1
|
Zhang J, Li X, Chen G, Liu H, Luo H. Electro-catalyzed, solvent-controlled divergent decarboxylative annulation and hydroaminomethylation of cyclic aldimines with N-arylglycines. Chem Commun (Camb) 2025; 61:1669-1672. [PMID: 39744981 DOI: 10.1039/d4cc05582a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Herein, we reported a sustainable and simple method involving electrochemical-catalyzed decarboxylative annulation and hydroaminomethylation of cyclic aldimines with N-arylglycines by switching the reaction solvents. When the reaction was carried out in MeCN/H2O or H2O, the resulting products included imidazolidine-fused sulfamidates and C4-aminomethylated cyclic aldimines, obtained in moderate to good yields, respectively. Mechanistically, a radical pathway was proposed to be involved in this approach.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| | - Xiaolan Li
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Guisheng Chen
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| | - Haidong Liu
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| | - Haiqing Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| |
Collapse
|
2
|
Wu B, Bai YQ, Wang XQ, Huang WJ, Zhou YG. The Proton of Alcohols as Hydrogen Source in Diboron-Mediated Nickel-Catalyzed Asymmetric Transfer Hydrogenation of Cyclic N-Sulfonyl Imines. J Org Chem 2024; 89:710-718. [PMID: 38101332 DOI: 10.1021/acs.joc.3c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The proton of alcohols as the sole hydrogen source in diboron-mediated nickel-catalyzed asymmetric transfer hydrogenation of cyclic N-sulfonyl imines has been developed, providing the chiral cyclic sulfamidates in excellent enantioselectivities. The mechanistic investigations suggested that the proton of alcohols could be activated by tetrahydroxydiboron to form active nickel hydride species.
Collapse
Affiliation(s)
- Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Yu-Qing Bai
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Qing Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Wen-Jun Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| |
Collapse
|
3
|
Kocúrik M, Bartáček J, Drabina P, Váňa J, Svoboda J, Husáková L, Finger V, Hympánová M, Sedlák M. Immobilization of Trifluoromethyl-Substituted Pyridine-Oxazoline Ligand and Its Application in Asymmetric Continuous Flow Synthesis of Benzosultams. J Org Chem 2023; 88:15189-15197. [PMID: 37823216 PMCID: PMC10629231 DOI: 10.1021/acs.joc.3c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 10/13/2023]
Abstract
This study presents an improved synthetic route to ligand (S)-4-(tert-butyl)-2-(5-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazole and its application as a highly active and enantioselective catalyst in the addition of arylboronic acids to cyclic N-sulfonylketimines. Immobilization of such a ligand was achieved using a commercially available starting material and a PS-PEG TentaGel S NH2 support, resulting in a stable heterogeneous catalyst. Although the anchored catalyst exhibited a slight reduction in enantioselectivity and a 4-fold decrease in reaction rate, it displayed remarkable stability, enabling 10 consecutive reaction cycles. Furthermore, the successful transition to a continuous flow system demonstrated even higher turnover numbers compared to batch arrangements. These findings provide valuable insights into the development of efficient flow reactors for continuous synthesis of benzosultams, further advancing the field of asymmetric catalysis.
Collapse
Affiliation(s)
- Martin Kocúrik
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Jan Bartáček
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Pavel Drabina
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Jiří Váňa
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Jan Svoboda
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Lenka Husáková
- Department
of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Vladimír Finger
- Faculty
of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203,
50005, Hradec Králové, CZ 500 05, Czech Republic
- Biomedical
Research Center, University Hospital Hradec Králové, Sokolská 581, Hradec Králové, CZ 500 05, Czech Republic
| | - Michaela Hympánová
- Biomedical
Research Center, University Hospital Hradec Králové, Sokolská 581, Hradec Králové, CZ 500 05, Czech Republic
- Faculty
of Military Health Sciences, University
of Defence, Trebešská
1575, Hradec Králové, CZ 500 01, Czech Republic
| | - Miloš Sedlák
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| |
Collapse
|
4
|
Kong X, Ren J, Li J, Liu Y, Li K. Modular Synthesis of α-Aryl-α-Heteroaryl α-Amino Acid Derivatives via a Copper-Catalyzed Cross-Dehydrogenative-Coupling Reaction Using Air as the Sole Oxidant. Org Lett 2023; 25:7073-7077. [PMID: 37767976 DOI: 10.1021/acs.orglett.3c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A novel copper-catalyzed cross-dehydrogenative-coupling (CDC) process of arylglycine derivatives with N-heteroarenes for the straightforward synthesis of α-aryl-α-heteroaryl α-amino acid scaffolds has been successfully developed. This protocol exhibits a broad substrate scope with good functional group compatibility by utilizing air as the sole oxidant. The use of the reaction is also displayed through the late-stage functionalization of arylglycines bearing natural compounds or drug motifs.
Collapse
Affiliation(s)
- Xiangxiang Kong
- Biophamaceutical Research Institute, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Jing Ren
- Biophamaceutical Research Institute, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Jinlong Li
- Biophamaceutical Research Institute, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Yu Liu
- Biophamaceutical Research Institute, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Kaizhi Li
- Biophamaceutical Research Institute, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| |
Collapse
|
5
|
Zhang L, Wang X, Pu M, Chen C, Yang P, Wu YD, Chi YR, Zhou JS. Nickel-Catalyzed Enantioselective Reductive Arylation and Heteroarylation of Aldimines via an Elementary 1,4-Addition. J Am Chem Soc 2023. [PMID: 37023358 DOI: 10.1021/jacs.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Nickel catalysts of chiral pyrox ligands promoted enantioselective reductive arylation and heteroarylation of aldimines, using directly (hetero)aryl halides and sulfonates. The catalytic arylation can also be conducted with crude aldimines generated from condensation of aldehydes and azaaryl amines. Mechanistically, density functional theory (DFT) calculations and experiments pointed to an elementary step of 1,4-addition of aryl nickel(I) complexes to N-azaaryl aldimines.
Collapse
Affiliation(s)
- Luoqiang Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xiuhua Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
| | - Caiyou Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Gaoke Innovation Center, Guangqiao Road, Guangming District, Shenzhen 518107, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yonggui Robin Chi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
6
|
Shimamoto R, Tsurusaki A, Kamikawa K. Rh(I)-Catalyzed Enantioselective Arylation of Cyclic N-Sulfonyl Diketimines Using Planar-Chiral Phosphine-Olefin Ligands Based on a (Cyclopentadienyl)manganese(I) Scaffold with a Highly Fluorinated Aryl Phosphino Group. J Org Chem 2023. [PMID: 36854106 DOI: 10.1021/acs.joc.2c02930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Catalytic enantioselective 1,2-addition reactions of arylboronic acids with 1,2,5-thiadiazoline 1,1-dioxide derivatives were achieved using planar-chiral phosphine-olefin ligand L5 with a bis[(2,3,4,5,6-pentafluoro)phenyl]phosphino group, showing ≤98% ee. The enantioselectivities of the addition products were improved by increasing the number of fluoro substituents on the aromatic ring of the ligand. X-ray crystallographic studies of 3aa and [RhCl/L5]2 revealed the absolute configuration of the enantioenriched addition product 3 and the mode of phosphine-olefin bidentate coordination of L5 to a rhodium(I) cation.
Collapse
Affiliation(s)
- Ryosuke Shimamoto
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
7
|
Prakash M, Halder S, Guin S, Samanta S. Swapping Copper-Catalytic Process: Selective Access to Pyrazoles and Conjugated Ketimines from Oxime Acetates and Cyclic Sulfamidate Imines. Chem Asian J 2023; 18:e202201114. [PMID: 36583485 DOI: 10.1002/asia.202201114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
A powerful CuCl-catalyzed sequential one-pot reaction of aryl methyl ketoxime acetates with cyclic N-sulfonyl imines followed by elimination in the presence of base is reported. This hydrazine-free method conveniently makes C-C and N-N bonds via a radical cleavage of the N-O bond, delivering a special class of C3-hydroxyarylated pyrazoles in good yields. Surprisingly, while employing CuI as a catalyst instead of CuCl, the reaction proceeds through a non-radical pathway which embodies a new tactic for the high-yielding access to value-added conjugated N-unsubstituted ketimines. Moreover, additive-free approach to sulfamidate-fused-pyrazoles was achieved by successfully catalyzing addition and oxidative N-N bond-making reactions by CuI and CuCl, respectively. Significantly, our novel technique could convert the prepared ketimines into the pharmacologically recognized 6H-benzo[c]chromene frameworks.
Collapse
Affiliation(s)
- Meher Prakash
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Sajal Halder
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Soumitra Guin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Sampak Samanta
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| |
Collapse
|
8
|
Calcatelli A, Denton RM, Ball LT. Modular Synthesis of α,α-Diaryl α-Amino Esters via Bi(V)-Mediated Arylation/S N2-Displacement of Kukhtin–Ramirez Intermediates. Org Lett 2022; 24:8002-8007. [PMID: 36278869 PMCID: PMC9641671 DOI: 10.1021/acs.orglett.2c03201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We report a concise and modular approach to α,α-diaryl
α-amino esters from readily available α-keto esters. This
mild, one-pot protocol proceeds via ketone umpolung, with in situ formation of a Kukhtin–Ramirez intermediate
preceding sequential electrophilic arylation by Bi(V) and SN2 displacement by an amine. The methodology is compatible with a
wide range of anilines and primary amines - including derivatives
of drugs and proteinogenic amino acids - Bi(V) arylating agents, and
α-keto ester substrates.
Collapse
Affiliation(s)
| | - Ross M. Denton
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
- GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, 6 Triumph Road, Nottingham NG7 2GA, U.K
| | - Liam T. Ball
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K
| |
Collapse
|
9
|
Fu X, Yan Y, Sun H, Li S, Huang J. Natural Product-Inspired Chiral Ligand Design: Aloperine and N-Substituted Aloperines-Induced Pd-Catalyzed Asymmetric Hydroarylation of Ketimines. J Org Chem 2022; 87:9565-9575. [PMID: 35834751 DOI: 10.1021/acs.joc.2c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A naturally occurring alkaloid aloperine was utilized as a chiral skeleton for the development of new ligands/catalysts in asymmetric synthesis. A number of N-substituted aloperines have been prepared, and a Pd-catalyzed asymmetric hydroarylation of ketimines using these chiral 1,3-diamine ligands was reported. A range of chiral sulfonyl amides were prepared in high yields and enantioselectivities. The stereoselectivity and structure relationships of aloperines have been studied. In addition, preliminary studies on the desymmetrization of meso-anhydride have also shown that these diamines have good potential in organocatalysis. These discoveries would provide a new future development for natural product-inspired chiral ligand design and developments.
Collapse
Affiliation(s)
- Xuegang Fu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuting Yan
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Hexin Sun
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Siying Li
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jianhui Huang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
10
|
Beriša A, Glavač D, Zheng C, You SL, Gredičak M. Enantioselective construction of a congested quaternary stereogenic center in isoindolinones bearing three aryl groups via an organocatalytic formal Betti reaction. Org Chem Front 2022. [DOI: 10.1039/d1qo01684a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An efficient enantioselective formal Betti reaction between phenols and diaryl ketimines generated in situ from isoindolinone alcohols is described.
Collapse
Affiliation(s)
- Arben Beriša
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Danijel Glavač
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Matija Gredičak
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Miao A, Zhou M, Chen J, Wang S, Hao W, Tu S, Jiang B. Pd‐Catalyzed Asymmetric Addition of Arylboronic Acids to Pyrazolinone Ketimines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- An‐Qi Miao
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Meng Zhou
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Jing‐Long Chen
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Shi‐Chao Wang
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Wen‐Juan Hao
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Shu‐Jiang Tu
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| | - Bo Jiang
- School of Chemistry and Material Science Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials Jiangsu Normal University Xuzhou 211116 People's Republic of China
| |
Collapse
|
12
|
Guin S, Majee D, Samanta S. Unmasking the reverse reactivity of cyclic N-sulfonyl ketimines: multifaceted applications in organic synthesis. Chem Commun (Camb) 2021; 57:9010-9028. [PMID: 34498642 DOI: 10.1039/d1cc03439a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The chemistry related to the exploration of cyclic N-sulfonyl ketimines and their derivatives has attracted significant attention in the last few decades because of their intriguing structures and properties. They serve broadly as reactive synthons in various reactions to create a diverse set of synthetically and biologically attractive molecules. Furthermore, these moieties, which possess multiple heteroatoms (N, O and S), display or can enhance many biological activities. In the case of synthetic reactions, chemists mainly focus on the chemical manipulation of the highly reactive prochiral CN bond of N-sulfonyl ketimines. Besides their traditional role as electrophiles, N-sulfonyl ketimines possess α-Csp3-H protons, and thus behave as potential carbonucleophiles, where they can undergo several C-X (X = C, N and O) bond-forming reactions with different types of electrophiles under various conditions to form a wide range of fascinating asymmetric and non-asymmetric versions of fused heterocycles, carbocycles, spiro-fused skeletons, pyridines, pyrroles, etc. Herein, we highlight the recent examples from our research work and others covering the scope of cyclic N-sulfonyl ketimines as useful carbonucleophiles. In addition, the detailed mechanistic studies of the above-mentioned reactions are also presented.
Collapse
Affiliation(s)
- Soumitra Guin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| | - Debashis Majee
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| | - Sampak Samanta
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| |
Collapse
|
13
|
Silver-catalyzed decarboxylative C–H functionalization of cyclic aldimines with aliphatic carboxylic acids. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Liu X, Wang J, Wu Z, Li F, Gao K, Peng F, Wang J, Shen R, Zhou Y, Liu L. An organophotoredox-catalyzed C(sp 2)-N cross coupling reaction of cyclic aldimines with cyclic aliphatic amines. Org Biomol Chem 2021; 19:3595-3600. [PMID: 33908576 DOI: 10.1039/d1ob00223f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An organophotocatalyzed C(sp2)-H/N-H cross-dehydrogenative coupling of cyclic aldimines with aliphatic amines has been developed, which represents the first example of visible-light-induced C-H amination of N-sulfonylated imines. This methodology enables the streamline assembly of amine derivatives via radical mediated C-N bond formation. The current protocol features transition-metal-free, mild conditions, good functional group tolerance and good yields.
Collapse
Affiliation(s)
- Xue Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Jingjing Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Ziyan Wu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Feng Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Kexin Gao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Fanyang Peng
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Junjie Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Renzeng Shen
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| | - Yao Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, China.
| | - Lantao Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China. and Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China.
| |
Collapse
|
15
|
Glavač D, Topolovčan N, Gredičak M. Organocatalytic Synthesis of α-Triphenylmethylamines from Diarylketimines and Phenols. J Org Chem 2020; 85:14253-14261. [PMID: 33112133 DOI: 10.1021/acs.joc.0c02225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A formal Betti reaction between variously substituted phenols and benzophenone-derived imines to afford α-triphenylmethylamines is reported. The key to the success of this transformation is the in situ generation of the reactive benzophenone iminium species under organocatalytic conditions. Different phenols reacted smoothly, enabling the synthesis of an array of α-triphenylmethylamines, which are highly valued structural motifs in bioactive molecules and chemical sensors.
Collapse
Affiliation(s)
- Danijel Glavač
- Laboratory for Biomimetic Chemistry, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nikola Topolovčan
- Laboratory for Biomimetic Chemistry, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Matija Gredičak
- Laboratory for Biomimetic Chemistry, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
16
|
Li MF, Miao AQ, Zhu HY, Wang R, Hao WJ, Tu SJ, Jiang B. Palladium/ N, N'-Disulfonyl Bisimidazoline-Catalyzed Enantioselective Addition of Arylboronic Acids to Cyclic N-Sulfonyl Ketimines. J Org Chem 2020; 85:13602-13609. [PMID: 33103430 DOI: 10.1021/acs.joc.0c01722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The combination of Pd(TFA)2 and an N,N'-disulfonyl bisimidazoline ligand shows high catalytic activity and excellent asymmetric induction in the addition of arylboronic acids to cyclic N-sulfonyl ketimines including benzo[d]isothiazole-1,1-dioxides, benzo[e][1,2,3]oxathiazine-2,2-dioxides, and 1,2,5-thiadiazole-1,1-dioxides, by which three types of chiral quaternary carbon-containing sultams with substantial substitution diversity were synthesized with high yields and excellent enantioselectivities (up to >99% ee). The current catalysis demonstrated a remarkable tolerance to oxygen and thus provided an operationally simple approach for constructing enantioenriched cyclic quaternary stereocenters.
Collapse
Affiliation(s)
- Meng-Fan Li
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - An-Qi Miao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Hong-Yu Zhu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Rong Wang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Shu-Jiang Tu
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
17
|
Li Y, Liu J, Chen X, Zhou Y, Xiao Y, Chen F. Asymmetric Alkynylation of Cyclic
N
‐Sulfonyl Imines using Synergistic Chiral Phosphoric Acid/Copper Catalysis. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ya‐Ling Li
- Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Jin‐Xin Liu
- Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Xiao‐Pan Chen
- Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Yuan Zhou
- Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - You‐Cai Xiao
- Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 People's Republic of China
| | - Fen‐Er Chen
- Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 People's Republic of China
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University Shanghai 200433 People's Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs Shanghai 200433 People's Republic of China
| |
Collapse
|
18
|
Liu G, Zhang X, Wang H, Cong H, Zhang X, Dong XQ. Synthesis of chiral α-substituted α-amino acid and amine derivatives through Ni-catalyzed asymmetric hydrogenation. Chem Commun (Camb) 2020; 56:4934-4937. [PMID: 32239044 DOI: 10.1039/d0cc01220c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Highly efficient Ni-catalyzed asymmetric hydrogenation of cyclic N-sulfonyl ketimino esters was, for the first time, successfully developed, providing various chiral α-monosubstituted α-amino acid derivatives with excellent results (97-99% yields, 90 to >99% ee). Cyclic N-sulfonyl ketimines were also hydrogenated well to afford chiral amine derivatives with 98-99% yields and 97 to >99% ee. The gram-scale asymmetric hydrogenation was performed well with 85% yield and 99% ee using only 0.2 mol% catalyst.
Collapse
Affiliation(s)
- Gongyi Liu
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Suzhou Institute of Wuhan University, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Xianghe Zhang
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Suzhou Institute of Wuhan University, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Heng Wang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Hengjiang Cong
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Suzhou Institute of Wuhan University, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| | - Xumu Zhang
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Suzhou Institute of Wuhan University, Wuhan University, Wuhan, Hubei 430072, P. R. China. and Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | - Xiu-Qin Dong
- Key Laboratory of Biomedical Polymers, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Suzhou Institute of Wuhan University, Wuhan University, Wuhan, Hubei 430072, P. R. China.
| |
Collapse
|
19
|
Sun R, Qiu Z, Cao G, Teng D. Ni(II)/tBu-SMI-PHOX catalyzed enantioselective addition of arylboronic acids to cyclic N-sulfonyl aldimines. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Recent advances in Pd-catalyzed asymmetric addition reactions. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2020.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Wu C, Xu M. Palladium‐Catalyzed Highly Enantioselective Arylation of Cyclic
N
‐Sulfonyl α‐Ketimino Esters towards the Synthesis of α‐Quaternary Chiral Amino Acid Derivatives. ChemCatChem 2019. [DOI: 10.1002/cctc.201901933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chun‐Yan Wu
- State Key Laboratory of Drug Research Shanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 P. R. China
| | - Ming‐Hua Xu
- State Key Laboratory of Drug Research Shanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 P. R. China
- Shenzhen Grubbs Institute and Department of ChemistrySouthern University of Science and Technology 1088 Xueyuan Boulevard Shenzhen 518055 P. R. China
| |
Collapse
|
22
|
Zhu J, Huang L, Dong W, Li N, Yu X, Deng W, Tang W. Enantioselective Rhodium‐Catalyzed Addition of Arylboroxines to N‐Unprotected Ketimines: Efficient Synthesis of Cipargamin. Angew Chem Int Ed Engl 2019; 58:16119-16123. [DOI: 10.1002/anie.201910008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/28/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Jinbin Zhu
- Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology 130 Mei Long Rd Shanghai 200237 China
| | - Linwei Huang
- Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology 130 Mei Long Rd Shanghai 200237 China
| | - Wei Dong
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| | - Naikai Li
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| | - Xingxin Yu
- Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology 130 Mei Long Rd Shanghai 200237 China
| | - Wei‐Ping Deng
- Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology 130 Mei Long Rd Shanghai 200237 China
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| | - Wenjun Tang
- Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology 130 Mei Long Rd Shanghai 200237 China
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| |
Collapse
|
23
|
Zhu J, Huang L, Dong W, Li N, Yu X, Deng W, Tang W. Enantioselective Rhodium‐Catalyzed Addition of Arylboroxines to N‐Unprotected Ketimines: Efficient Synthesis of Cipargamin. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jinbin Zhu
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology 130 Mei Long Rd Shanghai 200237 China
| | - Linwei Huang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology 130 Mei Long Rd Shanghai 200237 China
| | - Wei Dong
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| | - Naikai Li
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| | - Xingxin Yu
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology 130 Mei Long Rd Shanghai 200237 China
| | - Wei‐Ping Deng
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology 130 Mei Long Rd Shanghai 200237 China
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| | - Wenjun Tang
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and Technology 130 Mei Long Rd Shanghai 200237 China
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| |
Collapse
|
24
|
Qiu Z, Li Y, Zhang Z, Teng D. Spiro indane-based phosphine–oxazoline ligands for palladium-catalyzed asymmetric arylation of cyclic N-sulfonyl imines. TRANSIT METAL CHEM 2019. [DOI: 10.1007/s11243-019-00329-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Jackman KM, Fogh AA, Stubbs JM, Blacquiere JM. Synthesis of Pd phosphine-imine complexes and their reactivity with base. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Quan M, Wu L, Yang G, Zhang W. Pd(ii), Ni(ii) and Co(ii)-catalyzed enantioselective additions of organoboron reagents to ketimines. Chem Commun (Camb) 2018; 54:10394-10404. [DOI: 10.1039/c8cc04932g] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This feature article highlights the development of Pd(ii), Ni(ii), and Co(ii)-catalyzed asymmetric additions of organoboron reagents to ketimines.
Collapse
Affiliation(s)
- Mao Quan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Liang Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Guoqiang Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
27
|
Zhang L, Wu B, Chen Z, Hu J, Zeng X, Zhong G. Chiral phosphoric acid catalyzed enantioselective N-alkylation of indoles with in situ generated cyclic N-acyl ketimines. Chem Commun (Camb) 2018; 54:9230-9233. [DOI: 10.1039/c8cc05073b] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A chiral SPINOL derived phosphoric acid-catalyzed asymmetric N-alkylation reaction of indoles with cyclic α-diaryl-substituted N-acyl imines, which are generated in situ from 3-aryl 3-hydroxyisoindo-linones, has been demonstrated.
Collapse
Affiliation(s)
- Lvye Zhang
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Binqiang Wu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Zhangtao Chen
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Jinjin Hu
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Xiaofei Zeng
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Guofu Zhong
- College of Materials
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| |
Collapse
|
28
|
Unhale RA, Sadhu MM, Ray SK, Biswas RG, Singh VK. A chiral Brønsted acid-catalyzed highly enantioselective Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines. Chem Commun (Camb) 2018; 54:3516-3519. [DOI: 10.1039/c8cc01436a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A chiral phosphoric acid-catalyzed asymmetric Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines, derived from 3-aryl-3-hydroxyisoindolinones has been demonstrated. The reaction proceeds smoothly under mild reaction conditions.
Collapse
Affiliation(s)
- Rajshekhar A. Unhale
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal
- India
| | - Milon M. Sadhu
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal
- India
| | - Sumit K. Ray
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal
- India
| | - Rayhan G. Biswas
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal
- India
| | - Vinod K. Singh
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal
- India
- Department of Chemistry
| |
Collapse
|
29
|
Wang Z, Xu MH. Highly enantioselective synthesis of α-tertiary chiral amino acid derivatives through rhodium-catalyzed asymmetric arylation of cyclic N-sulfonyl α-ketimino esters. Org Biomol Chem 2018; 16:4633-4640. [DOI: 10.1039/c8ob00840j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A simple sulfur-olefin ligand promoted Rh-catalyzed highly enantioselective arylation of cyclic α-ketimino esters with arylboronic acids is described.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Ming-Hua Xu
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|
30
|
Glavač D, Zheng C, Dokli I, You SL, Gredičak M. Chiral Brønsted Acid Catalyzed Enantioselective aza-Friedel-Crafts Reaction of Cyclic α-Diaryl N-Acyl Imines with Indoles. J Org Chem 2017; 82:8752-8760. [PMID: 28742360 DOI: 10.1021/acs.joc.7b01420] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asymmetric addition of indoles to cyclic α-diaryl-substituted N-acyl imines, which are generated in situ from 3-aryl 3-hydroxyisoindolinones, is described. The transformation proceeds smoothly with a broad range of indoles and isoindolinone alcohols using a SPINOL-derived chiral Brønsted acid catalyst to afford α-tetrasubstituted (3-indolyl)(diaryl)methanamines in excellent yields and enantioselectivities (up to 98% yield, up to >99:1 e.r.). The origin of stereochemical induction is supported by DFT calculations and experimental data.
Collapse
Affiliation(s)
- Danijel Glavač
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute , Bijenička c. 54, 10 000 Zagreb, Croatia
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu, Shanghai 200032, China
| | - Irena Dokli
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute , Bijenička c. 54, 10 000 Zagreb, Croatia
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Lu, Shanghai 200032, China
| | - Matija Gredičak
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute , Bijenička c. 54, 10 000 Zagreb, Croatia
| |
Collapse
|
31
|
Liu MQ, Jiang T, Chen WW, Xu MH. Highly enantioselective Rh/chiral sulfur-olefin-catalyzed arylation of alkyl-substituted non-benzofused cyclic N-sulfonyl ketimines. Org Chem Front 2017. [DOI: 10.1039/c7qo00555e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An effective catalyst system for the highly enantioselective synthesis of α-arylalkyl-substituted sulfamidates with a quaternary stereogenic center has been developed.
Collapse
Affiliation(s)
- Ming-Qing Liu
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Tao Jiang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Wen-Wen Chen
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Ming-Hua Xu
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|