1
|
Latrache M, Lefebvre C, Abe M, Hoffmann N. Photochemically Induced Hydrogen Atom Transfer and Intramolecular Radical Cyclization Reactions with Oxazolones. J Org Chem 2023; 88:16435-16455. [PMID: 37983612 DOI: 10.1021/acs.joc.3c01951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Photochemically induced intramolecular hydrogen atom transfer in oxazolones is reported. An acetal or thioacetal function at the side chain acts as a hydrogen donor while the photochemical exited oxazolone is the acceptor. A one-step process─the electron and the proton are simultaneously transferred─is productive, while electron transfer followed by proton transfer is inefficient. Radical combination then takes place, leading to the formation of a C-C or C-N bond. The regioselectivity of the reaction is explained by the diradical/zwitterion dichotomy of radical intermediates at the singlet state. In the present case, the zwitterion structure plays a central role, and intramolecular electron transfer favors spin-orbit coupling and thus the intersystem crossing to the singlet state. The reaction of corresponding thioacetal derivatives is less efficient. In this case, photochemical electron transfer is competitive. The photoproducts resulting from C-C bond formation easily undergo stepwise thermal decarboxylation in which zwitterionic and polar transition states are involved. A computational study of this step has also been performed.
Collapse
Affiliation(s)
- Mohammed Latrache
- ICMR, Equipe de Photochimie, CNRS, Université de Reims Champagne-Ardenne, UFR Sciences, B.P. 1039, Reims 51687 France
| | - Corentin Lefebvre
- ICMR, Equipe de Photochimie, CNRS, Université de Reims Champagne-Ardenne, UFR Sciences, B.P. 1039, Reims 51687 France
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Hiroshima Research Center for Photo-Drug-Delivery Systems (Hi-P-DDS), 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Norbert Hoffmann
- ICMR, Equipe de Photochimie, CNRS, Université de Reims Champagne-Ardenne, UFR Sciences, B.P. 1039, Reims 51687 France
| |
Collapse
|
2
|
Ali H, Mahto B, Barhoi A, Hussain S. Visible light-driven photocatalytic thiol-ene/yne reactions using anisotropic 1D Bi 2S 3 nanorods: a green synthetic approach. NANOSCALE 2023; 15:14551-14563. [PMID: 37609951 DOI: 10.1039/d3nr02889e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Thiol-ene/yne click reactions play a significant role in creating carbon-sulfur (C-S) bonds, and there has been a growing interest in using visible-light photoredox catalysis for their formation. In this study, anisotropic 1D Bi2S3 nanorods were prepared using a simple polyol-assisted reflux method, and they were used as catalysts for the thiol-ene/yne click reactions under visible light irradiation. The developed protocol is highly compatible and tolerant to various substrates with excellent product yields. Also, thiol-ene and -yne reactions achieved maximum TONs of 93 and 95, respectively. Detailed mechanistic studies were conducted and supported by NMR studies, radical trapping utilizing TEMPO, and ESI-MS product analysis. The ability of Bi2S3 nanorods to catalyze thiol-ene/yne reactions is primarily due to the creation of photoexcited holes, which aid in the formation of thiyl radicals. This method can be scaled up to the gram-scale synthesis of benzyl styryl sulfide with an excellent chemical yield of 90%. The 1D Bi2S3 nanorods also demonstrated structural and morphological stability throughout five reaction cycles while maintaining a favorable photocatalytic activity. The developed methodology had the advantages of broad substrate scope, mild reaction conditions, scaled-up synthesis, and nonrequirement of free radical initiators.
Collapse
Affiliation(s)
- Haider Ali
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, 801103, India.
| | - Bhagirath Mahto
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, 801103, India.
| | - Ashok Barhoi
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, 801103, India.
| | - Sahid Hussain
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, 801103, India.
| |
Collapse
|
3
|
Sun Z, Yan W, Xie L, Liu W, Xu C, Chen FE. A Robust Copper-Catalyzed Cross-Coupling of Glycosyl Thiosulfonate and Boronic Acids Enables the Construction of Thioglycosides. Org Lett 2023; 25:5714-5718. [PMID: 37530179 DOI: 10.1021/acs.orglett.3c01798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
An efficient and stereoretentive copper-catalyzed cross-coupling of glycosyl thiosulfonate and boronic acid for the construction of thioglycosides is described. The good functional group compatibility of this method allows the preparation of many bioactive aryl/alkenyl thioglycosides, including the hSGLT1 inhibitor.
Collapse
Affiliation(s)
- Zuyao Sun
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Weitao Yan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lihuang Xie
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenchao Liu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chunfa Xu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, China
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Stini NA, Poursaitidis ET, Nikitas NF, Kartsinis M, Spiliopoulou N, Ananida-Dasenaki P, Kokotos CG. Light-accelerated "on-water" hydroacylation of dialkyl azodicarboxylates. Org Biomol Chem 2023; 21:1284-1293. [PMID: 36645430 DOI: 10.1039/d2ob02204d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The hydroacylation of dialkyl azodicarboxylates has received a lot of attention lately due to the great importance of acyl hydrazides in organic chemistry. Herein, we report an inexpensive and green photochemical approach, where light irradiation (390 nm) significantly accelerates the reaction between dialkyl azodicarboxylates and aldehydes, while water is employed as the solvent. A variety of aromatic and aliphatic aldehydes were converted into their corresponding acyl hydrazides in good to excellent yields in really short reaction times (15-210 min) and the reaction mechanism was also studied. Applications of this reaction in the syntheses of Vorinostat and Moclobemide were demonstrated.
Collapse
Affiliation(s)
- Naya A Stini
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece.
| | - Efthymios T Poursaitidis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece.
| | - Nikolaos F Nikitas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece.
| | - Michail Kartsinis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece.
| | - Nikoleta Spiliopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece.
| | - Phoebe Ananida-Dasenaki
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece.
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece.
| |
Collapse
|
5
|
Yu L, Zeng G, Xu J, Han M, Wang Z, Li T, Long M, Wang L, Huang W, Wu Y. Development of Poly(Glycerol Sebacate) and Its Derivatives: A Review of the Progress over the past Two Decades. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2150774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liu Yu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanjie Zeng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Xu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Mingying Han
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Zihan Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meng Long
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
A Comparison of the Transglycosylation Capacity between the Guar GH27 Aga27A and Bacteroides GH36 BoGal36A α-Galactosidases. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The transglycosylation behavior and capacity of two clan GH-D α-galactosidases, BoGal36A from the gut bacterium Bacteroides ovatus and Aga27A from the guar plant, was investigated and compared. The enzymes were screened for the ability to use para-nitrophenyl-α-galactoside (pNP-Gal), raffinose and locust bean gum (LBG) galactomannan as glycosyl donors with the glycosyl acceptors methanol, propanol, allyl alcohol, propargyl alcohol and glycerol using mass spectrometry. Aga27A was, in general, more stable in the presence of the acceptors. HPLC analysis was developed and used as a second screening method for reactions using raffinose or LBG as a donor substrate with methanol, propanol and glycerol as acceptors. Time-resolved reactions were set up with raffinose and methanol as the donor and acceptor, respectively, in order to develop an insight into the basic transglycosylation properties, including the ratio between the rate of transglycosylation (methyl galactoside synthesis) and rate of hydrolysis. BoGal36A had a somewhat higher ratio (0.99 compared to 0.71 for Aga27A) at early time points but was indicated to be more prone to secondary (product) hydrolysis in prolonged incubations. The methyl galactoside yield was higher when using raffinose (48% for BoGal36A and 38% for Aga27A) compared to LBG (27% for BoGal36A and 30% for Aga27A).
Collapse
|
7
|
Hong JE, Jung Y, Min D, Jang M, Kim S, Park J, Park Y. Visible-Light-Induced Organophotocatalytic Difunctionallization: Open-Air Hydroxysulfurization of Aryl Alkenes with Aryl Thiols. J Org Chem 2022; 87:7378-7391. [PMID: 35561230 DOI: 10.1021/acs.joc.2c00595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report a regioselective visible-light-induced organophotoredox catalytic difunctionalization method to prepare β-hydroxysulfides using aryl alkenes and aryl thiols as substrates. The reaction provides a wide substrate scope of aryl alkenes (from simple styrene to complex bioactive compounds) and aryl thiols (from diverse heteroaromatic thiols to nonheteroaromatic thiols) (total 45 examples, up to 88% yield). Based on the combined experimental and computational studies, we demonstrate that in situ generated hydroperoxyl radicals from O2 in air react with benzylic radicals, which restrains the reaction between benzylic radicals and the acidic form of thiols in a classical thiol-ene radical reaction. We show that difunctionalization is possible due to the choice of bases, diluted substrate concentrations, increment in catalyst loading, and selection of suitable aryl thiols under aerobic conditions. Considering the biological importance of heteroaromatic thiols and the lack of methods to install them, our approach offers a platform to derive various β-hydroxysulfides that contain aromatic elements.
Collapse
Affiliation(s)
- Jee Eun Hong
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Yeonghun Jung
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Dahye Min
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Minji Jang
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Soomin Kim
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Jiyong Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yohan Park
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| |
Collapse
|
8
|
Spiliopoulou N, Gkizis PL, Triandafillidi I, Nikitas NF, Batsika CS, Bisticha A, Kokotos CG. A Unified Mechanism for the PhCOCOOH-mediated Photochemical Reactions: Revisiting its Action and Comparison to Known Photoinitiators. Chemistry 2022; 28:e202200023. [PMID: 35137984 DOI: 10.1002/chem.202200023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 12/24/2022]
Abstract
Since 2014, we have introduced in literature the use of phenylglyoxylic acid (PhCOCOOH), a small and commercially available organic molecule, as a potent promoter in a variety of photochemical processes. Although PhCOCOOH has a broad scope of photochemical reactions that can promote, the understanding of its mode of action in our early contributions was moderate. Herein, we are restudying and revisiting the mechanism of action of PhCOCOOH in most of these early contributions, providing a unified mechanism of action. Furthermore, the understanding of its action as a photoinitiator opened a new comparison study with known and commercially available photoinitiators.
Collapse
Affiliation(s)
- Nikoleta Spiliopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Ierasia Triandafillidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Nikolaos F Nikitas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Charikleia S Batsika
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Aikaterini Bisticha
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| |
Collapse
|
9
|
Yang D, Yan Q, Zhu E, Lv J, He WM. Carbon–sulfur bond formation via photochemical strategies: An efficient method for the synthesis of sulfur-containing compounds. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Liu X, Bai R, Guo Z, Che Y, Guo C, Xing H. Photogeneration of thiyl radicals using metal‐halide perovskite for highly efficient synthesis of thioethers. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xin Liu
- College of Chemistry Northeast Normal University Changchun China
| | - Rong Bai
- College of Chemistry Northeast Normal University Changchun China
| | - Zhifen Guo
- College of Chemistry Northeast Normal University Changchun China
| | - Yan Che
- College of Chemistry Northeast Normal University Changchun China
| | - Chunyi Guo
- College of Chemistry Northeast Normal University Changchun China
| | - Hongzhu Xing
- College of Chemistry Northeast Normal University Changchun China
| |
Collapse
|
11
|
Xiao Q, Tong QX, Zhong JJ. Recent Advances in Visible-Light Photoredox Catalysis for the Thiol-Ene/Yne Reactions. Molecules 2022; 27:molecules27030619. [PMID: 35163886 PMCID: PMC8839682 DOI: 10.3390/molecules27030619] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Visible-light photoredox catalysis has been established as a popular and powerful tool for organic transformations owing to its inherent characterization of environmental friendliness and sustainability in the past decades. The thiol-ene/yne reactions, the direct hydrothiolation of alkenes/alkynes with thiols, represents one of the most efficient and atom-economic approaches for the carbon-sulfur bonds construction. In traditional methodologies, harsh conditions such as stoichiometric reagents or a specialized UV photo-apparatus were necessary suffering from various disadvantages. In particular, visible-light photoredox catalysis has also been demonstrated to be a greener and milder protocol for the thiol-ene/yne reactions in recent years. Additionally, unprecedented advancements have been achieved in this area during the past decade. In this review, we will summarize the recent advances in visible-light photoredox catalyzed thiol-ene/yne reactions from 2015 to 2021. Synthetic strategies, substrate scope, and proposed reaction pathways are mainly discussed.
Collapse
Affiliation(s)
- Qian Xiao
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China;
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
| | - Qing-Xiao Tong
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
- Correspondence: (Q.-X.T.); (J.-J.Z.)
| | - Jian-Ji Zhong
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
- The Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou 515063, China
- Correspondence: (Q.-X.T.); (J.-J.Z.)
| |
Collapse
|
12
|
Payra S, Yadav N, Moorthy JN. Solvent-mediated switching between oxidative addition and addition–oxidation: access to β-hydroxysulfides and β-arylsulfones by the addition of thiols to olefins in the presence of Oxone. NEW J CHEM 2022. [DOI: 10.1039/d1nj04892a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solvent-switching allows formation of either β-hydroxy-2-arylethyl aryl sulfides or 2-arylethyl aryl sulfones exclusively in thiol–ene ‘click’ reactions conducted with Oxone.
Collapse
Affiliation(s)
- Soumen Payra
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Navin Yadav
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Jarugu Narasimha Moorthy
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
13
|
Bugaenko DI, Karchava AV, Yurovskaya MA. Transition metal-free cross-coupling reactions with the formation of carbon-heteroatom bonds. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Le CMQ, Schrodj G, Ndao I, Bessif B, Heck B, Pfohl T, Reiter G, Elgoyhen J, Tomovska R, Chemtob A. Semi-Crystalline Poly(thioether) Prepared by Visible-Light-Induced Organocatalyzed Thiol-ene Polymerization in Emulsion. Macromol Rapid Commun 2021; 43:e2100740. [PMID: 34890084 DOI: 10.1002/marc.202100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Indexed: 11/10/2022]
Abstract
A photocatalytic thiol-ene aqueous emulsion polymerization under visible-light is described to prepare linear semicrystalline latexes using 2,2'-dimercaptodiethyl sulfide as dithiol and various dienes. The procedure involves low irradiance (3 mW cm-2 ), LED irradiation source, eosin-Y disodium as organocatalyst, low catalyst loading (<0.05% mol), and short reaction time scales (<1 h). The resulting latexes have molecular weights of about 10 kg mol-1 , average diameters of 100 nm, and a linear structure consisting only of thioether repeating units. Electron-transfer reaction from a thiol to the triplet excited state of the photocatalyst is suggested as the primary step of the mechanism (type I), whereas oxidation by singlet oxygen generated by energy transfer has a negligible effect (type II). Only polymers prepared with aliphatic dienes such as diallyl adipate or di(ethylene glycol) divinyl ether exhibit a high crystallization tendency as revealed by differential scanning calorimetry, polarized optical microscopy, and X-ray diffraction. Ordering and crystallization are driven by molecular packing of poly(thioether) chains combining structural regularity, compactness, and flexibility.
Collapse
Affiliation(s)
- Cuong Minh Quoc Le
- Institut de Sciences des Matériaux de Mulhouse (IS2M) UMR CNRS 7361, Université de Haute-Alsace, 15 rue Jean Starcky, Mulhouse, Cedex, 68057, France
| | - Gautier Schrodj
- Institut de Sciences des Matériaux de Mulhouse (IS2M) UMR CNRS 7361, Université de Haute-Alsace, 15 rue Jean Starcky, Mulhouse, Cedex, 68057, France
| | - Ibrahima Ndao
- Institut de Sciences des Matériaux de Mulhouse (IS2M) UMR CNRS 7361, Université de Haute-Alsace, 15 rue Jean Starcky, Mulhouse, Cedex, 68057, France
| | - Brahim Bessif
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg, 79104, Germany
| | - Barbara Heck
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg, 79104, Germany
| | - Thomas Pfohl
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg, 79104, Germany
| | - Günter Reiter
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, Freiburg, 79104, Germany
| | - Justine Elgoyhen
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa, 72, Donostia-San Sebastian, 20018, Spain
| | - Radmila Tomovska
- POLYMAT and Departamento de Química Aplicada, Facultad de Ciencias Químicas, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa, 72, Donostia-San Sebastian, 20018, Spain
| | - Abraham Chemtob
- Institut de Sciences des Matériaux de Mulhouse (IS2M) UMR CNRS 7361, Université de Haute-Alsace, 15 rue Jean Starcky, Mulhouse, Cedex, 68057, France
| |
Collapse
|
15
|
Kaur S, Luciano DP, Fan X, Zhao G, Messier S, Walker MM, Zhang Q, Wang T. Radical functionalization of thioglycosides in aqueous medium. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Sun Q, Wang S, Ma X, Zhong H. Desulfurization in high-sulfur bauxite with a novel thioether-containing hydroxamic acid: Flotation behavior and separation mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Lasso JD, Castillo-Pazos DJ, Li CJ. Green chemistry meets medicinal chemistry: a perspective on modern metal-free late-stage functionalization reactions. Chem Soc Rev 2021; 50:10955-10982. [PMID: 34382989 DOI: 10.1039/d1cs00380a] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The progress of drug discovery and development is paced by milestones reached in organic synthesis. In the last decade, the advent of late-stage functionalization (LSF) reactions has represented a valuable breakthrough. Recent literature has defined these reactions as the chemoselective modification of complex molecules by means of C-H functionalization or the manipulation of endogenous functional groups. Traditionally, these diversifications have been accomplished by organometallic means. However, the presence of metals carries disadvantages related to their cost, environmental hazard and health risks. Fundamentally, green chemistry directives can help minimize such hazards through the development of metal-free LSF methodologies. In this review, we expand the current discussion on metal-free LSF reactions by providing an overview of C(sp2)-H, and C(sp3)-H functionalizations, as well as the utilization of heteroatom-containing functional groups as chemical handles. Selected topics such as metal-free cross-dehydrogenative coupling (CDC) reactions, organocatalysis, electrochemistry and photochemistry are also discussed. By writing the first review on metal-free LSF methodologies, we aim to highlight current advances in the field with examples that reveal specific challenges and solutions, as well as future research opportunities.
Collapse
Affiliation(s)
- Juan D Lasso
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| | - Durbis J Castillo-Pazos
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8, Canada.
| |
Collapse
|
18
|
Shigeno M, Shishido Y, Hayashi K, Nozawa‐Kumada K, Kondo Y. KO‐
t
‐Bu Catalyzed Thiolation of
β
‐(Hetero)arylethyl Ethers via MeOH Elimination/hydrothiolation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Yoshiteru Shishido
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Kazutoshi Hayashi
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Kanako Nozawa‐Kumada
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science Tohoku University 6–3 Aoba Sendai 980-8578 Japan
| |
Collapse
|
19
|
Bary G, Jamil MI, Arslan M, Ghani L, Ahmed W, Ahmad H, Zaman G, Ayub K, Sajid M, Ahmad R, Huang D, Liu F, Wang Y. Regio- and stereoselective functionalization of alkenes with emphasis on mechanistic insight and sustainability concerns. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101260] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Fairbanks BD, Macdougall LJ, Mavila S, Sinha J, Kirkpatrick BE, Anseth KS, Bowman CN. Photoclick Chemistry: A Bright Idea. Chem Rev 2021; 121:6915-6990. [PMID: 33835796 PMCID: PMC9883840 DOI: 10.1021/acs.chemrev.0c01212] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings. A more extensive realization of the potential of this chemistry requires a broader understanding of the physical and chemical characteristics of the specific reactions. This review discusses the features of the most frequently employed photoclick reactions reported in the literature: photomediated azide-alkyne cycloadditions, other 1,3-dipolarcycloadditions, Diels-Alder and inverse electron demand Diels-Alder additions, radical alternating addition chain transfer additions, and nucleophilic additions. Applications of these reactions in a variety of chemical syntheses, materials chemistry, and biological contexts are surveyed, with particular attention paid to the respective strengths and limitations of each reaction and how that reaction benefits from its combination with light. Finally, challenges to broader employment of these reactions are discussed, along with strategies and opportunities to mitigate such obstacles.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Coorado 80045, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
21
|
Nikitas NF, Apostolopoulou MK, Skolia E, Tsoukaki A, Kokotos CG. Photochemical Activation of Aromatic Aldehydes: Synthesis of Amides, Hydroxamic Acids and Esters. Chemistry 2021; 27:7915-7922. [PMID: 33772903 DOI: 10.1002/chem.202100655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Indexed: 12/17/2022]
Abstract
A cheap, facile and metal-free photochemical protocol for the activation of aromatic aldehydes has been developed. Utilizing thioxanthen-9-one as the photocatalyst and cheap household lamps as the light source, a variety of aromatic aldehydes have been activated and subsequently converted in a one-pot reaction into amides, hydroxamic acids and esters in good to high yields. The applicability of this method was highlighted in the synthesis of Moclobemide, a drug against depression and social anxiety. Extended and detailed mechanistic studies have been conducted, in order to determine a plausible mechanism for the reaction.
Collapse
Affiliation(s)
- Nikolaos F Nikitas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimioupolis, 15771, Athens, Greece
| | - Mary K Apostolopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimioupolis, 15771, Athens, Greece
| | - Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimioupolis, 15771, Athens, Greece
| | - Anna Tsoukaki
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimioupolis, 15771, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimioupolis, 15771, Athens, Greece
| |
Collapse
|
22
|
Xiao Q, Zhang H, Li JH, Jian JX, Tong QX, Zhong JJ. Directing-Group-Assisted Markovnikov-Selective Hydrothiolation of Styrenes with Thiols by Photoredox/Cobalt Catalysis. Org Lett 2021; 23:3604-3609. [PMID: 33843237 DOI: 10.1021/acs.orglett.1c00999] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast with the well-developed radical thiol-ene reaction to access anti-Markovnikov-type products, the research on the catalytic Markovnikov-selective hydrothiolation of alkenes is very restricted. Because of the catalyst poisoning of metal catalysts by organosulfur compounds, limited examples of transition-metal-catalyzed thiol-ene reactions have been reported. However, in this work, a directing-group-assisted hydrothiolation of styrenes with thiols by photoredox/cobalt catalysis is found to proceed smoothly to afford Markovnikov-type sulfides with excellent regioselectivity.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China.,School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, P. R. China
| | - Hong Zhang
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Jing-Hong Li
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Jing-Xin Jian
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Qing-Xiao Tong
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Jian-Ji Zhong
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, and Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
23
|
Nikitas NF, Theodoropoulou MA, Kokotos CG. Photochemical Reaction of
N
,
N
‐Dimethylanilines with N‐Substituted Maleimides Utilizing Benzaldehyde as the Photoinitiator. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nikolaos F. Nikitas
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Maria A. Theodoropoulou
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Christoforos G. Kokotos
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| |
Collapse
|
24
|
Zhang S, Yi W, Guo Y, Ai R, Yuan Z, Yang B, Wang J. Metal-free g-C 3N 4 nanosheets as a highly visible-light-active photocatalyst for thiol-ene reactions. NANOSCALE 2021; 13:3493-3499. [PMID: 33543175 DOI: 10.1039/d1nr00453k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thiol-ene click reactions are important for the construction of carbon-sulfur bonds. The use of visible-light photoredox catalysis for the formation of C-S bonds has attracted much attention. In this work, two-dimensional metal-free graphitic carbon nitride (g-C3N4) nanosheets are prepared through a simple thermal polymerization method and used to catalyze the thiol-ene click reaction under visible light-illumination. This green, atom-economic, and inexpensive approach for the hydrothiolation of alkenes is applicable for structurally different substrates and exhibits superior yields. In air or nitrogen atmosphere, the reaction yield decreases when a hole scavenging agent, CH3OH, is introduced, which indicates that photogenerated holes in the g-C3N4 nanosheets play an important role in the formation of thiyl radicals. The g-C3N4 nanosheets still show a good stability and favorable photocatalytic activity after five cycles of the reaction. Moreover, this approach can be scaled up to the gram-scale synthesis of benzyl(phenethyl)sulfane with a yield up to 93%. Our study suggests a good potential of semiconducting g-C3N4 nanosheets as a metal-free, efficient photocatalyst for various thiol-ene click reactions and even for other organic reactions.
Collapse
Affiliation(s)
- Shouren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Wenjing Yi
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Yanzhen Guo
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Zhichao Yuan
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Baocheng Yang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|
25
|
Prieto A, Taillefer M. Visible-Light Decatungstate/Disulfide Dual Catalysis for the Hydro-Functionalization of Styrenes. Org Lett 2021; 23:1484-1488. [DOI: 10.1021/acs.orglett.1c00189] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexis Prieto
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Marc Taillefer
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| |
Collapse
|
26
|
Metal‐free Photochemical Atom Transfer Radical Addition (ATRA) of BrCCl
3
to Alkenes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Skolia E, Apostolopoulou MK, Nikitas NF, Kokotos CG. Photochemical Synthesis of Benzimidazoles from Diamines and Aldehydes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Mary K. Apostolopoulou
- Laboratory of Organic Chemistry, Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Nikolaos F. Nikitas
- Laboratory of Organic Chemistry, Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Christoforos G. Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| |
Collapse
|
28
|
Guo M, Huang Y, Cao J, Xu Y, Lu S, Feng S. Luminescent and Robust Perovskite-Silicone Elastomers Prepared by Light Induced Thiol-Ene Reaction. Macromol Rapid Commun 2020; 42:e2000606. [PMID: 33270321 DOI: 10.1002/marc.202000606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Indexed: 12/20/2022]
Abstract
The preparation of a series of luminescent perovskite-silicone elastomer (PSE) composites by embedding inorganic lead halide perovskite nanocrystals (CsPbBr3 NCs) into networks constructed by trimethylolpropane tris(2-mercaptoacetate) and sulfone-containing silicone copolymers with vinyl side groups (PSMVS) is reported herein. The networks are obtained by an environmentally friendly thiol-ene cross-linking reaction under 30 W household LED light. The conducted analysis shows that the prepared PSEs display strong green fluorescence due to encapsulation of CsPbBr3 NCs, which constitute a luminescent center in sulfone-containing silicone networks. Using PSMVS as basic polymers instead of commercial polysiloxanes endows PSEs with enhanced mechanical strength and excellent luminescent stability at high temperatures. The PSEs show robust tensile stress and >650% elongation. Additionally, the construction of colorful ultraviolet light-emitting diodes (UV-LEDs) by an in situ cross-linking process is described.
Collapse
Affiliation(s)
- Mengdong Guo
- Key Laboratory of Special Functional Aggregated Materials and Key Laboratory of Colloid and Interface ChemistryMinistry of EducationSchool of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yue Huang
- Key Laboratory of Special Functional Aggregated Materials and Key Laboratory of Colloid and Interface ChemistryMinistry of EducationSchool of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jinfeng Cao
- Key Laboratory of Special Functional Aggregated Materials and Key Laboratory of Colloid and Interface ChemistryMinistry of EducationSchool of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Yunfan Xu
- Key Laboratory of Special Functional Aggregated Materials and Key Laboratory of Colloid and Interface ChemistryMinistry of EducationSchool of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shilong Lu
- Key Laboratory of Special Functional Aggregated Materials and Key Laboratory of Colloid and Interface ChemistryMinistry of EducationSchool of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials and Key Laboratory of Colloid and Interface ChemistryMinistry of EducationSchool of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
29
|
McCourt RO, Scanlan EM. Atmospheric Oxygen Mediated Radical Hydrothiolation of Alkenes. Chemistry 2020; 26:15804-15810. [DOI: 10.1002/chem.202002542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/08/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Ruairí O. McCourt
- School of Chemistry Trinity Biomedical Sciences Institute (TBSI) Trinity College Dublin The University of Dublin Dublin 2 Ireland
| | - Eoin M. Scanlan
- School of Chemistry Trinity Biomedical Sciences Institute (TBSI) Trinity College Dublin The University of Dublin Dublin 2 Ireland
| |
Collapse
|
30
|
Das A, Thomas KRJ. Facile Thiol–Ene Click Protocol Using Benzil as Sensitizer and White LED as Light Source. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Anupam Das
- Organic Materials Laboratory Department of Chemistry Indian Institute of Technology Roorkee 247667 Roorkee – India
| | - K. R. Justin Thomas
- Organic Materials Laboratory Department of Chemistry Indian Institute of Technology Roorkee 247667 Roorkee – India
| |
Collapse
|
31
|
Papadopoulos GN, Kokotou MG, Spiliopoulou N, Nikitas NF, Voutyritsa E, Tzaras DI, Kaplaneris N, Kokotos CG. Phenylglyoxylic Acid: An Efficient Initiator for the Photochemical Hydrogen Atom Transfer C-H Functionalization of Heterocycles. CHEMSUSCHEM 2020; 13:5934-5944. [PMID: 32833347 DOI: 10.1002/cssc.202001892] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/23/2020] [Indexed: 05/25/2023]
Abstract
C-H functionalization at the α-position of heterocycles has become a rapidly growing area of research. Herein, a cheap and efficient photochemical method was developed for the C-H functionalization of heterocycles. Phenylglyoxylic acid (PhCOCOOH) could behave as an alternative to metal-based catalysts and organic dyes and provided a very general and wide array of photochemical C-H alkylation, alkenylation, and alkynylation, as well as C-N bond forming reaction methodologies. This novel, mild, and metal-free protocol was successfully employed in the functionalization of a wide range of C-H bonds, utilizing not only O- or N-heterocycles, but also the less studied S-heterocycles.
Collapse
Affiliation(s)
- Giorgos N Papadopoulos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Maroula G Kokotou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Nikoleta Spiliopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Nikolaos F Nikitas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Errika Voutyritsa
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Dimitrios I Tzaras
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Nikolaos Kaplaneris
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| |
Collapse
|
32
|
Manzer Manhas F, Kumar J, Raheem S, Thakur P, Rizvi MA, Shah BA. Photoredox‐Mediated Synthesis of β‐Hydroxydithioacetals from Terminal Alkynes. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Farah Manzer Manhas
- Department of Chemistry Shoolini University 173212 Solan Himachal Pradesh India
| | - Jaswant Kumar
- CSIR-Indian Institute of Integrative Medicine 180001 Jammu India
| | | | - Pankaj Thakur
- Department of Chemistry Shoolini University 173212 Solan Himachal Pradesh India
- Department of Environmental Sciences Central University of Himachal Pradesh 176215 Dharmshala India
| | | | - Bhahwal Ali Shah
- CSIR-Indian Institute of Integrative Medicine 180001 Jammu India
| |
Collapse
|
33
|
Voutyritsa E, Garreau M, Kokotou MG, Triandafillidi I, Waser J, Kokotos CG. Photochemical Functionalization of Heterocycles with EBX Reagents: C−H Alkynylation versus Deconstructive Ring Cleavage**. Chemistry 2020; 26:14453-14460. [DOI: 10.1002/chem.202002868] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/11/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Errika Voutyritsa
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Marion Garreau
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Maroula G. Kokotou
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Ierasia Triandafillidi
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Christoforos G. Kokotos
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| |
Collapse
|
34
|
Kobayashi A, Matsuzawa T, Hosoya T, Yoshida S. One-pot Synthesis of Allyl Sulfides from Sulfinate Esters and Allylsilanes through Reduction of Alkoxysulfonium Intermediates. CHEM LETT 2020. [DOI: 10.1246/cl.200285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Akihiro Kobayashi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tsubasa Matsuzawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
35
|
Amos SGE, Garreau M, Buzzetti L, Waser J. Photocatalysis with organic dyes: facile access to reactive intermediates for synthesis. Beilstein J Org Chem 2020; 16:1163-1187. [PMID: 32550931 PMCID: PMC7277890 DOI: 10.3762/bjoc.16.103] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Organic dyes have emerged as a reliable class of photoredox catalysts. Their great structural variety combined with the easy fine-tuning of their electronic properties has unlocked new possibilities for the generation of reactive intermediates. In this review, we provide an overview of the available approaches to access reactive intermediates that employ organophotocatalysis. Our contribution is not a comprehensive description of the work in the area but rather focuses on key concepts, accompanied by a few selected illustrative examples. The review is organized along the type of reactive intermediates formed in the reaction, including C(sp3) and C(sp 2 ) carbon-, nitrogen-, oxygen-, and sulfur-centered radicals, open-shell charged species, and sensitized organic compounds.
Collapse
Affiliation(s)
- Stephanie G E Amos
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306 1015 Lausanne, Switzerland
| | - Marion Garreau
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306 1015 Lausanne, Switzerland
| | - Luca Buzzetti
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC LCSO, BCH 4306 1015 Lausanne, Switzerland
| |
Collapse
|
36
|
Santos MS, Betim HLI, Kisukuri CM, Campos Delgado JA, Corrêa AG, Paixão MW. Photoredox Catalysis toward 2-Sulfenylindole Synthesis through a Radical Cascade Process. Org Lett 2020; 22:4266-4271. [DOI: 10.1021/acs.orglett.0c01297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Marilia S. Santos
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Hugo L. I. Betim
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Camila M. Kisukuri
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Jose Antonio Campos Delgado
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Arlene G. Corrêa
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| | - Márcio W. Paixão
- Center of Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
37
|
Kim J, Kang B, Hong SH. Direct Allylic C(sp3)–H Thiolation with Disulfides via Visible Light Photoredox Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01232] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jungwon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byungjoon Kang
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Soon Hyeok Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
38
|
Mondal A, Mukhopadhyay C. Construction of Carbon-Carbon and Carbon-Heteroatom Bonds: Enabled by Visible Light. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200211115154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present review provides an overview of visible light-mediated environment-
friendly approaches over the past decade for the formation of carbon-carbon and
carbon-heteroatom framework. This area has recently emerged as a versatile, environmentally
benign and green platform for the development of a highly sustainable synthetic
methodology. According to the recent advancements, visible light has come to the forefront
in synthetic organic chemistry as a powerful green strategy for the activation of small
molecules.
Collapse
Affiliation(s)
- Animesh Mondal
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | - Chhanda Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| |
Collapse
|
39
|
Abbasi M, Nowrouzi N, Khezri R. CuI‐catalyzed tandem synthesis of thioethers using aryl halides, electron‐deficient alkenes, and sodium
iso
‐propyl xanthogenate. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohammad Abbasi
- Department of Chemistry, Faculty of SciencesPersian Gulf University Bushehr 75169 Iran
| | - Najmeh Nowrouzi
- Department of Chemistry, Faculty of SciencesPersian Gulf University Bushehr 75169 Iran
| | - Rahimeh Khezri
- Department of Chemistry, Faculty of SciencesPersian Gulf University Bushehr 75169 Iran
| |
Collapse
|
40
|
Petzold D, Giedyk M, Chatterjee A, König B. A Retrosynthetic Approach for Photocatalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901421] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel Petzold
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Maciej Giedyk
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| | - Anamitra Chatterjee
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Burkhard König
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| |
Collapse
|
41
|
Brun E, Zhang KF, Guénée L, Lacour J. Photo-induced thiol-ene reactions for late-stage functionalization of unsaturated polyether macrocycles: regio and diastereoselective access to macrocyclic dithiol derivatives. Org Biomol Chem 2020; 18:250-254. [PMID: 31808765 DOI: 10.1039/c9ob02375e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Double hydrothiolation of bis enol ether macrocycles was achieved under photo-mediated conditions. The thiol-ene reactions afford a fully regioselective anti-Markovnikov post-functionalization. Thanks to the use of ethanedithiol as reagent, moderate to excellent diastereoselectivity was accomplished leading to macrocycles containing four defined stereocenters in only three steps from 1,4-dioxane, tetrahydrofuran (THF) or tetrahydropyran (THP).
Collapse
Affiliation(s)
- Elodie Brun
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
42
|
Khristolyubov DO, Lyubov DM, Shavyrin AS, Cherkasov AV, Fukin GK, Trifonov AA. Ln( ii) and Ca( ii) NC sp3N pincer type diarylmethanido complexes – promising catalysts for C–C and C–E (E = Si, P, N, S) bond formation. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00369g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The first examples of Ln(ii) (Ln = Yb, Sm) and Ca [NCsp3N] pincer type diarylmethanido complexes were synthesized and successfully used as efficient and selective precatalyst for intermolecular C–C and C–E bond formation.
Collapse
Affiliation(s)
| | - Dmitry M. Lyubov
- Institute of Organometallic Chemistry of Russian Academy of Sciences
- Nizhny Novgorod
- Russia
| | - Andrey S. Shavyrin
- Institute of Organometallic Chemistry of Russian Academy of Sciences
- Nizhny Novgorod
- Russia
| | - Anton V. Cherkasov
- Institute of Organometallic Chemistry of Russian Academy of Sciences
- Nizhny Novgorod
- Russia
| | - Georgy K. Fukin
- Institute of Organometallic Chemistry of Russian Academy of Sciences
- Nizhny Novgorod
- Russia
| | - Alexander A. Trifonov
- Institute of Organometallic Chemistry of Russian Academy of Sciences
- Nizhny Novgorod
- Russia
- Institute of Organoelement Compounds of Russian Academy of Sciences
- Moscow
| |
Collapse
|
43
|
Voutyritsa E, Kokotos CG. Green Metal‐Free Photochemical Hydroacylation of Unactivated Olefins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Errika Voutyritsa
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Christoforos G. Kokotos
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| |
Collapse
|
44
|
Voutyritsa E, Kokotos CG. Green Metal‐Free Photochemical Hydroacylation of Unactivated Olefins. Angew Chem Int Ed Engl 2019; 59:1735-1741. [DOI: 10.1002/anie.201912214] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/30/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Errika Voutyritsa
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Christoforos G. Kokotos
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| |
Collapse
|
45
|
Zhang P, Li Y, Yan Z, Gong J, Yang Z. Asymmetric Total Synthesis of (-)-Pavidolide B via a Thiyl-Radical-Mediated [3 + 2] Annulation Reaction. J Org Chem 2019; 84:15958-15971. [PMID: 31749362 DOI: 10.1021/acs.joc.9b02230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of an efficient strategy for the asymmetric total synthesis of the bioactive marine natural product (-)-pavidolide B is described in detail. The development process and detours leading to the key thiyl-radical-mediated [3 + 2] annulation reaction, which constructed the central C ring with four contiguous stereogenic centers in one step, are depicted. Subsequently, the seven-membered D ring is constructed via a ring-closing metathesis reaction followed by a Rh(III)-catalyzed isomerization. This strategy enables the total synthesis of (-)-pavidolide B in the longest linear sequence of 10 steps.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Yuanhe Li
- State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) , College of Chemistry and the Peking University , Beijing 100871 , China
| | - Zhiming Yan
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China
| | - Jianxian Gong
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Zhen Yang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen 518055 , China.,State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS) , College of Chemistry and the Peking University , Beijing 100871 , China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| |
Collapse
|
46
|
McCourt R, Scanlan EM. 5‐
exo versus
6‐
endo
Thiyl‐Radical Cyclizations in Organic Synthesis. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ruairí McCourt
- Trinity Biomedical Sciences Institute (TBSI), Trinity College DublinThe University of Dublin, Dublin 2 Ireland
| | - Eoin M. Scanlan
- Trinity Biomedical Sciences Institute (TBSI), Trinity College DublinThe University of Dublin, Dublin 2 Ireland
| |
Collapse
|
47
|
Sideri IK, Voutyritsa E, Kokotos CG. Photochemical Hydroacylation of Michael Acceptors Utilizing an Aldehyde as Photoinitiator. CHEMSUSCHEM 2019; 12:4194-4201. [PMID: 31353792 DOI: 10.1002/cssc.201901725] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/26/2019] [Indexed: 06/10/2023]
Abstract
The hydroacylation of Michael acceptors constitutes a useful tool for the formation of new C-C bonds. In this work, an environmentally friendly procedure was developed, utilizing 4cyanobenzaldehyde as the photoinitiator and household bulbs as the irradiation source. A great variety of substrates was well-tolerated, leading to good yields, and mechanistic experiments were performed to elucidate the catalyst's possible mechanistic pathway. Moreover, the inherent selectivity challenge regarding α,α-disubstituted aldehydes (decarbonylation problem) was studied and addressed.
Collapse
Affiliation(s)
- Ioanna K Sideri
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Errika Voutyritsa
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| |
Collapse
|
48
|
Upadhyay R, Rana R, Sood A, Maurya SK. Formic Acid-Driven Rapid and Green Anti-Markovnikov Hydrothiolation of Styrenes. ACS OMEGA 2019; 4:15101-15106. [PMID: 31552354 PMCID: PMC6751736 DOI: 10.1021/acsomega.9b01968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/31/2019] [Indexed: 05/15/2023]
Abstract
A novel formic acid-assisted rapid and efficient route for C-S bond construction via the thiol-ene reaction has been reported. Exclusively, the anti-Markovnikov product was obtained in good to excellent yield using the developed protocol. Various styrenes and thiols bearing different functionalities were well tolerated. The reaction also provided a good yield of sulfones in a one-pot two-step protocol. The developed method is operationally simple, green, metal-free, solvent-free, and having a high atom economy with high regioselectivity.
Collapse
Affiliation(s)
- Rahul Upadhyay
- Natural Product
Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh 176061, India
- Academy
of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh 201002, India
| | - Rohit Rana
- Natural Product
Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh 176061, India
- Academy
of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh 201002, India
| | - Aakriti Sood
- Natural Product
Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh 176061, India
| | - Sushil K. Maurya
- Natural Product
Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Palampur, Himachal Pradesh 176061, India
- Academy
of Scientific and Innovative Research, CSIR-HRDC, Ghaziabad, Uttar Pradesh 201002, India
- E-mail: ,
| |
Collapse
|
49
|
Levin VV, Dilman AD. Visible-Light-Mediated Organocatalyzed Thiol-Ene Reaction Initiated by a Proton-Coupled Electron Transfer. J Org Chem 2019; 84:8337-8343. [PMID: 31129962 DOI: 10.1021/acs.joc.9b01331] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A convenient method for performing a thiol-ene reaction is described. The reaction is performed under blue-light irradiation and catalyzed by photoactive Lewis basic molecules such as acridine orange or naphthalene-fused N-acylbenzimidazole. It is believed that the process is initiated by a proton-coupled electron transfer process within the complex between the thiol and the Lewis basic catalyst.
Collapse
Affiliation(s)
- Vitalij V Levin
- N. D. Zelinsky Institute of Organic Chemistry , Leninsky Prospect 47 , Moscow 119991 , Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry , Leninsky Prospect 47 , Moscow 119991 , Russian Federation
| |
Collapse
|
50
|
Li D, Li S, Peng C, Lu L, Wang S, Wang P, Chen YH, Cong H, Lei A. Electrochemical oxidative C-H/S-H cross-coupling between enamines and thiophenols with H 2 evolution. Chem Sci 2019; 10:2791-2795. [PMID: 30996999 PMCID: PMC6419947 DOI: 10.1039/c8sc05143g] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/05/2019] [Indexed: 11/21/2022] Open
Abstract
Electrochemical oxidative C-H/S-H cross-coupling has been developed to construct the C-S bond in a highly straightforward and efficient manner. Various enamines and (hetero)aryl thiols could be transformed smoothly under undivided electrolytic cell conditions. Moreover, this electrosynthesis strategy not only avoided the use of chemical oxidants and transition metal catalysts, but also exhibited excellent atom economy.
Collapse
Affiliation(s)
- Dandan Li
- School of Chemistry and Chemical Engineering , Xuchang University , Xuchang 461000 , Henan , P. R. China
| | - Shuaibing Li
- School of Chemistry and Chemical Engineering , Xuchang University , Xuchang 461000 , Henan , P. R. China
| | - Chong Peng
- School of Chemistry and Chemical Engineering , Xuchang University , Xuchang 461000 , Henan , P. R. China
| | - Lijun Lu
- College of Chemistry and Molecular Sciences , Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , Hubei , P. R. China .
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences , Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , Hubei , P. R. China .
| | - Pan Wang
- College of Chemistry and Molecular Sciences , Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , Hubei , P. R. China .
| | - Yi-Hung Chen
- College of Chemistry and Molecular Sciences , Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , Hubei , P. R. China .
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences , Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , Hubei , P. R. China .
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences , Institute for Advanced Studies (IAS) , Wuhan University , Wuhan 430072 , Hubei , P. R. China .
| |
Collapse
|