triazole derivatives. The large π-conjugation of the benzoquinoxaline moiety shifted bathochromically the absorption with regard to other diimine-based Cu(I) complexes. Adding another Cu(I) core broadened the absorption and extended it to considerably longer wavelengths. Moreover, by fine-tuning the structure of the dichelating ligand, we achieved a panchromatic absorption up to 700 nm with a high molar extinction coefficient of 8000 M-1 cm-1 at maximum (λ = 570 nm), making this compound attractive for light-harvesting antennae.
Collapse
Affiliation(s)
- Cecilia Bruschi
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76137 Karlsruhe, Germany.
| | - Xin Gui
- Institute of Physical Chemistry-Theoretical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wim Klopper
- Institute of Physical Chemistry-Theoretical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Claudia Bizzarri
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76137 Karlsruhe, Germany.
| |
Collapse
|
6
|
Devi MM, Singh OM, Prasanta Singh T. Synthesis of N-containing heterocycles in water. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
An organic reaction with water as a medium has numerous benefits, like improvement in reactivities and selectivities, simple workup techniques, possibility of recycling the catalyst with milder reaction conditions and eco-friendly synthesis. Further, exploring of water as a reaction medium gives rise to unusual reactivities and selectivities, supplementing the organic chemist’s necessity for reaction media. This review focus on the use of water for the synthesis of Nitrogen-containing heterocycles covering from 2011 to 2021.
Collapse
Affiliation(s)
| | - Okram Mukherjee Singh
- Chemistry Department , Manipur University , Canchipur-795003 , Manipur , Imphal , India
| | | |
Collapse
|
7
|
|
8
|
Gutiérrez S, Tomás-Gamasa M, Mascareñas JL. Organometallic catalysis in aqueous and biological environments: harnessing the power of metal carbenes. Chem Sci 2022; 13:6478-6495. [PMID: 35756533 PMCID: PMC9172117 DOI: 10.1039/d2sc00721e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
Translating the power of transition metal catalysis to the native habitats of enzymes can significantly expand the possibilities of interrogating or manipulating natural biological systems, including living cells and organisms. This is especially relevant for organometallic reactions that have shown great potential in the field of organic synthesis, like the metal-catalyzed transfer of carbenes. While, at first sight, performing metal carbene chemistry in aqueous solvents, and especially in biologically relevant mixtures, does not seem obvious, in recent years there has been a growing number of reports demonstrating the feasibility of the task. Either using small molecule metal catalysts or artificial metalloenzymes, a number of carbene transfer reactions that tolerate aqueous and biorelevant media are being developed. This review intends to summarize the most relevant contributions, and establish the state of the art in this emerging research field.
Collapse
Affiliation(s)
- Sara Gutiérrez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| | - María Tomás-Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| |
Collapse
|
9
|
Suzuki Y, Takehara R, Miura K, Ito R, Suzuki N. Regioselective Synthesis of Trisubstituted Quinoxalines Mediated by Hypervalent Iodine Reagents. J Org Chem 2021; 86:16892-16900. [PMID: 34797078 DOI: 10.1021/acs.joc.1c02087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A facile and regioselective synthesis of quinoxalines, an important motif in medicinal chemistry and materials sciences, was developed. Despite their prospective utility, the regioselective preparation of trisubstituted quinoxalines has not been previously established. In the reported system, hypervalent iodine reagents catalyzed the annulation between α-iminoethanones and o-phenylenediamines in a chemo/regioselective manner to afford trisubstituted quinoxalines. Excellent regioselectivities (6:1 to 1:0) were achieved using [bis(trifluoroacetoxy)iodo]benzene and [bis(trifluoroacetoxy)iodo]pentafluorobenzene as annulation catalysts.
Collapse
Affiliation(s)
- Yumiko Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Ren Takehara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Kasumi Miura
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Ryota Ito
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| | - Noriyuki Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554 Tokyo, Japan
| |
Collapse
|
10
|
Gutiérrez S, Tomás‐Gamasa M, Mascareñas JL. Exporting Metal‐Carbene Chemistry to Live Mammalian Cells: Copper‐Catalyzed Intracellular Synthesis of Quinoxalines Enabled by N−H Carbene Insertions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sara Gutiérrez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| | - María Tomás‐Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Química Orgánica Universidade de Santiago de Compostela 15705 Santiago de Compostela Spain
| |
Collapse
|
11
|
Gutiérrez S, Tomás‐Gamasa M, Mascareñas JL. Exporting Metal-Carbene Chemistry to Live Mammalian Cells: Copper-Catalyzed Intracellular Synthesis of Quinoxalines Enabled by N-H Carbene Insertions. Angew Chem Int Ed Engl 2021; 60:22017-22025. [PMID: 34390304 PMCID: PMC8518842 DOI: 10.1002/anie.202108899] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 12/17/2022]
Abstract
Implementing catalytic organometallic transformations in living settings can offer unprecedented opportunities in chemical biology and medicine. Unfortunately, the number of biocompatible reactions so far discovered is very limited, and essentially restricted to uncaging processes. Here, we demonstrate the viability of performing metal carbene transfer reactions in live mammalian cells. In particular, we show that copper (II) catalysts can promote the intracellular annulation of alpha-keto diazocarbenes with ortho-amino arylamines, in a process that is initiated by an N-H carbene insertion. The potential of this transformation is underscored by the in cellulo synthesis of a product that alters mitochondrial functions, and by demonstrating cell selective biological responses using targeted copper catalysts. Considering the wide reactivity spectrum of metal carbenes, this work opens the door to significantly expanding the repertoire of life-compatible abiotic reactions.
Collapse
Affiliation(s)
- Sara Gutiérrez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiagode CompostelaSpain
| | - María Tomás‐Gamasa
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiagode CompostelaSpain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela15705Santiagode CompostelaSpain
| |
Collapse
|
12
|
Ruthenium−p-cymene complexes with acylthiourea, and its heterogenized form on graphene oxide act as catalysts for the synthesis of quinoxaline derivatives. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Wang YB, Shi L, Zhang X, Fu LR, Hu W, Zhang W, Zhu X, Hao XQ, Song MP. NaOH-Mediated Direct Synthesis of Quinoxalines from o-Nitroanilines and Alcohols via a Hydrogen-Transfer Strategy. J Org Chem 2021; 86:947-958. [PMID: 33351617 DOI: 10.1021/acs.joc.0c02453] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A NaOH-mediated sustainable synthesis of functionalized quinoxalines is disclosed via redox condensation of o-nitroamines with diols and α-hydroxy ketones. Under optimized conditions, various o-nitroamines and alcohols are well tolerated to generate the desired products in 44-99% yields without transition metals and external redox additives.
Collapse
Affiliation(s)
- Yan-Bing Wang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xiaojie Zhang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Lian-Rong Fu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Weinan Hu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Wenjing Zhang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
14
|
Kristoffersen T, Elumalai V, Starck E, Cousin É, Wagner LJ, Hansen SR, Hansen JH. Microwave‐Assisted Synthesis of Heterocycles from Aryldiazoacetates**. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tone Kristoffersen
- UiT The Arctic University of Norway Department of Chemistry Chemical Synthesis and Analysis Group Hansine Hansens veg 54 9037 Tromsø Norway
| | - Vijayaragavan Elumalai
- UiT The Arctic University of Norway Department of Chemistry Chemical Synthesis and Analysis Group Hansine Hansens veg 54 9037 Tromsø Norway
| | - Eliot Starck
- UiT The Arctic University of Norway Department of Chemistry Chemical Synthesis and Analysis Group Hansine Hansens veg 54 9037 Tromsø Norway
| | - Étienne Cousin
- UiT The Arctic University of Norway Department of Chemistry Chemical Synthesis and Analysis Group Hansine Hansens veg 54 9037 Tromsø Norway
| | - Lucille J. Wagner
- UiT The Arctic University of Norway Department of Chemistry Chemical Synthesis and Analysis Group Hansine Hansens veg 54 9037 Tromsø Norway
| | - Stephanie R. Hansen
- UiT The Arctic University of Norway Department of Chemistry Chemical Synthesis and Analysis Group Hansine Hansens veg 54 9037 Tromsø Norway
| | - Jørn H. Hansen
- UiT The Arctic University of Norway Department of Chemistry Chemical Synthesis and Analysis Group Hansine Hansens veg 54 9037 Tromsø Norway
| |
Collapse
|
15
|
Dantas JA, Echemendía R, Santos MS, Paixão MW, Ferreira MAB, Corrêa AG. Green Approach for Visible-Light-Induced Direct Functionalization of 2-Methylquinolines. J Org Chem 2020; 85:11663-11678. [PMID: 32852210 DOI: 10.1021/acs.joc.0c01203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A transition metal- and oxidant-free visible light-photoinduced protocol for direct functionalization of 2-methylquinolines has been developed. This protocol enabled the C-H functionalization of substituted 2-methylquinolines with diacetyl or ethyl pyruvate, under environmentally friendly conditions. A mechanistic investigation based on density functional theory (DFT) calculations provided details about the origins of reactivity and selectivity.
Collapse
Affiliation(s)
- Juliana A Dantas
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Radell Echemendía
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Marilia S Santos
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Márcio W Paixão
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Marco Antonio B Ferreira
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Arlene G Corrêa
- Centre of Excellence for Research in Sustainable Chemistry, Chemistry Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
16
|
Abstract
AbstractThe use of iron catalysis to enable reactions with diazo compounds has emerged as a valuable tool to forge carbon–carbon or carbon–heteroatom bonds. While diazo compounds are often encountered with toxic and expensive metal catalysts, such as Rh, Ru, Pd, Ir, and Cu, a resurgence of Fe catalysis has been observed. This short review will showcase and highlight the recent advances in iron-mediated reactions of diazo compounds.1 Introduction2 Insertion Reactions2.1 Insertion into B–H Bonds2.2 Insertion into Si–H Bonds2.3 Insertion into N–H Bonds2.4 Insertion into S–H bonds3 Ylide Formation and Subsequent Reactions3.1 Doyle–Kirmse Rearrangement3.2 [1,2]-Stevens and Sommelet–Hauser Rearrangements3.3 Olefination Reactions3.4 Cycloaddition Reactions3.5 gem-Difluoroalkenylation4 Three-Component Reactions5 Miscellaneous6 Conclusion
Collapse
|
17
|
Xu Y, Huang X, Lv G, Lai R, Lv S, Li J, Hai L, Wu Y. Iridium-Catalyzed Carbenoid Insertion of Sulfoxonium Ylides for Synthesis of Quinoxalines and β-Keto Thioethers in Water. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yingying Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Xin Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Guanghui Lv
- Department of Pharmacy; Taihe Hospital; Hubei University of Medicine; No. 32 South Renmin Road 442000 Shiyan Huibei China
| | - Ruizhi Lai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Songyang Lv
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Jianglian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province; Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology; West China School of Pharmacyy; Sichuan University; 610041 Chengdu China
| |
Collapse
|
18
|
Li F, Tang X, Xu Y, Wang C, Wang Z, Li Z, Wang L. A Dual-Protein Cascade Reaction for the Regioselective Synthesis of Quinoxalines. Org Lett 2020; 22:3900-3904. [DOI: 10.1021/acs.orglett.0c01186] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Xuyong Tang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130023, P. R. China
| | - Zhi Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Zhengqiang Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
19
|
A one-pot and three-component synthetic approach for the preparation of asymmetric and multi-substituted 1,4-dihydropyrazines. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Zhang H, Shen J, Yang Z, Cui X. PIDA-mediated intramolecular oxidative C-N bond formation for the direct synthesis of quinoxalines from enaminones. RSC Adv 2019; 9:7718-7722. [PMID: 35521175 PMCID: PMC9061175 DOI: 10.1039/c9ra01200a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 11/30/2022] Open
Abstract
A intramolecular oxidative C(sp2)-N bond formation mediated by hypervalent iodine(iii) to obtain quinoxalines from readily available N-(2-acetaminophenyl)enaminones was developed. A tandem process involving PIDA-mediated intramolecular condensation cyclization and a subsequent elimination was postulated, which was highly efficient and metal-free under mild conditions. Moreover, flexible structural modifications of quinoxalines bearing carbonyl groups are of interest for further transformations as building blocks in organic synthesis.
Collapse
Affiliation(s)
- Hong Zhang
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University Xiamen 361021 P. R. China
| | - Jinhai Shen
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University Xiamen 361021 P. R. China
| | - Zhenhui Yang
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University Xiamen 361021 P. R. China
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University Xiamen 361021 P. R. China
| |
Collapse
|
21
|
Devi L, Shukla R, Rastogi N. Intramolecular trapping of ammonium ylides with N-benzoylbenzotriazoles in aqueous medium: direct access to the pseudoindoxyl scaffold. Org Biomol Chem 2019; 17:135-139. [PMID: 30525156 DOI: 10.1039/c8ob02683a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work documents an operationally simple, clean and practical method for accessing the 2,2-disubstituted indolin-3-one (pseudoindoxyl) scaffold. The rhodium carbenoid mediated reaction between N-o-alkylamino benzoylbenzotriazoles and aryl diazoacetates occurs smoothly in water and exploits the leaving group ability of the benzotriazole moiety to install the carbonyl function in the product. Other highlights of the methodology are a wide substrate scope and experimental practicality given the re-use of the benzotriazole byproduct for starting material preparation.
Collapse
Affiliation(s)
- Lalita Devi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | | | | |
Collapse
|
22
|
Shrestha R, Khanal HD, Lee YR. One-pot construction of diverse and functionalized isochromenoquinolinediones by Rh(iii)-catalyzed annulation of unprotected arylamides with 3-diazoquinolinediones and their application for fluorescence sensor. RSC Adv 2019; 9:17347-17357. [PMID: 35519845 PMCID: PMC9064558 DOI: 10.1039/c9ra03146d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/27/2019] [Indexed: 01/10/2023] Open
Abstract
A facile and efficient Rh(iii)-catalyzed annulation of arylamides with 3-diazoquinolinediones for the construction of diverse and highly functionalized isochromenoquinolinediones is described. Furthermore, the methodology is applicable for delivering various relevant molecules such as pyridopyranoquinolindiones, thienopyranoquinolinones, and indolopyranoquinolinone. The reaction proceeds via cascade C–H activation, carbene insertion, and intramolecular lactonization. The reaction exhibits high atom economy, good functional group tolerance, and high regioselectivity. The synthesized compound can also behave as a potent fluorescence sensor for Fe3+ ion. An efficient Rh(iii)-catalyzed annulation of arylamides with 3-diazoquinolinediones for the construction of diverse and highly functionalized isochromenoquinolinedione derivatives is described.![]()
Collapse
Affiliation(s)
- Rajeev Shrestha
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 38541
- Republic of Korea
| | - Hari Datta Khanal
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 38541
- Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan 38541
- Republic of Korea
| |
Collapse
|
23
|
Xie S, Yan Z, Li Y, Song Q, Ma M. Intrinsically Safe and Shelf-Stable Diazo-Transfer Reagent for Fast Synthesis of Diazo Compounds. J Org Chem 2018; 83:10916-10921. [PMID: 30122034 DOI: 10.1021/acs.joc.8b01587] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a crystalline compound 2-azido-4,6-dimethoxy-1,3,5-triazine (ADT) as an intrinsically safe, highly efficient, and shelf-stable diazo-transfer reagent. Because the decomposition of ADT is an endothermal process (Δ H = 30.3 kJ mol-1), ADT is intrinsically nonexplosive, as proved by thermal, friction, and impact tests. The diazo-transfer reaction based on ADT gives diazo compounds in excellent yields within several minutes at room temperature. ADT is very stable upon >1 year storage under air at room temperature.
Collapse
Affiliation(s)
- Shibo Xie
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Innovation Center of Chemistry for Energy Materials), Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Ziqiang Yan
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Innovation Center of Chemistry for Energy Materials), Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yuanheng Li
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Innovation Center of Chemistry for Energy Materials), Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Qun Song
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Innovation Center of Chemistry for Energy Materials), Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Mingming Ma
- CAS Key Laboratory of Soft Matter Chemistry, iChEM (Innovation Center of Chemistry for Energy Materials), Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
24
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
O'Mahony RM, Lynch D, Hayes HLD, Ní Thuama E, Donnellan P, Jones RC, Glennon B, Collins SG, Maguire AR. Exploiting the Continuous in situ Generation of Mesyl Azide for Use in a Telescoped Process. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700871] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rosella M. O'Mahony
- School of Chemistry; Analytical and Biological Chemistry Research Facility; Synthesis and Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| | - Denis Lynch
- School of Chemistry; Analytical and Biological Chemistry Research Facility; Synthesis and Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| | - Hannah L. D. Hayes
- School of Chemistry; Analytical and Biological Chemistry Research Facility; Synthesis and Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| | - Eilís Ní Thuama
- School of Chemistry; Analytical and Biological Chemistry Research Facility; Synthesis and Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| | - Philip Donnellan
- School of Chemical and Bioprocess Engineering; Synthesis and Solid State Pharmaceutical Centre; University College Dublin; Dublin Ireland
| | - Roderick C. Jones
- School of Chemical and Bioprocess Engineering; Synthesis and Solid State Pharmaceutical Centre; University College Dublin; Dublin Ireland
| | - Brian Glennon
- School of Chemical and Bioprocess Engineering; Synthesis and Solid State Pharmaceutical Centre; University College Dublin; Dublin Ireland
| | - Stuart G. Collins
- School of Chemistry; Analytical and Biological Chemistry Research Facility; Synthesis and Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| | - Anita R. Maguire
- School of Chemistry and School of Pharmacy; Analytical and Biological Chemistry Research Facility; Synthesis and Solid State Pharmaceutical Centre; University College Cork; Cork Ireland
| |
Collapse
|
26
|
Zhang M, Han Y, Niu JL, Zhang ZH. A General and Practical Approach for the Synthesis of 1,2,4-Trioxanes Catalyzed by Silica-Ferric Chloride. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700671] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Mo Zhang
- National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 People's Republic of China
| | - Yi Han
- National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 People's Republic of China
| | - Jia-Liang Niu
- National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 People's Republic of China
| | - Zhan-Hui Zhang
- National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science; Hebei Normal University; Shijiazhuang 050024 People's Republic of China
| |
Collapse
|
27
|
Kumar Shahi C, Pradhan S, Bhattacharyya A, Kumar R, Ghorai MK. Accessing Quinoxalines by Ring-Opening/Cyclization/Detosylation/Aromatization of Activated Aziridines with 2-Bromoanilines: Synthesis of Tyrphostin AG 1296. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chandan Kumar Shahi
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Sajan Pradhan
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Aditya Bhattacharyya
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Raushan Kumar
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| | - Manas K. Ghorai
- Department of Chemistry; Indian Institute of Technology Kanpur; 208016 Kanpur Uttar Pradesh India
| |
Collapse
|
28
|
Liu Y, Zhang Z, Wan Y, Zhang G, Li Z, Bi J, Ma N, Liu T, Liu Q. Oxidation of β-Ketoamides: The Synthesis of Vicinal Tricarbonyl Amides. J Org Chem 2017; 82:3901-3907. [PMID: 28230362 DOI: 10.1021/acs.joc.6b03062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A facile and direct oxidative reaction for the synthesis of vicinal tricarbonyl amides in moderate to excellent yields (53-88%) was developed starting from readily available β-ketoamides in the presence of phenyliodine(III) bis(trifluoroacetate). The resulting products possess significant synthetic potential, making this approach a valuable addition to the group of traditional methods already available for the preparation of these molecules.
Collapse
Affiliation(s)
- Yueyang Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henna Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | - Zhiguo Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henna Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | - Yameng Wan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henna Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henna Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | - Zhonglian Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henna Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | - Jingjing Bi
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henna Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | - Nana Ma
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henna Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | - Tongxin Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henna Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| | - Qingfeng Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henna Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University , Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
29
|
Liu P, Zhu C, Xu G, Sun J. Iron-catalyzed intermolecular cycloaddition of diazo surrogates with hexahydro-1,3,5-triazines. Org Biomol Chem 2017; 15:7743-7746. [DOI: 10.1039/c7ob02115a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iron-catalyzed formal [4 + 1]-cycloaddition of diazo compounds with hexahydro-1,3,5-triazines has been achieved.
Collapse
Affiliation(s)
- Pei Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- and the School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Chenghao Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- and the School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- and the School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology
- and the School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
- P. R. China
| |
Collapse
|
30
|
Pandit RP, Shim JJ, Kim SH, Lee YR. Copper-catalyzed direct coupling of benzoxazin-2-ones with indoles for the synthesis of diverse 3-indolylbenzoxazin-2-ones: access to natural cephalandole A. RSC Adv 2017. [DOI: 10.1039/c7ra10634c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diverse and functionalized 3-indolyl benzo[b][1,4]oxazin-2-ones were synthesized via copper-catalyzed direct coupling of benzo[b][1,4]oxazin-2-one and indoles in air.
Collapse
Affiliation(s)
| | - Jae-Jin Shim
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan
- Republic of Korea
| | - Sung Hong Kim
- Analysis Research Division
- Daegu Center
- Korea Basic Science Institute
- Daegu 41566
- Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering
- Yeungnam University
- Gyeongsan
- Republic of Korea
| |
Collapse
|