1
|
Liu X, Xie D, Yang Q, Song Z, Fu Y, Peng Y. Ag-Catalyzed cross-dehydrogenative-coupling for the synthesis of 1,4-dioxan-2-yl substituted quinazoline hybrids in an aqueous medium. Org Biomol Chem 2024; 22:7725-7735. [PMID: 39229654 DOI: 10.1039/d4ob01188k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We herein developed an effective approach for the construction of 2- or 4-(1,4-dioxan-2-yl) substituted quinazolines under mild conditions. A silver-K2S2O8 catalyzed direct CDC reaction between quinazolines and 1,4-dioxane for the synthesis of a series of 2- or 4-(1,4-dioxan-2-yl) substituted quinazoline hybrids is reported. The reaction proceeded well in water under mild conditions and showed a broad substrate scope and good functional group compatibility.
Collapse
Affiliation(s)
- Xixian Liu
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
| | - Dayu Xie
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
| | - Qin Yang
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
| | - Zhibin Song
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yang Fu
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yiyuan Peng
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
2
|
Banjare SK, Lezius L, Horst ES, Leifert D, Daniliuc CG, Alasmary FA, Studer A. Thermal and Photoinduced Radical Cascade Annulation using Aryl Isonitriles: An Approach to Quinoline-Derived Benzophosphole Oxides. Angew Chem Int Ed Engl 2024; 63:e202404275. [PMID: 38687058 DOI: 10.1002/anie.202404275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Herein, we present a radical cascade addition cyclization sequence to access quinoline-based benzophosphole oxides from ortho-alkynylated aromatic phosphine oxides using various aryl isonitriles as radical acceptors and inexpensive tert-butyl-hydroperoxide (TBHP) as a terminal oxidant in the presence of a catalytic amount of silver acetate. Alternatively, the same cascade can be realized through a sustainable photochemical approach utilizing 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) as an organic photocatalyst at room temperature. The introduced modular approach shows broad functional group tolerance and offers straightforward access to complex P,N-containing polyheterocyclic arenes. These novel π-extended benzophosphole oxides exhibit interesting photophysical and electrochemical properties such as absorption in the visible region, emission and reversible reduction at low potentials, which makes them promising for potential materials science applications. The photophysical properties can further be tuned by the addition of external Lewis and Brønsted acids.
Collapse
Affiliation(s)
- Shyam Kumar Banjare
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| | - Lena Lezius
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| | - Elena S Horst
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| | - Dirk Leifert
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| | - Fatmah A Alasmary
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Armido Studer
- Organisch-Chemisches Institut, Chemistry Department, University of Münster, 48149, Münster, Germany
| |
Collapse
|
3
|
Shinde RD, Paraskar AR, Kumar J, Ghosh E, Paine TK, Bhadra S. Cobalt Catalyzed α-Hydroxylation of Arylacetic Acid Equivalents with Dioxygen. J Org Chem 2024; 89:9666-9671. [PMID: 38877990 DOI: 10.1021/acs.joc.4c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
A cobalt catalyst, under oxidative conditions, facilitates the single electron transfer process in N-pyridyl arylacetamides to form α-carbon-centered radicals that readily react with molecular oxygen, giving access to mandelic acid derivatives. In contrast to the known benzylic hydroxylation approaches, this approach enables chemo- and regioselective hydroxylation at a benzylic position adjacent to (N-pyridyl)amides. Mild conditions, broad scope, excellent selectivity, and wide synthetic practicality set up the merit of the reaction.
Collapse
Affiliation(s)
- Rupali Dasharath Shinde
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anil Rajendra Paraskar
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jogendra Kumar
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Eliza Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sukalyan Bhadra
- Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Wang J, Lin Phang Y, Yu YJ, Liu NN, Xie Q, Zhang FL, Jin JK, Wang YF. Boryl Radical as a Catalyst in Enabling Intra- and Intermolecular Cascade Radical Cyclization Reactions: Construction of Polycyclic Molecules. Angew Chem Int Ed Engl 2024; 63:e202405863. [PMID: 38589298 DOI: 10.1002/anie.202405863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Cascade radical cyclization constitutes an atom- and step-economic route for rapid assembly of polycyclic molecular skeletons. Although an array of redox-active metal catalysts has recently shown robust applications in enabling various catalytic cascade radical processes, the use of free organic radical as the catalyst, which is capable of triggering strategically distinct cascades, has rarely been developed. Here, we disclosed that the benzimidazolium-based N-heterocyclic carbene (NHC)-boryl radical is capable of catalyzing cascade cyclization reactions in both intra- and intermolecular pathways, assembling [5,5] fused bicyclic and [6,6,6] fused tricyclic molecules, respectively. The catalytic reactions start with the chemo- and regioselective addition of the boryl radical catalyst to a tethered alkene or alkyne moiety, followed by either an intramolecular formal [3+2] or an intermolecular [2+2+2] cycloaddition process to construct bicyclo[3.3.0]octane or tetrahydrophenanthridine skeletons, respectively. Eventually, a β-elimination occurs to release the boryl radical catalyst, completing a catalytic cycle. High to excellent diastereoselectivity is achieved in both catalytic reactions under substrate control.
Collapse
Affiliation(s)
- Jie Wang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yee Lin Phang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - You-Jie Yu
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Nan-Nan Liu
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qiang Xie
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Feng-Lian Zhang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ji-Kang Jin
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yi-Feng Wang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Yan Q, Yuan QJ, Shatskiy A, Alvey GR, Stepanova EV, Liu JQ, Kärkäs MD, Wang XS. General Approach to Amides through Decarboxylative Radical Cross-Coupling of Carboxylic Acids and Isocyanides. Org Lett 2024; 26:3380-3385. [PMID: 38607963 PMCID: PMC11059110 DOI: 10.1021/acs.orglett.4c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Herein, we report a silver-catalyzed protocol for decarboxylative cross-coupling between carboxylic acids and isocyanides, leading to linear amide products through a free-radical mechanism. The disclosed approach provides a general entry to a variety of decorated amides, accommodating a diverse array of radical precursors, including aryl, heteroaryl, alkynyl, alkenyl, and alkyl carboxylic acids. Notably, the protocol proved to be efficient for decarboxylative late-stage functionalization of several elaborate pharmaceuticals, demonstrating its potential applications.
Collapse
Affiliation(s)
- Qing Yan
- School
of Chemistry and Materials Science, Jiangsu
Key Laboratory of Green Synthesis for Functional Materials, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China
| | - Qing-Jia Yuan
- School
of Chemistry and Materials Science, Jiangsu
Key Laboratory of Green Synthesis for Functional Materials, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China
| | - Andrey Shatskiy
- Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Gregory R. Alvey
- Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Elena V. Stepanova
- Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Research
School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia
| | - Jian-Quan Liu
- School
of Chemistry and Materials Science, Jiangsu
Key Laboratory of Green Synthesis for Functional Materials, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China
| | - Markus D. Kärkäs
- Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Xiang-Shan Wang
- School
of Chemistry and Materials Science, Jiangsu
Key Laboratory of Green Synthesis for Functional Materials, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
6
|
Wang J, Wu J, Li R, Wang K, Xu S, Wu J, Wu F. Semipinacol Rearrangement of Iododifluorohomoallyl Alcohols and Its Application in the Allylic C-H Esterification Reactions. J Org Chem 2024; 89:3111-3122. [PMID: 38343173 DOI: 10.1021/acs.joc.3c02559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
We herein present a study on the Ag(I)-mediated semipinacol rearrangement of iododifluorohomoallyl alcohols, the resulting allylic difluoromethyl ketones underwent oxidative allylic C-H esterification under palladium catalysis in the absence of external ligand. This process yielded a range of difluoromethyl ketones derived from allyl esters in a single operation. The reaction features broad scope of o-nitrobenzoic acids and homoallylic iododifluoroalcohols affording the targeted molecules in synthetically useful yields. Control experiments illustrated that the silver salt acted as not only a Lewis acid to promote the cleavage of a C-I bond and furnish the semipinacol rearrangement but also a co-oxidant in the catalytic cycle for the allylic C-H esterification.
Collapse
Affiliation(s)
- Junqi Wang
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jihong Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Ruowen Li
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Kaiji Wang
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Shibo Xu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jingjing Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Fanhong Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
7
|
Deng Z, Meng L, Bing X, Niu S, Zhang X, Peng J, Luan YX, Chen L, Tang P. Silver-Enabled Dearomative Trifluoromethoxylation of Indoles. J Am Chem Soc 2024; 146:2325-2332. [PMID: 38232384 DOI: 10.1021/jacs.3c11653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The only known method for the dearomative trifluoromethoxylation of indoles is preliminary, with only one substrate successfully undergoing the reaction. In this study, we not only developed a broadly applicable method for indole dearomative trifluoromethoxylation but also achieved divergent trifluoromethoxylation by fine-tuning the reaction conditions. Under optimized conditions, with a silver salt and an easily handled OCF3 reagent, various indoles smoothly underwent dearomatization to afford a diverse array of ditrifluoromethoxylated indolines in 50-84% isolated yields with up to 37:1 diastereoselectivity, and fluorinated trifluoromethoxylated indolines were obtained with exclusive trans selectivity. In addition, the reaction conditions were compatible with other heteroaromatic rings as well as styrene moieties.
Collapse
Affiliation(s)
- Zhijie Deng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lingduan Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao Bing
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shaoxiong Niu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaofeng Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Junqin Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Li Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pingping Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Demonti L, Joven-Sancho D, Nebra N. Cross-Coupling Reactions Enabled by Well-Defined Ag(III) Compounds: Main Focus on Aromatic Fluorination and Trifluoromethylation. CHEM REC 2023; 23:e202300143. [PMID: 37338273 DOI: 10.1002/tcr.202300143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Indexed: 06/21/2023]
Abstract
AgIII compounds are considered strong oxidizers of difficult handling. Accordingly, the involvement of Ag catalysts in cross-coupling via 2e- redox sequences is frequently discarded. Nevertheless, organosilver(III) compounds have been authenticated using tetradentate macrocycles or perfluorinated groups as supporting ligands, and since 2014, first examples of cross-coupling enabled by AgI /AgIII redox cycles saw light. This review collects the most relevant contributions to this field, with main focus on aromatic fluorination/perfluoroalkylation and the identification of AgIII key intermediates. Pertinent comparison between the activity of AgIII RF compounds in aryl-F and aryl-CF3 couplings vs. the one shown by its CuIII RF and AuIII RF congeners is herein disclosed, thus providing a more profound picture on the scope of these transformations and the pathways commonly associated to C-RF bond formations enabled by coinage metals.
Collapse
Affiliation(s)
- Luca Demonti
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| | - Daniel Joven-Sancho
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| |
Collapse
|
9
|
Liu K, Li F, Wang J, Zhang Z, Du F, Su H, Wang Y, Yuan Q, Li F, Wang T. Silver-catalyzed cyclization of α-imino-oxy acids to fused tetralone derivatives. Org Biomol Chem 2023; 21:2700-2704. [PMID: 36912118 DOI: 10.1039/d2ob02329f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A silver-catalyzed intramolecular radical relay cyclization of α-imino-oxy acids under mild conditions has been described. This reaction offers facile access to a diverse range of fused tetralone derivatives with exquisite stereoselectivity in moderate to good yields (40-98%). Experimental studies show that the reaction undergoes a decarboxylation and acetone fragmentation/1,5-hydrogen atom transfer (HAT)/cyclization process.
Collapse
Affiliation(s)
- Kai Liu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Feng Li
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China. .,College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Jingjing Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China. .,College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Zhaowei Zhang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Fengge Du
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Hanxiao Su
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Yonghong Wang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Qingqing Yuan
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Fei Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Teng Wang
- School of Chemistry, Beihang University, Beijing, 100191, China.
| |
Collapse
|
10
|
Reddy RJ, Kumari AH, Krishna GR. Unified Radical Sulfonylative-Annulation of 1,6-Enynols with Sodium Sulfinates: A Modular Synthesis of 2,3-Disubstituted Benzoheteroles. J Org Chem 2023; 88:1635-1648. [PMID: 36650618 DOI: 10.1021/acs.joc.2c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Benzoheteroles are valuable scaffolds in medicinal chemistry, but the direct synthesis of 3-vinyl benzoheterole analogues remains unexplored. A rationally designed new class of 1,6-enyne-containing propargylic alcohols has been prepared for the modular synthesis of 3-alkenyl benzoheteroles. Ag-catalyzed cascade radical sulfonylative-cycloannulation of 1,6-enynols with sodium sulfinates is realized to access a wide variety of 2,3-disubstituted benzoheteroles in good to high yields. Moreover, a three-component coupling of 1,6-enynols, aryldiazonium salts, and Na2S2O5 (as an SO2 surrogate) has been achieved to deliver benzoheterole derivatives in moderate to good yields. Of note, a scalable reaction and late-stage synthetic transformations were successfully demonstrated. A plausible mechanism is also presented based on the existing experimental results and control experiments.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Gamidi Rama Krishna
- Centre for X-ray Crystallography, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
11
|
Wu Y, Frank N, Song Q, Liu M, Anderson EA, Bi X. Silver catalysis in organic synthesis: A computational view. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Katiyar S, Kumar A, Sashidhara KV. Silver-catalyzed decarboxylative cyclization for the synthesis of substituted pyrazoles from 1,2-diaza-1,3-dienes and α-keto acids. Chem Commun (Camb) 2022; 58:7297-7300. [PMID: 35678363 DOI: 10.1039/d2cc01793h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A silver-catalyzed decarboxylative cyclization process has been developed for the synthesis of substituted pyrazoles from the readily available 1,2-diaza-1,3-dienes and α-keto acids. Under the optimized conditions, a series of multisubstituted pyrazoles were well prepared in moderate to good yields. In addition, the synthetic utility of this protocol has been demonstrated by synthesizing analogs of FDA approved drugs such as anti-inflammatory drug, lonazolac and antiobesity drug, rimonabant.
Collapse
Affiliation(s)
- Sarita Katiyar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India. .,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh - 201002, India
| | - Abhishek Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India.
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India. .,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh - 201002, India.,Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, UP, India
| |
Collapse
|
13
|
Murata Y, Tsuchida S, Nezaki R, Kitamura Y, Matsumura M, Yasuike S. Silver-catalyzed three-component reaction of uracils, arylboronic acids, and selenium: synthesis of 5-arylselanyluracils. RSC Adv 2022; 12:14502-14508. [PMID: 35702214 PMCID: PMC9105704 DOI: 10.1039/d2ra01685k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
Herein, we describe a simple and general multi-component synthesis of 5-arylselanyluracils by the regioselective C–H selenation of uracils. Reactions of uracils with arylboronic acid and Se powder in the presence of AgNO3 (10 mol%) at 120 °C under aerobic conditions afforded various 5-arylselanyluracils. The source of the introduced selanyl group was prepared from a commercially available arylboronic acid and Se powder in the reaction system, thereby ensuring a simple and efficient protocol. This reaction represents the first example of the synthesis of a 5-arylselanyluracil in a multi-component system. A simple and general multicomponent synthesis of 5-arylselanyluracils by regioselective C–H selenation of uracils is described.![]()
Collapse
Affiliation(s)
- Yuki Murata
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Saori Tsuchida
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Rena Nezaki
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Yuki Kitamura
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Mio Matsumura
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| | - Shuji Yasuike
- School of Pharmaceutical Sciences, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku Nagoya 464-8650 Japan
| |
Collapse
|
14
|
Bajya KR, Sermadurai S. Dual Photoredox and Cobalt Catalysis Enabled Transformations. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Selvakumar Sermadurai
- Indian Institute of Technology Indore Chemistry Khandwa road Simrol 453552 Indore INDIA
| |
Collapse
|
15
|
Hong B, Lee A. Visible-light-mediated oxidative C–S bond cleavage of benzyl thiols through in situ activation strategy. Org Biomol Chem 2022; 20:5938-5942. [DOI: 10.1039/d2ob00089j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel method for the oxidative C–S bond cleavage of benzyl thiols was developed. In situ-activated silver species enabled the controlled bond cleavage of benzyl thiols to afford aldehydes and...
Collapse
|
16
|
Yu XC, Zhang CC, Wang LT, Li JZ, Li T, Wei WT. The synthesis of seven- and eight-membered rings by radical strategies. Org Chem Front 2022. [DOI: 10.1039/d2qo00774f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical strategies for preparation of seven- or eight-membered rings.
Collapse
Affiliation(s)
- Xuan-Chi Yu
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Can-Can Zhang
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling-Tao Wang
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiao-Zhe Li
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, China
| | - Wen-Ting Wei
- Institute of Drug Discovery Technology, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
17
|
Aganda KCC, Lee A. Synthesis of Selenaheterocycles via Visible‐Light‐Mediated Radical Cyclization. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kim Christopher C. Aganda
- Department of Energy Science and Technology Myongji University Yongin 17058 Republic of Korea
- Department of Chemistry Jeonbuk National University Jeonju 54896 Republic of Korea
| | - Anna Lee
- Department of Chemistry Jeonbuk National University Jeonju 54896 Republic of Korea
| |
Collapse
|
18
|
Cheng HL, Xie XH, Chen JZ, Wang Z, Chen JP. An in situ masking strategy enables radical monodecarboxylative C-C bond coupling of malonic acid derivatives. Chem Sci 2021; 12:11786-11792. [PMID: 34659716 PMCID: PMC8442682 DOI: 10.1039/d1sc02642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022] Open
Abstract
The utilization of malonic acids in radical decarboxylative functionalization is still underexploited, and the few existing examples are primarily limited to bisdecarboxylative functionalization. While radical monodecarboxylative functionalization is highly desirable, it is challenging because of the difficulty in suppressing the second radical decarboxylation step. Herein, we report the successful radical monodecarboxylative C–C bond coupling of malonic acids with ethynylbenziodoxolone (EBX) reagents enabled by an in situ masking strategy, affording synthetically useful 2(3H)-furanones in satisfactory yields. The keys to the success of this transformation include (1) the dual role of a silver catalyst as a single-electron transfer catalyst to drive the radical decarboxylative alkynylation and as a Lewis acid catalyst to promote the 5-endo-dig cyclization and (2) the dual function of the alkynyl reagent as a radical trapper and as an in situ masking group. Notably, the latent carboxylate group in the furanones could be readily released, which could serve as a versatile synthetic handle for further elaborations. Thus, both carboxylic acid groups in malonic acid derivatives have been well utilized for the rapid construction of molecular complexity. An in situ masking strategy has been developed based upon the unique properties of silver catalysts to successfully achieve a radical monodecarboxylative C–C bond coupling of malonic acids with ethynylbenziodoxolone reagents.![]()
Collapse
Affiliation(s)
- He-Li Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Xian-Hui Xie
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Jia-Zheng Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Zhen Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Jian-Ping Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
19
|
Silver-catalyzed decarboxylative C–H functionalization of cyclic aldimines with aliphatic carboxylic acids. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Wu H, Wang YC, Shatskiy A, Li QY, Liu JQ, Kärkäs MD, Wang XS. Modular synthesis of 3-substituted isocoumarins via silver-catalyzed aerobic oxidation/ 6-endo heterocyclization of ortho-alkynylbenzaldehydes. Org Biomol Chem 2021; 19:6657-6664. [PMID: 34271583 DOI: 10.1039/d1ob01065d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A method involving silver-catalyzed aerobic oxidation/6-endo heterocyclization of ortho-alkynylbenzaldehydes to yield 3-substituted isocoumarins is described. The developed protocol allows convenient access to a range of synthetically useful 3-substituted isocoumarins and related fused heterocyclolactones in good to high yields, using silver tetrafluoroborate as the catalyst, and atmospheric oxygen as the terminal oxidant and the source of endocyclic oxygen. Mechanistic studies suggest the involvement of a free-radical pathway.
Collapse
Affiliation(s)
- Hao Wu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Yi-Chun Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Andrey Shatskiy
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Qiu-Yan Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| | - Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China. and Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Markus D Kärkäs
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
21
|
Laha JK, Hunjan MK. K 2S 2O 8 activation by glucose at room temperature for the synthesis and functionalization of heterocycles in water. Chem Commun (Camb) 2021; 57:8437-8440. [PMID: 34342308 DOI: 10.1039/d1cc03777c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While persulfate activation at room temperature using glucose has primarily been focused on kinetic studies of the sulfate radical anion, the utilization of this protocol in organic synthesis is rarely demonstrated. We reinvestigated selected K2S2O8-mediated known organic reactions that invariably require higher temperatures and an organic solvent. A diverse, mild functionalization and synthesis of heterocycles using the inexpensive oxidant K2S2O8 in water at room temperature is reported, demonstrating the sustainability and broad scope of the method. Unlike traditional methods used for persulfate activation, the current method uses naturally abundant glucose as a K2S2O8 activator, avoiding the use of higher temperature, UV light, transition metals or bases.
Collapse
Affiliation(s)
- Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India.
| | | |
Collapse
|
22
|
Devarahosahalli Veeranna K, Kanti Das K, Baskaran S. Reversal of polarity by catalytic SET oxidation: synthesis of azabicyclo[ m. n.0]alkanes via chemoselective reduction of amidines. Org Biomol Chem 2021; 19:4054-4059. [PMID: 33885121 DOI: 10.1039/d1ob00416f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A one-pot catalytic method has been developed for the stereoselective synthesis of cyclopropane-fused cyclic amidines using CuBr2/K2S2O8 as an efficient single electron transfer (SET) oxidative system. The generality of this mild method is demonstrated with a wide variety of substrates to furnish pharmaceutically important amidines containing aza-bicyclic and novel aza-tricyclic frameworks in very good yields. A chemoselective reduction of cyclic amidines to 2-/3-azabicyclo[m.n.0]alkanes and octahydroindoles has been developed using a NaBH4/I2 reagent system. The synthetic scope of the chemoselective reduction of the amidine functionality has been exemplified in the stereoselective synthesis of an iminosugar based (±)-epiquinamide analogue.
Collapse
Affiliation(s)
| | - Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India.
| | - Sundarababu Baskaran
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India.
| |
Collapse
|
23
|
Wu P, Ma S. Halogen-Substituted Allenyl Ketones through Ring Opening of Nonstrained Cycloalkanols. Org Lett 2021; 23:2533-2537. [PMID: 33733787 DOI: 10.1021/acs.orglett.1c00452] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient synthesis of halogen-substituted allenyl ketones via Ag-catalyzed oxidative ring opening of allenyl cyclic alcohols under mild reaction conditions has been achieved. The reaction features a wide substrate scope and excellent regioselectivity. The synthetic potential of the products has been demonstrated by their conversion to stereodefined alkenes and heterocyclic compounds.
Collapse
Affiliation(s)
- Penglin Wu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
24
|
Hou C, Sun S, Liu Z, Zhang H, Liu Y, An Q, Zhao J, Ma J, Sun Z, Chu W. Visible‐Light‐Induced Decarboxylative Acylation of Pyridine
N
‐Oxides with α‐Oxocarboxylic Acids Using Fluorescein Dimethylammonium as a Photocatalyst. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chuanfu Hou
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Shouneng Sun
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Ziqi Liu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Hui Zhang
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Yue Liu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Qi An
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Jian Zhao
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Junjie Ma
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Zhizhong Sun
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| | - Wenyi Chu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 People's Republic of China
| |
Collapse
|
25
|
Zhou Z, Wu Y, Yang P, Deng S, Zhang Q, Li D. Silver‐Catalyzed Cross Dehydrogenative Coupling between Heteroarenes and Cyclic Ethers under Mild Conditions. ChemistrySelect 2021. [DOI: 10.1002/slct.202100339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhong Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Yunli Wu
- Ecology and Environment Monitoring and Scientific Research Center Changjiang River Basin Ecology and Environment Administration Ministry of Ecology and Environment Wuhan 430010 China
| | - Peng Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Shijun Deng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Qian Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Dong Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
26
|
A practical and efficient method for late-stage deuteration of terminal alkynes with silver salt as catalyst. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Wang M, Yin C, Hu P. Ag-Catalyzed Remote Unactivated C(sp 3)-H Heteroarylation of Free Alcohols in Water. Org Lett 2021; 23:722-726. [PMID: 33439025 DOI: 10.1021/acs.orglett.0c03944] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Catalyzed by silver salt, the unactivated C(sp3)-H heteroarylation of free alcohol at the δ position is realized under gentle thermal conditions in water through a radical procedure. Both protonic acids and Lewis acids are found to be efficient for activating pyridines for this Minisci-type reaction. The reaction enjoys a good functional group tolerance and substrate scope. Terminal secondary and tertiary alcohols are suitable substrates. With either electron-donating or -withdrawing groups, the electron-deficient heteroarene substrates generate the target products in moderate to good yields. A gram-scale experiment can be successfully operated. A radical blocking experiment and a radical clock experiment are studied to support the radical mechanism.
Collapse
Affiliation(s)
- Miao Wang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Changzhen Yin
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Peng Hu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
28
|
Yang J, Zhu S, Wang F, Qing F, Chu L. Silver‐Enabled General Radical Difluoromethylation Reaction with TMSCF
2
H. Angew Chem Int Ed Engl 2020; 60:4300-4306. [DOI: 10.1002/anie.202014587] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Feng‐Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| |
Collapse
|
29
|
Yang J, Zhu S, Wang F, Qing F, Chu L. Silver‐Enabled General Radical Difluoromethylation Reaction with TMSCF
2
H. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jun Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Fang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Feng‐Ling Qing
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry Chemical Engineering and Biotechnology Center for Advanced Low-Dimension Materials Donghua University Shanghai 201620 China
| |
Collapse
|
30
|
Teja C, Khan FRN. Radical Transformations towards the Synthesis of Quinoline: A Review. Chem Asian J 2020; 15:4153-4167. [PMID: 33135361 DOI: 10.1002/asia.202001156] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Indexed: 12/21/2022]
Abstract
Quinoline is considered one of the most ubiquitous heterocycles due to its engaging biological activities and synthetic utility over organic transformations. Over the past few decades, numerous reports have been documented in the synthesis of quinolines. The classical methods including, Skraup, Friedlander, Doebner-von-Miller, Conrad-Limpach, Pfitzinger quinoline synthesis, and so forth, these are the well-known methods to construct principal quinoline scaffold with several advantages and limitations. Recently, radical insertion or catalyzed reactions have emerged as a powerful and efficient tool to construct heterocycles with high atom efficiency and step economy. In this concern, this minireview mainly focused on the developments of Quinoline synthesis via radical reactions. In addition, a brief description of the preparation procedure, reactivity, and mechanisms is also included, where as possible. Respectively, the synthesis of quinolines is classified and summarized based on its reactivity, so it will help the researchers to grab the information in this exploration area, as Quinolines are promising pharmacophores.
Collapse
Affiliation(s)
- Chitrala Teja
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Fazlur Rahman Nawaz Khan
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| |
Collapse
|
31
|
Chen Z, Zhou Q, Chen QN, Chen P, Xiong BQ, Liang Y, Tang KW, Xie J, Liu Y. Copper-promoted cyanoalkylation/ring-expansion of vinylcyclopropanes with α-C-H bonds in alkylnitriles toward 3,4-dihydronaphthalenes. Org Biomol Chem 2020; 18:8677-8685. [PMID: 33078807 DOI: 10.1039/d0ob01864c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A copper-promoted oxidative cyanomethylation/ring-expansion of vinylcyclopropanes with α-C(sp3)-H bonds in alkyl nitriles is established for the generation of 1-cyanoethylated 3,4-dihydronaphthalenes. This cyanomethylation/ring-expansion involves a radical pathway and proceeds via cyanomethyl radical formation, radical addition and ring-expansion. This ring-expansion strategy offers a highly atom-economical route for the construction of nitrile-containing 3,4-dihydronaphthalenes, which can be transformed into other useful products under simple conditions.
Collapse
Affiliation(s)
- Zan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Qing-Nan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yun Liang
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jun Xie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China. and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
32
|
|
33
|
Zhao R, Zhou Z, Liu J, Wang X, Zhang Q, Li D. Silver-Catalyzed para-Selective Amination and Aminative Dearomatization of Phenols with Azodicarboxylates in Water. Org Lett 2020; 22:8144-8149. [PMID: 32989991 DOI: 10.1021/acs.orglett.0c03147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An efficient silver-catalyzed para-selective amination and aminative dearomatization of phenols with azodicarboxylates was developed. It afforded the para-aminophenols or amino cyclohexadieneones from free phenols depending on whether it has a para-substituent. The reaction proceeded smoothly in water under simple and mild conditions, giving the highly selective products in good yields within a short reaction time. It also showed broad substrate scope and good functional group compatibility.
Collapse
Affiliation(s)
- Ruinan Zhao
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Zhong Zhou
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jixiang Liu
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xia Wang
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Qian Zhang
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Dong Li
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
34
|
Li M, Wu W, Jiang H. Recent Advances in Silver‐Catalyzed Transformations of Electronically Unbiased Alkenes and Alkynes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000743] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Meng Li
- State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Huanfeng Jiang
- State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
35
|
Hong B, Aganda KCC, Lee A. Oxidative C-S Bond Cleavage of Benzyl Thiols Enabled by Visible-Light-Mediated Silver(II) Complexes. Org Lett 2020; 22:4395-4399. [PMID: 32459496 DOI: 10.1021/acs.orglett.0c01399] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The oxidative cleavage reaction of the C-S bond using singlet oxygen is challenging because of its uncontrollable nature. We have developed a novel method for the singlet-oxygen-mediated selective C-S bond cleavage reaction using silver(II)-ligand complexes. Visible-light-induced silver catalysis enables the controlled oxidative cleavage of benzyl thiols to afford carbonyl compounds, such as aldehydes or ketones, which are important synthetic components.
Collapse
|
36
|
Zhang G, Fu JG, Zhao Q, Zhang GS, Li MY, Feng CG, Lin GQ. Silver-promoted synthesis of vinyl sulfones from vinyl bromides and sulfonyl hydrazides in water. Chem Commun (Camb) 2020; 56:4688-4691. [PMID: 32211708 DOI: 10.1039/d0cc00784f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The synthesis of vinyl sulfones via silver-promoted cross-coupling of vinyl bromides with sulfonyl hydrazides was realized. Water was used as the sole solvent. Multisubstituted vinyl sulfones were easily prepared with excellent alkyl group tolerance. A mechanism involving nucleophilic attack of a sulfinate anion was proposed.
Collapse
Affiliation(s)
- Ge Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Cao S, Yuan H, Zhang J. Mechanistic Study on Ag I-Catalyzed Oxidative Cross-Coupling/Cyclization between Terminal Alkynes and β-Enamino Esters under Base Conditions. J Org Chem 2020; 85:4408-4417. [PMID: 32078322 DOI: 10.1021/acs.joc.0c00132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A combined computational and experimental study was performed to elucidate the mechanism of the AgI-catalyzed oxidative cross-coupling/cyclization of terminal alkynes with β-enamino esters. The results indicated a more favorable AgI/Ag0-catalyzed radical mechanism (than cationic mechanism) which involves three key stages: (i) the initiation of radical species, (ii) the cyclization, and (iii) the formal 1,2-H shift. Meanwhile, the AgI species was found to be the active initiator for the delocalized nitrogen radical species generation, and Ag2CO3 acts as an effective oxidant to initiate the β-enamino ester radical formation. Furthermore, it was shown that the silver acetylide is the key intermediate in the title reaction and that the coordination of solvent dimethyl sulfoxide (DMSO) regulates the electronic properties of the Ag center better as compared with base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), thereby enhancing the negative charge of the reaction sites and promoting the cyclization process. Finally, the DBU was revealed to play a key role in the final 1,2-H shift process through the formation of [DBU-H]+, acting as a proton shuttle to assist the proton migration process. The theoretical results provide key insights into the AgI/Ag0-catalyzed radical mechanism and guidelines for further development of Ag-catalyzed synthetic methods.
Collapse
Affiliation(s)
- Shanshan Cao
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Haiyan Yuan
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jingping Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
38
|
Dhandabani GK, Shih CL, Wang JJ. Acid-Promoted Intramolecular Decarbonylative Coupling Reactions of Unstrained Ketones: A Modular Approach to Synthesis of Acridines and Diaryl Ketones. Org Lett 2020; 22:1955-1960. [DOI: 10.1021/acs.orglett.0c00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ganesh Kumar Dhandabani
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan first Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Chia-Ling Shih
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan first Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan first Rd, Sanmin District, Kaohsiung City, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, No.100 Tzyou first Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| |
Collapse
|
39
|
Alavinia S, Ghorbani‐Vaghei R, Rakhtshah J, Yousefi Seyf J, Ali Arabian I. Copper iodide nanoparticles‐decorated porous polysulfonamide gel: As effective catalyst for decarboxylative synthesis of
N
‐Arylsulfonamides. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5449] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University 65174 Hamedan Iran
| | - Ramin Ghorbani‐Vaghei
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University 65174 Hamedan Iran
| | - Jamshid Rakhtshah
- Department of Inorganic Chemistry, Faculty of ChemistryUniversity of Tabriz Tabriz Iran
| | | | - Iman Ali Arabian
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University 65174 Hamedan Iran
| |
Collapse
|
40
|
Ma W, Kaplaneris N, Fang X, Gu L, Mei R, Ackermann L. Chelation-assisted transition metal-catalysed C–H chalcogenylations. Org Chem Front 2020. [DOI: 10.1039/c9qo01497g] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advances in C–S and C–Se formationsviatransition metal-catalyzed C–H functionalization utilizing directing groups to control the site-selectivity.
Collapse
Affiliation(s)
- Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu
- P. R. China
| | - Nikolaos Kaplaneris
- Institute fuer Organische und Biomolekular Chemie
- Georg-August-Universitaet Goettingen
- 37077 Goettingen
- Germany
| | - Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu
- P. R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu
- P. R. China
| | - Ruhuai Mei
- College of Pharmacy and Biological Engineering Chengdu University
- Chengdu
- P. R. China
| | - Lutz Ackermann
- Institute fuer Organische und Biomolekular Chemie
- Georg-August-Universitaet Goettingen
- 37077 Goettingen
- Germany
| |
Collapse
|
41
|
Shen MH, Zhang YM, Jiang C, Xu HD, Xu D. Ag-Catalyzed cycloisomerization of 1,6-enynamide: an intramolecular type II Alder-ene reaction. Org Chem Front 2020. [DOI: 10.1039/c9qo01258c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unusual type II Alder-ene cycloisomerization of 1,6-enynamide to fused bicyclic N-heterocycles is achieved by silver catalysis. 6-Endo-trig cyclization of a keteneiminium silver intermediate is proposed as the key step.
Collapse
Affiliation(s)
- Mei-Hua Shen
- School of Pharmaceutical Engineering and Life Science
- Changzhou University
- Changzhou 213164
- China
| | - Yu-Mei Zhang
- School of Pharmaceutical Engineering and Life Science
- Changzhou University
- Changzhou 213164
- China
| | - Chun Jiang
- School of Pharmaceutical Engineering and Life Science
- Changzhou University
- Changzhou 213164
- China
| | - Hua-Dong Xu
- School of Pharmaceutical Engineering and Life Science
- Changzhou University
- Changzhou 213164
- China
| | - Defeng Xu
- School of Pharmaceutical Engineering and Life Science
- Changzhou University
- Changzhou 213164
- China
| |
Collapse
|
42
|
Liu L, Jiang P, Liu Y, Du H, Tan J. Direct radical alkylation and acylation of 2H-indazoles using substituted Hantzsch esters as radical reservoirs. Org Chem Front 2020. [DOI: 10.1039/d0qo00507j] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A platform approach for the direct synthesis of 3-substituted 2H-indazole derivatives has been developed using a Ag(i)/Na2S2O8 system.
Collapse
Affiliation(s)
- Li Liu
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| | - Pengxing Jiang
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavour Chemistry
- Beijing Technology and Business University (BTBU)
- Beijing 100048
- China
| | - Hongguang Du
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| | - Jiajing Tan
- Department of Organic Chemistry
- College of Chemistry
- Beijing University of Chemical Technology (BUCT)
- Beijing 100029
- China
| |
Collapse
|
43
|
Wang Z, Liu Q, Ji X, Deng GJ, Huang H. Bromide-Promoted Visible-Light-Induced Reductive Minisci Reaction with Aldehydes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04411] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhongzhen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Qiong Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
44
|
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| | - Armido Studer
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
45
|
Leifert D, Studer A. The Persistent Radical Effect in Organic Synthesis. Angew Chem Int Ed Engl 2019; 59:74-108. [PMID: 31116479 DOI: 10.1002/anie.201903726] [Citation(s) in RCA: 403] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Radical-radical couplings are mostly nearly diffusion-controlled processes. Therefore, the selective cross-coupling of two different radicals is challenging and not a synthetically valuable transformation. However, if the radicals have different lifetimes and if they are generated at equal rates, cross-coupling will become the dominant process. This high cross-selectivity is based on a kinetic phenomenon called the persistent radical effect (PRE). In this Review, an explanation of the PRE supported by simulations of simple model systems is provided. Radical stabilities are discussed within the context of their lifetimes, and various examples of PRE-mediated radical-radical couplings in synthesis are summarized. It is shown that the PRE is not restricted to the coupling of a persistent with a transient radical. If one coupling partner is longer-lived than the other transient radical, the PRE operates and high cross-selectivity is achieved. This important point expands the scope of PRE-mediated radical chemistry. The Review is divided into two parts, namely 1) the coupling of persistent or longer-lived organic radicals and 2) "radical-metal crossover reactions"; here, metal-centered radical species and more generally longer-lived transition-metal complexes that are able to react with radicals are discussed-a field that has flourished recently.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China.,Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
46
|
Cao Z, Lacoudre A, Rossy C, Bibal B. Self-assembled coordination thioether silver(I) macrocyclic complexes for homogeneous catalysis. Beilstein J Org Chem 2019; 15:2465-2472. [PMID: 31666881 PMCID: PMC6808213 DOI: 10.3762/bjoc.15.239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/20/2019] [Indexed: 12/30/2022] Open
Abstract
The bis-ortho-thioether 9,10-bis[(o-methylthio)phenyl]anthracene was synthesized as a syn-atropisomer, as revealed by X-ray diffraction. This alkylaryl thioether ligand (L) formed different macrocyclic complexes by coordination with silver(I) salts depending on the nature of the anion: M2L2 for AgOTf and AgOTFA, M6L4 for AgNO3. A discrete M2L complex was obtained in the presence of bulky PPh3AgOTf. These silver(I) complexes adopted similar structures in solution and in the solid state. As each sulfur atom in the ligand is prochiral, macrocycles L2M2 were obtained as mixtures of diastereoisomers, depending on the configurations of the sulfur atoms coordinated to silver cations. The X-ray structures of the two L2·(AgOTf)2 stereoisomers highlighted their different geometry. The catalytic activity of all silver(I) complexes was effective under homogeneous conditions in two tandem addition/cycloisomerization of alkynes using 0.5–1 mol % of catalytic loading.
Collapse
Affiliation(s)
- Zhen Cao
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR CNRS 5255, 351 cours de la libération, 33405 Talence, France
| | - Aline Lacoudre
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR CNRS 5255, 351 cours de la libération, 33405 Talence, France
| | - Cybille Rossy
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR CNRS 5255, 351 cours de la libération, 33405 Talence, France
| | - Brigitte Bibal
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR CNRS 5255, 351 cours de la libération, 33405 Talence, France
| |
Collapse
|
47
|
Shen J, Xiao B, Hou Y, Wang X, Li G, Chen J, Wang W, Cheng J, Yang B, Yang S. Cobalt(II)‐Catalyzed Bisfunctionalization of Alkenes with Diarylphosphine Oxide and Peroxide. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jian Shen
- College of Chemistry and Chemical EngineeringYantai University Yantai 264005 People's Republic of China
| | - Bo Xiao
- College of Chemistry and Chemical EngineeringYantai University Yantai 264005 People's Republic of China
| | - Yang Hou
- College of Chemistry and Chemical EngineeringYantai University Yantai 264005 People's Republic of China
| | - Xue Wang
- College of Chemistry and Chemical EngineeringYantai University Yantai 264005 People's Republic of China
| | - Gui‐Zhi Li
- College of Chemistry and Chemical EngineeringYantai University Yantai 264005 People's Republic of China
| | - Jin‐Chun Chen
- College of Chemistry and Chemical EngineeringYantai University Yantai 264005 People's Republic of China
| | - Wei‐Li Wang
- School of Chemistry and Material ScienceLudong University Yantai 264025, People's Republic of China
| | - Jian‐Bo Cheng
- College of Chemistry and Chemical EngineeringYantai University Yantai 264005 People's Republic of China
| | - Bin Yang
- College of Chemistry and Chemical EngineeringYantai University Yantai 264005 People's Republic of China
| | - Shang‐Dong Yang
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 People's Republic China
| |
Collapse
|
48
|
Li CG, Xie Q, Xu XL, Wang F, Huang B, Liang YF, Xu HJ. Silver-Catalyzed Decarboxylative Alkylfluorination of Alkenes. Org Lett 2019; 21:8496-8500. [PMID: 31591887 DOI: 10.1021/acs.orglett.9b03381] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A decarboxylation of alkyl carboxylic acids for alkylfluorination of alkene was developed, with the catalysis of silver(I) and Selectfluor as both the oxidant and fluorine source. This reaction is highly chemoselective, producing the decarboxylative alkylfluorination products rather than the competitive fluorination of aliphatic carboxylic acids. This practical transformation proceeds efficiently in aqueous media at room temperature and exhibits a large range of functional-group tolerance in various primary and secondary aliphatic carboxylates and alkenes.
Collapse
Affiliation(s)
- Chen-Guang Li
- School of Food and Biological Engineering , Hospital of Hefei University of Technology , Hefei 230009 , P. R. China
| | - Qiang Xie
- PET-CT Center , The First Affiliated Hospital of USTC , Hefei 230001 , P. R. China
| | - Xiao-Lan Xu
- School of Medical Science , Anhui Medical University , Hefei 230026 , P. R. China
| | - Feng Wang
- School of Food and Biological Engineering , Hospital of Hefei University of Technology , Hefei 230009 , P. R. China
| | - Bei Huang
- School of Food and Biological Engineering , Hospital of Hefei University of Technology , Hefei 230009 , P. R. China
| | - Yu-Feng Liang
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal , Quebec H3A 0B8 , Canada
| | - Hua-Jian Xu
- School of Food and Biological Engineering , Hospital of Hefei University of Technology , Hefei 230009 , P. R. China
| |
Collapse
|
49
|
Gu L, Fang X, Weng Z, Lin J, He M, Ma W. PIDA‐Promoted Selective C
5
C−H Selenylations of Indolines
via
Weak Interactions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University People's Republic of China Chengdu 610052
| | - Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University People's Republic of China Chengdu 610052
| | - Zhengyun Weng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University People's Republic of China Chengdu 610052
| | - Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University People's Republic of China Chengdu 610052
| | - Meicui He
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University People's Republic of China Chengdu 610052
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University People's Republic of China Chengdu 610052
| |
Collapse
|
50
|
Rank C, Özkaya B, Patureau FW. HBF 4- and AgBF 4-Catalyzed ortho-Alkylation of Diarylamines and Phenols. Org Lett 2019; 21:6830-6834. [PMID: 31429294 PMCID: PMC6900263 DOI: 10.1021/acs.orglett.9b02470] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 02/06/2023]
Abstract
A silver-tetrafluoroborate- or HBF4-catalyzed ortho-alkylation reaction of phenols and diarylamines with styrenes has been explored. A broad substrate scope is presented as well as mechanistic experiments and discussion.
Collapse
Affiliation(s)
- Christian
K. Rank
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Bünyamin Özkaya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W. Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|