1
|
Tzeli D, Gerontitis IE, Petsalakis ID, Tsoungas PG, Varvounis G. Self Cycloaddition of o-Naphthoquinone Nitrosomethide to (±) Spiro{naphthalene(naphthopyranofurazan)}-one Oxide: An Insight into its Formation. Chempluschem 2022; 87:e202200313. [PMID: 36479609 DOI: 10.1002/cplu.202200313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/22/2022] [Indexed: 11/25/2022]
Abstract
2-Hydroxy-1-naphthaldehyde oxime was oxidized by AgO (or Ag2O), in presence of N-methyl morpholine N-oxide (NMMO), to the title spiro adduct-dimer (±)-Spiro{naphthalene-1(2H),4'-(naphtho[2',1':2,3]pyrano[4,5-c]furazan)}-2-one-11'-oxide by a Diels-Alder(D-A) type self-cycloaddition, through the agency of an o-naphthoquinone nitrosomethide (o-NQM). Moreover, 2-hydroxy-8-methoxy-1-naphthaldehyde oxime was prepared and subjected to the same oxidation conditions. Its sterically guided result, 9-methoxynaphtho[1,2-d]isoxazole, was isolated, instead of the expected spiro adduct. The peri intramolecular H bonding in the oxime is considered to have a key contribution to the outcome. Geometry and energy features of the oxidant- and stereo-guided selectivity of both oxidation outcomes have been explored by DFT, perturbation theory and coupled cluster calculations. The reaction free energy of the D-A intermolecular cycloaddition is calculated at -82.0 kcal/mol, indicating its predominance over the intramolecular cyclization of ca. -37.6 kcal/mol. The cycloaddition is facilitated by NMMO through dipolar interactions and hydrogen bonding with both metal complexes and o-NQM. The 8(peri)-OMe substitution of the reactant oxime sterically impedes formation of the spiro adduct, instead it undergoes a more facile cyclodehydration to the isoxazole structure by ca. 4.9 kcal/mol.
Collapse
Affiliation(s)
- Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou Athens, 157 84, Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 116 35, Greece
| | - Ioannis E Gerontitis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 451 10, Ioannina, Greece
| | - Ioannis D Petsalakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 116 35, Greece
| | - Petros G Tsoungas
- Department of Biochemistry, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 115 21, Athens, Greece
| | - George Varvounis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 451 10, Ioannina, Greece
| |
Collapse
|
2
|
Mishra S, Nair SR, Baire B. Recent approaches for the synthesis of pyridines and (iso)quinolines using propargylic Alcohols. Org Biomol Chem 2022; 20:6037-6056. [PMID: 35678139 DOI: 10.1039/d2ob00587e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propargylic alcohols are one of the readily available and highly explored building blocks in organic synthesis. They show distinct reactivities compared to simple alcohols and/or alkynes, and hence provide diverse possibilities to develop novel synthetic strategies for the construction of polycyclic systems, including heterocycles. The six-membered heterocycles, pyridines, quinolines, and isoquinolines, are very important privileged structures in medicinal chemistry and drug discovery due to their broad spectrum of biological activities. They are also part of vitamins, nucleic acids, pharmaceuticals, antibiotics, dyes, and agrochemicals. Many synthetic strategies have been developed for the rapid and efficient generation of these cyclic systems. One such strategy is employing the propargylic alcohols as reactants in the form of either a 3-carbon component or 2-carbon unit. Thus, in this review article, we aimed to summarize various approaches to pyridines, quinolines, and isoquinolines from propargylic alcohols. To the best of our knowledge, so far, no focused reviews have appeared on this topic in the literature. Due to the many reports available, we also restricted ourselves to the developments during the past 17 years, i.e., 2005-2021. We strongly believe that this review article provides comprehensive coverage of research articles on the title topic, and will be of great value for the organic synthetic community for further developments in this area of research.
Collapse
Affiliation(s)
- Surabhi Mishra
- Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| | - Sindoori R Nair
- Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| | - Beeraiah Baire
- Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
3
|
Benarous N, Moussa Slimane N, Bougueria H, Boutebdja M, Cherouana A. Crystal structure and Hirshfeld surface analysis of 2-(2-hy-droxy-phen-yl)quinoline-6-sulfonamide. Acta Crystallogr E Crystallogr Commun 2022; 78:409-413. [PMID: 35492264 PMCID: PMC8983974 DOI: 10.1107/s2056989022002870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 11/11/2022]
Abstract
In the title compound, C15H12N2O3S, there are two mol-ecules (A and B) in the asymmetric unit. The attached phenol and quinoline moieties of each mol-ecule are almost coplanar with a dihedral angle of 6.05 (15)° for mol-ecule A and 1.89 (13)° for mol-ecule B. The crystal structure features N-H⋯O and C-H⋯O hydrogen bonds, C-H⋯π inter-actions and π-π stacking inter-actions. Hirshfeld surface analysis indicates that the most significant contacts in the crystal packing are C⋯H/H⋯C (29.2%), O⋯H/H⋯O (28.6%) and H⋯H (28.5%).
Collapse
Affiliation(s)
- Nesrine Benarous
- Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Université Frères Mentouri Constantine 1, Constantine, 25017, Algeria
| | - Nabila Moussa Slimane
- Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Université Frères Mentouri Constantine 1, Constantine, 25017, Algeria
| | - Hassiba Bougueria
- Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Université Frères Mentouri Constantine 1, Constantine, 25017, Algeria
- Centre Universitaire Abd El Hafid Boussouf, Mila, 43000 Mila, Algeria
| | - Mehdi Boutebdja
- Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Université Frères Mentouri Constantine 1, Constantine, 25017, Algeria
- Laboratoire de Technologie des Matériaux Avancés, École Nationale Polytechnique de Constantine, Nouvelle Ville Universitaire, Ali Mendjeli, Constantine 25000, Algeria
| | - Aouatef Cherouana
- Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Université Frères Mentouri Constantine 1, Constantine, 25017, Algeria
| |
Collapse
|
4
|
Yang T, Li H, Nie Z, Su MD, Luo WP, Liu Q, Guo CC. [3+1+1+1] Annulation to the Pyridine Structure in Quinoline Molecules Based on DMSO as a Nonadjacent Dual-Methine Synthon: Simple Synthesis of 3-Arylquinolines from Arylaldehydes, Arylamines, and DMSO. J Org Chem 2022; 87:2797-2808. [DOI: 10.1021/acs.joc.1c02708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tonglin Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhiwen Nie
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Miao-dong Su
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Wei-ping Luo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Qiang Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Can-Cheng Guo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
5
|
Madhavan S, Keshri SK, Kapur M. Transition Metal‐Mediated Functionalization of Isoxazoles: A Review. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Suchithra Madhavan
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066, MP India
| | - Santosh Kumar Keshri
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066, MP India
| | - Manmohan Kapur
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066, MP India
| |
Collapse
|
6
|
Vadivelu M, Sampath S, Muthu K, Karthikeyan K, Praveen C. Mechanochemistry Enabled Construction of Isoxazole Skeleton
via
CuO Nanoparticles Catalyzed Intermolecular Dehydrohalogenative Annulation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Murugan Vadivelu
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur, Chennai 600048 Tamil Nadu India
| | - Sugirdha Sampath
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur, Chennai 600048 Tamil Nadu India
- Department of Metallurgical & Materials Engineering Indian Institute of Technology-Madras (IITM) Chennai 600036 Tamil Nadu India
| | - Kesavan Muthu
- Interdisplinary Institute of Indian System of Medicine (IIISM) SRM Institute of Science and Technology Kattankulathur 603203 Chengalpattu District Tamil Nadu India
| | - Kesavan Karthikeyan
- Department of Chemistry B. S. Abdur Rahman Crescent Institute of Science and Technology Vandalur, Chennai 600048 Tamil Nadu India
| | - Chandrasekar Praveen
- Electrochemical Power Sources Division Central Electrochemical Research Institute (CSIR Laboratory) Alagappapuram, Karaikudi 630003 Sivagangai District Tamil Nadu India
| |
Collapse
|
7
|
Justaud F, Hachem A, Grée R. Recent Developments in the Meyer‐Schuster Rearrangement. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001494] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Frédéric Justaud
- Univ Rennes CNRS (Institut for Chemical Sciences in Rennes), UMR 6226 35000 Rennes France
| | - Ali Hachem
- Lebanese University Faculty of Sciences (I) Laboratory for Medidinal Chemistry and Natural Products and PRASE-EDST Hadath Lebanon
| | - René Grée
- Univ Rennes CNRS (Institut for Chemical Sciences in Rennes), UMR 6226 35000 Rennes France
| |
Collapse
|
8
|
Karuppasamy M, Vachan B, Sridharan V. Copper catalysis for the synthesis of quinolines and isoquinolines. COPPER IN N-HETEROCYCLIC CHEMISTRY 2021:249-288. [DOI: 10.1016/b978-0-12-821263-9.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
9
|
Fu R, Liu R, Lv K, Zhu C, Bao X. Silver-catalyzed desulfurizative annulation of 1,2-benzisothiazoles with ynamides to construct multi-substituted isoquinolines. Org Chem Front 2021. [DOI: 10.1039/d1qo01054a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An unprecedented silver-catalyzed desulfurizative annulation of 1,2-benzisothiazoles with ynamides to access multi-substituted isoquinoline derivatives is disclosed.
Collapse
Affiliation(s)
- Rui Fu
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Ran Liu
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Kang Lv
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
- Department of Chemistry and Chemical Engineering, Jining University, Qufu, Shandong 273155, China
| | - Changlei Zhu
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| |
Collapse
|
10
|
Song X, Yang R, Xiao Q. Recent Advances in the Synthesis of Heterocyclics via Cascade Cyclization of Propargylic Alcohols. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001142] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xian‐Rong Song
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Nanchang 330013 People's Republic of China
| | - Ruchun Yang
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Nanchang 330013 People's Republic of China
| | - Qiang Xiao
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Nanchang 330013 People's Republic of China
| |
Collapse
|
11
|
Wang K, Wu Q, Liu Y, Liu L, Chen G, Li Y, Bi S. Theoretical Insights into Ester-Directed Reactions between Propiolates with 1,2-Benzisoxazoles by Au(I) Catalyst: [4 + 2]-Annulation versus Michael-Type Products. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kaifeng Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Qiao Wu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Yuxia Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Lingjun Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Guang Chen
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
- Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Yulin Li
- Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resuorces, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, Qinghai, PR China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
12
|
Yang W, Liu X, Leung P, Li Y, Yang D, Chen Y. Iron‐Mediated Ring‐Opening and Rearrangement Cascade Synthesis of Polysubstituted Pyrroles from 4‐Alkenylisoxazoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen Yang
- Department of Chemistry and BiochemistryQueens College of the City University of New York 65-30 Kissena Blvd., Queens New York 11367 USA
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, College of ChemistrySouth China Normal University Guangzhou 510006 People's Republic of China
| | - Xiaochen Liu
- Department of Chemistry and BiochemistryQueens College of the City University of New York 65-30 Kissena Blvd., Queens New York 11367 USA
- Ph.D. Program in Chemistry, TheGraduate Center of the City University of New York 365 Fifth Ave. New York, New York 10016 USA
| | - Pak‐Hing Leung
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Yongxin Li
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Dingqiao Yang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, College of ChemistrySouth China Normal University Guangzhou 510006 People's Republic of China
| | - Yu Chen
- Department of Chemistry and BiochemistryQueens College of the City University of New York 65-30 Kissena Blvd., Queens New York 11367 USA
- Ph.D. Program in Chemistry, TheGraduate Center of the City University of New York 365 Fifth Ave. New York, New York 10016 USA
| |
Collapse
|
13
|
Ring opening [3 + 2] cyclization of azaoxyallyl cations with benzo[d]isoxazoles: Efficient access to 2-hydroxyaryl-oxazolines. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Li XS, Han YP, Xu DT, Li M, Wei WX, Liang YM. Silver Trifluoromethanesulfonate-Catalyzed Annulation of Propargylic Alcohols with 3-Methyleneisoindolin-1-one. J Org Chem 2020; 85:2626-2634. [PMID: 31880453 DOI: 10.1021/acs.joc.9b02533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A silver-catalyzed formal [3 + 3] annulation of 3-methyleneisoindolin-1-one with alkynol for the synthesis of 1,5-dihydroindolizin-3(2H)-one derivatives is disclosed. The protocol allows practical synthesis of N-heterocyclic scaffolds with a broad scope of functional groups and could be efficiently scaled up to gram scale, which incarnates a potential application of this methodology. In addition, a range of chlorine anion substitution of alkenes can be constructed by adjusting the structure of the alkynol substrates with the use of TMSCl.
Collapse
Affiliation(s)
- Xue-Song Li
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P.R. China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology , Hebei University of Technology , Tianjin 300130 , P.R. China
| | - Dan-Tong Xu
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P.R. China
| | - Ming Li
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P.R. China
| | - Wan-Xu Wei
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P.R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P.R. China
| |
Collapse
|
15
|
Ten years of progress in the synthesis of six-membered N-heterocycles from alkynes and nitrogen sources. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130876] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Sahani RL, Ye LW, Liu RS. Synthesis of nitrogen-containing molecules via transition metal-catalyzed reactions on isoxazoles, anthranils and benzoisoxazoles. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2019.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Zhu X, Wang Z, Hou B, Zhang H, Deng C, Ye L. Zinc‐Catalyzed Asymmetric Formal [4+3] Annulation of Isoxazoles with Enynol Ethers by 6π Electrocyclization: Stereoselective Access to 2
H
‐Azepines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xin‐Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ze‐Shu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Bo‐Shang Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Hao‐Wen Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
18
|
Zhu XQ, Wang ZS, Hou BS, Zhang HW, Deng C, Ye LW. Zinc-Catalyzed Asymmetric Formal [4+3] Annulation of Isoxazoles with Enynol Ethers by 6π Electrocyclization: Stereoselective Access to 2H-Azepines. Angew Chem Int Ed Engl 2019; 59:1666-1673. [PMID: 31724314 DOI: 10.1002/anie.201912534] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Indexed: 12/17/2022]
Abstract
6π electrocyclization has attracted interest in organic synthesis because of its high stereospecificity and atom economy in the construction of versatile 5-7-membered cycles. However, examples of asymmetric 6π electrocyclization are quite scarce, and have to rely on the use of chiral organocatalysts, and been limited to pentadienyl-anion- and triene-type 6π electrocyclizations. Described herein is a zinc-catalyzed formal [4+3] annulation of isoxazoles with 3-en-1-ynol ethers via 6π electrocyclization, leading to the site-selective synthesis of functionalized 2H-azepines and 4H-azepines in good to excellent yields with broad substrate scope. Moreover, this strategy has also been used to produce chiral 2H-azepines with high enantioselectivities (up to 97:3 e.r.). This protocol not only is the first asymmetric heptatrienyl-cation-type 6π electrocyclization, but also is the first asymmetric reaction of isoxazoles with alkynes and the first asymmetric catalysis based on ynol ethers.
Collapse
Affiliation(s)
- Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ze-Shu Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bo-Shang Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hao-Wen Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
19
|
Affiliation(s)
- Hongwei Qian
- Department of ChemistryLishui University 1 Xueyuan Road Lishui City Zhejiang Province 323000 People's Republic of China
| | - Dayun Huang
- Department of ChemistryLishui University 1 Xueyuan Road Lishui City Zhejiang Province 323000 People's Republic of China
| | - Yicheng Bi
- Qingdao University of Science & TechnologySifang Campus 53 Zhengzhou Road Qingdao Shandong 266042 People's Republic of China
| | - Guobing Yan
- Department of ChemistryLishui University 1 Xueyuan Road Lishui City Zhejiang Province 323000 People's Republic of China
| |
Collapse
|
20
|
Zhao S, Wang X, Wang P, Wang G, Zhao W, Tang X, Guo M. BF3·OEt2-Promoted Propargyl Alcohol Rearrangement/[1,5]-Hydride Transfer/Cyclization Cascade Affording Tetrahydroquinolines. Org Lett 2019; 21:3990-3993. [DOI: 10.1021/acs.orglett.9b01153] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuang Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaoyang Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Pengfei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
21
|
Xu W, Zhao J, Li X, Liu Y. Selective [5 + 1] and [5 + 2] Cycloaddition of Ynamides or Propargyl Esters with Benzo[ d]isoxazoles via Gold Catalysis. J Org Chem 2018; 83:15470-15485. [PMID: 30499294 DOI: 10.1021/acs.joc.8b02935] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benzo[ d]isoxazoles are found to act as novel nucleophiles to undergo gold-catalyzed [5 + 1] or [5 + 2] cycloaddition reactions with ynamides. The reaction provides a concise and chemoselective access to polysubstituted 2 H-benzo[ e][1,3]oxazines or benzo[ f][1,4]oxazepines. In addition, benzo[ d]isoxazoles can also react with gold-carbene intermediates derived from propargyl esters to afford [5 + 1] annulation products.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , People's Republic of China
| | - Jidong Zhao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , People's Republic of China
| | - Xiangdong Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , People's Republic of China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , People's Republic of China
| |
Collapse
|
22
|
Pandit YB, Sahani RL, Liu RS. Gold-Catalyzed Michael-Type Reactions and [4 + 2]-Annulations between Propiolates and 1,2-Benzisoxazoles with Ester-Directed Chemoselectivity. Org Lett 2018; 20:6655-6658. [DOI: 10.1021/acs.orglett.8b02663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yashwant Bhaskar Pandit
- Frontier Research Centers of Matter Science and Technology and Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Rajkumar Lalji Sahani
- Frontier Research Centers of Matter Science and Technology and Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Rai-Shung Liu
- Frontier Research Centers of Matter Science and Technology and Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| |
Collapse
|
23
|
Jadhav PD, Lu X, Liu RS. Gold-Catalyzed [5+2]- and [5+1]-Annulations between Ynamides and 1,2-Benzisoxazoles with Ligand-Controlled Chemoselectivity. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03011] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface and Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Departmental of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PRC
| | - Rai-Shung Liu
- Frontier Research Center for Matter Science and Technology, Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan 30013, ROC
| |
Collapse
|
24
|
Zhou W, Mei YL, Li B, Guan ZY, Deng QH. Synthesis of β-Alkyl 2-Hydroxychalcones by Rhodium-Catalyzed Coupling of N-Phenoxyacetamides and Nonterminal Propargyl Alcohols. Org Lett 2018; 20:5808-5812. [DOI: 10.1021/acs.orglett.8b02504] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wei Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yan-Le Mei
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Bin Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Zhen-Yu Guan
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| |
Collapse
|
25
|
Chen Z, Han C, Fan C, Liu G, Pu S. Copper-Catalyzed Diversity-Oriented Synthesis (DOS) of 4-Amino-2 H-chromen-2-imines: Application of Kemp Elimination toward O-Heterocycles. ACS OMEGA 2018; 3:8160-8168. [PMID: 31458953 PMCID: PMC6644361 DOI: 10.1021/acsomega.8b01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/05/2018] [Indexed: 06/10/2023]
Abstract
We report herein a copper-catalyzed sequential multicomponent reaction of benzo[d]isoxazoles with terminal alkynes and sulfonyl azides, which produced divergent 4-amino-2H-chromen-2-imines with excellent chemical selectivity. The reaction tolerated a broad range of functional groups, and released only N2 as the sole byproduct. The sulfonyl imino group could be removed to give biologically active free 4-amino-2H-chromenone in good yield.
Collapse
Affiliation(s)
- Zhiyuan Chen
- Jiangxi
Key Laboratory of Organic Chemistry, Jiangxi
Science and Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, P. R. China
- Key
Laboratory of Functional Small Organic Molecules, Ministry of Education,
and College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P. R. China
| | - Cuifen Han
- Key
Laboratory of Functional Small Organic Molecules, Ministry of Education,
and College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P. R. China
| | - Congbin Fan
- Jiangxi
Key Laboratory of Organic Chemistry, Jiangxi
Science and Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, P. R. China
| | - Gang Liu
- Jiangxi
Key Laboratory of Organic Chemistry, Jiangxi
Science and Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, P. R. China
| | - Shouzhi Pu
- Jiangxi
Key Laboratory of Organic Chemistry, Jiangxi
Science and Technology Normal University, 605 Fenglin Road, Nanchang, Jiangxi 330013, P. R. China
| |
Collapse
|
26
|
Wang Q, Tsui GC. Copper-Mediated Domino Cyclization/Trifluoromethylation of Propargylic N-Hydroxylamines: Synthesis of 4-Trifluoromethyl-4-isoxazolines. J Org Chem 2018; 83:2971-2979. [DOI: 10.1021/acs.joc.7b03191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Quande Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|