1
|
Luo Y, Zhang Y, Liu M, Wang X, Wan Y, Cao S. Photoredox/Copper-Cocatalyzed Domino Annulation of Oxime Esters and NH 4SCN: Access to Fully Substituted 2-Aminothiazoles. J Org Chem 2024; 89:15187-15196. [PMID: 39370928 DOI: 10.1021/acs.joc.4c01951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Domino cyclization of oxime esters and NH4SCN facilitated by photoredox and copper cocatalysis has been established. Various structurally diverse fully substituted 2-aminothiazoles have been obtained in good yields at room temperature. It is featured by mild conditions, favorable functional group tolerance, and wide substrate scope. The present reaction is amenable to gram-scale synthesis, which is expected to find potential applications in organic synthesis and drug discovery. A plausible reaction mechanism is proposed.
Collapse
Affiliation(s)
- Yongyan Luo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yanyan Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mengting Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiaozhen Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shujun Cao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
2
|
Liang B, Cai X, Xu S, Huang J, Deng H, Ren W, Chen J, Lo TWB, Chen X, Zhu Z. NaOAc-Promoted [3+1+2] Annulation of O-Pivaloyl Oximes, Aldehydes, and 2-Methylbenzothiazole Salts: Synthesis of 1-Azaphenothiazines. J Org Chem 2024; 89:13438-13449. [PMID: 39233546 DOI: 10.1021/acs.joc.4c01590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
This paper presents an efficient strategy for constructing 1-azaphenothiazines through the NaOAc-promoted [3+1+2] annulation of O-pivaloyl oximes, aldehydes, and 2-methylbenzothiazole salts. The reaction is conducted in ethanol and employs oxygen as the oxidant under catalyst-free conditions. The process is amenable to various O-pivaloyl oximes, 2-methylbenzothiazole salts, and aldehydes, affording the target products in satisfactory yields.
Collapse
Affiliation(s)
- Baihui Liang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Xiangya Cai
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Shengting Xu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Jie Huang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Haiyin Deng
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Weijie Ren
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Jiehao Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Tsz Woon Benedict Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Xiuwen Chen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
3
|
Gerontitis IE, Tsoungas PG, Varvounis G. Naphtho[1,8- de][1,2]Oxazin-4-ol: Precursor to 1,2,8-Trisubstituted Naphthalenes and 1-Unsubstituted Naphtho[1,2- d]isoxazole 2-Oxide: A Novel Isomerization of the N-Oxide to Nitrile Oxide en Route to Isoxazol(in)es. Molecules 2023; 29:48. [PMID: 38202629 PMCID: PMC10779812 DOI: 10.3390/molecules29010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Naphtho[1,8-de][1,2]oxazin-4-ol and its acyl or benzyl derivatives ring open to various 2,8-dihydroxy-1-naphthonitriles, which, through (de)protection protocols and reduction, afford the target (E)-2-hydroxy-8-methoxy-1-naphthaldehyde. This was converted to its corresponding oxime, which was oxidatively o-cyclized with phenyliodine(III) diacetate (PIDA) to 9-methoxynaphtho[1,2-d]isoxazole 2-oxide. The latter, in deuterated DMSO at room temperature, was rearranged to its isomer 2-hydroxy-8-methoxy(naphthalen-1-yl)nitrile oxide. The isomerization was detected by time-course plot 1H NMR spectroscopy and further identified from its 13C NMR and HRMS spectra. The nitrile oxide was stable in (non)deuterated DMSO for at least 18 h. A 3,4-bis(2-hydroxy-8-methoxynaphthalen-1-yl)-1,2,5-oxadiazole 2-oxide, as a dimerization product or an isocyanate as a rearrangement isomer, was ruled out, the former by its HRMS spectrum and the latter by its 1,3-dipolar cycloaddition reactions to substituted isoxazoles.
Collapse
Affiliation(s)
- Ioannis E. Gerontitis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece;
| | - Petros G. Tsoungas
- Department of Biochemistry, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 115 21 Athens, Greece;
| | - George Varvounis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece;
| |
Collapse
|
4
|
Yousefnejad F, Gholami F, Larijani B, Mahdavi M. Oxime Esters: Flexible Building Blocks for Heterocycle Formation. Top Curr Chem (Cham) 2023; 381:17. [PMID: 37202650 DOI: 10.1007/s41061-023-00431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/28/2023] [Indexed: 05/20/2023]
Abstract
Oxime esters as the applicable building blocks, internal oxidizing agents, and directing groups in the synthesis of -, S-, and O-containing heterocycle scaffolds have gained great attention in the last decade. This review provides an overview of recent advances in the cyclization of oxime esters with various functional group reagents under transition metal and transition metal-free catalyzed conditions. Moreover, the mechanistic aspects of these protocols are explained in detail.
Collapse
Affiliation(s)
- Faeze Yousefnejad
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Gholami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Wang Z, Wierich N, Zhang J, Daniliuc CG, Studer A. Alkyl Radical Generation from Alkylboronic Pinacol Esters through Substitution with Aminyl Radicals. J Am Chem Soc 2023; 145:8770-8775. [PMID: 37058606 DOI: 10.1021/jacs.3c01129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Alkylboronic pinacol esters (APEs) are highly versatile reagents in organic synthesis. However, the direct generation of alkyl radicals from commonly used, bench-stable APEs has not been well explored. In this communication, alkyl radical generation from APEs through reaction with aminyl radicals is reported. The aminyl radicals are readily generated by visible-light-induced homolytic cleavage of the N-N bond in N-nitrosamines, and C radical generation occurs through nucleohomolytic substitution at boron. As an application, the highly efficient photochemical radical alkyloximation of alkenes with APEs and N-nitrosamines under mild conditions is presented. A wide range of primary, secondary, and tertiary APEs engage in this transformation that is easily scaled up.
Collapse
Affiliation(s)
- Zhe Wang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Nick Wierich
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Jingjing Zhang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
6
|
Peddinti RK, Budhwan R, Rawat M. Koser’s Reagent Mediated Oxidation of Aldoximes: Synthesis of Isoxazolines by 1,3-Dipolar Cycloadditions. SYNTHESIS-STUTTGART 2023. [DOI: 10.1055/s-0042-1752403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractA metal- and base-free, robust, and convenient approach for the synthesis of isoxazoline derivatives is reported. This protocol involves 1,3-dipolar cycloaddition between in situ generated nitrile oxides from the corresponding aldoximes using [hydroxy(tosyloxy)iodo]benzene (HTIB, Koser’s reagent) and maleimides, styrene and acrylonitrile. The described methodology is very attractive as it is operationally simple, has broad scope, and does not require any base, metal, or other additives.
Collapse
|
7
|
McArthur G, Abel S, Volpin G, Barber DM. Strategies for the Enantioselective Synthesis of 2‐Isoxazolines and 2‐Isoxazolin‐5‐ones Bearing Fully Substituted Stereocenters**. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Gillian McArthur
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Steven Abel
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Giulio Volpin
- Research and Development, Small Molecules Technologies, Process Research, Bayer AG, Crop Science Division Industriepark Höchst 65926 Frankfurt am Main Germany
| | - David M. Barber
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division Industriepark Höchst 65926 Frankfurt am Main Germany
| |
Collapse
|
8
|
Cao S, Li H, Teng X, Si H, Chen R, Zhu Y. Access to Fully Substituted Dihydropyrimidines via Dual Copper/Photoredox‐Catalyzed Domino Annulation of Oxime Esters and Imines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Cao S, Yuan W, Li Y, Teng X, Si H, Chen R, Zhu Y. Photoredox/copper cocatalyzed domino cyclization of oxime esters with TMSCN: access to antifungal active tetrasubstituted pyrazines. Chem Commun (Camb) 2022; 58:7200-7203. [PMID: 35671164 DOI: 10.1039/d2cc02480b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A photoredox/copper cocatalyzed domino cyclization of oxime esters with TMSCN has been developed. A range of structurally novel tetrasubstituted pyrazines have been obtained. This method features high bond-forming efficiency, high step economy, broad substrate scope, and gram-scale synthesis. Moreover, preliminary bioactivity evaluation of pyrazine products shows their promising antifungal activities.
Collapse
Affiliation(s)
- Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Weidong Yuan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Xinjie Teng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Huaxing Si
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Rongshun Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
10
|
Yan H, Xu G, Gu M, Zhang S, Wu Q, Meng J, Zhu N, Fang Z, Duan J, Guo K. Copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate. Chem Commun (Camb) 2022; 58:6757-6760. [PMID: 35611963 DOI: 10.1039/d2cc01573k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel route for tandem C-N/C-O formation via copper-catalyzed [4+2] oxidative annulation of α,β-unsaturated ketoxime acetates with ethyl trifluoropyruvate to synthesize valuable trifluoromethyl-containing 2H-1,3-oxazines in moderate to good yields is developed. This procedure represents the first [4+2] oxidative annulation of oxime derivatives with activated CO bonds and provides an alternative route towards functionalized 2H-1,3-oxazines.
Collapse
Affiliation(s)
- Huan Yan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Meng Gu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Sai Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Qinghuan Wu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jingjing Meng
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| |
Collapse
|
11
|
Qu Z, Tian T, Deng GJ, Huang H. Diverse catalytic systems for nitrogen-heterocycle formation from O-acyl ketoximes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Wu M, Xu L, Song M, Li Y, Wang Y, Dong H. First Total Synthesis of Isopsoralenoside. LETT ORG CHEM 2022. [DOI: 10.2174/1570178619666220111115718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The first total synthesis of the natural product iopsoralenoside, isolated from the n-butyl alcohol extract of Fructus Psoraleae (FP), was achieved in 17% yield over 7 steps. The key steps of the process are the glycosylation and irradiation promoted by ultraviolet light. This synthesis provides a sufficient amount of synthesized trans- and cis-isopsoralenoside for further bioassays.
Collapse
Affiliation(s)
- Min Wu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lijia Xu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Mingwei, Song
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ying, Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yingying Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
| | - Hongbo Dong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
13
|
Cao S, Ma C, Teng X, Chen R, Li Y, Yuan W, Zhu Y. Facile synthesis of fully substituted 1 H-imidazoles from oxime esters via dual photoredox/copper catalyzed multicomponent reactions. Org Chem Front 2022. [DOI: 10.1039/d2qo01475k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A novel and efficient photoredox/copper cocatalyzed domino cyclization of oxime esters, aldehydes, and amines has been achieved, affording a broad range of fully substituted 1H-imidazoles in good yields.
Collapse
Affiliation(s)
- Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chongchong Ma
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinjie Teng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongshun Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weidong Yuan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Xu Z, Chen H, Deng GJ, Huang H. Copper-catalyzed three-component formal [3 + 1 + 2] annulations for the synthesis of 2-aminopyrimidines from O-acyl ketoximes. Org Biomol Chem 2021; 19:8706-8710. [PMID: 34581386 DOI: 10.1039/d1ob01582f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A copper-based catalytic system has been developed to enable formal [3 + 1 + 2] annulations of ketoxime acetates, aldehydes, and cyanamides. This protocol offers a new strategy for the synthesis of highly substituted 2-aminopyrimidine compounds, and more importantly, pyrimidines have now been included in the N-heterocycle family constructed using O-acyl ketoximes as N-C-C synthons.
Collapse
Affiliation(s)
- Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Hongbiao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
15
|
Ramaraju A, Upare A, Blanch EW, Maniam S, Sridhar B, Bathula SR, Raji Reddy C. Chemoselective [3 + 2] annulation of oxime acetate with 2-aryl-3-ethoxycarbonyl-pyrroline-4,5-dione: an entry to pyrrolo[2,3- b]pyrrole derivatives. Org Biomol Chem 2021; 19:7875-7882. [PMID: 34549208 DOI: 10.1039/d1ob00990g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel chemoselective [3 + 2] annulation reaction of easily accessible ketoxime acetate with 2-aryl-3-ethoxycarbonyl pyrroline-4,5-dione has been developed for the synthesis of unknown pyrrolo[2,3-b]pyrrole frameworks. This method involves copper-mediated N-O bond cleavage followed by the formation of carbon-carbon and carbon-nitrogen bonds. This operationally simple protocol provides broader functional group compatibility and good yields.
Collapse
Affiliation(s)
- Andhavaram Ramaraju
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,School of Science, STEM college, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Atul Upare
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Ewan W Blanch
- School of Science, STEM college, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Subashani Maniam
- School of Science, STEM college, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Surendar Reddy Bathula
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| |
Collapse
|
16
|
Wang K, Guan HR, Ren WL, Yang HT, Miao CB. Copper-Catalyzed Cascade Annulation of Malonate-Tethered O-Acyl Oximes with Cyclic 1,3-Dicarbonyl Compounds for the Synthesis of Spiro-Pentacyclic Derivatives. J Org Chem 2021; 86:12309-12317. [PMID: 34369761 DOI: 10.1021/acs.joc.1c01122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A copper-catalyzed cascade annulation of malonate-tethered O-acyl oximes with cyclic 1,3-dicarbonyl compounds has been developed for the rapid synthesis of spiro-pentacyclic derivatives. This reaction allows the one-step formation of five C-C/N/O bonds and an angular tricyclic core under very mild conditions and shows excellent regioselectivity and stereoselectivity.
Collapse
Affiliation(s)
- Kun Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Hong-Rong Guan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wen-Long Ren
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Hai-Tao Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Chun-Bao Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
17
|
Rong B, Xu G, Yan H, Zhang S, Wu Q, Zhu N, Duan J, Guo K. The copper-catalyzed synthesis of dihydrooxazoles from α,β-unsaturated ketoximes and activated ketones. Chem Commun (Camb) 2021; 57:7272-7275. [PMID: 34195708 DOI: 10.1039/d1cc02422a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The first copper-catalyzed [3+2]-type condensation reaction of α,β-unsaturated ketoximes with activated ketones has been described for the synthesis of dihydrooxazoles, especially trifluoromethyl-decorated dihydrooxazoles. Notable features of this method include its broad substrate scope, good functional group tolerance, and simple operation.
Collapse
Affiliation(s)
- Binsen Rong
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Stahl J, Yatham VR, Crespi S, König B. Cesium Carbonate Catalyzed Oxa‐Michael Addition of Oximes to Acrylonitrile. ChemistrySelect 2021. [DOI: 10.1002/slct.202100924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jessica Stahl
- Department of Organic Chemistry University of Regensburg D-93040 Regensburg
| | - Veera Reddy Yatham
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram 695551 India
| | - Stefano Crespi
- Stratingh Institute for Chemistry University of Groningen 9747 AG Groningen The Netherlands
| | - Burkhard König
- Department of Organic Chemistry University of Regensburg D-93040 Regensburg
| |
Collapse
|
19
|
Zhang Y, Xin J, Wang C. Stereoselective Synthesis of 4,5‐Dihydroisoxazole Derivatives from 1,1‐Dicyanocyclopropanes and Hydroxylamine Hydrochloride. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yue Zhang
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Junhu Xin
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering Yangzhou University 180 Siwangting Street Yangzhou 225002 P. R. China
| |
Collapse
|
20
|
Xu Z, Chen H, Deng GJ, Huang H. Copper-Catalyzed Formal [3 + 3] Annulations of Arylketoximes and o-Fluorobenzaldehydes: An Entry to Quinoline Compounds. Org Lett 2021; 23:936-942. [DOI: 10.1021/acs.orglett.0c04138] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hongbiao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
21
|
Qiu Y, Lu K, Wei B, Qian Z, He Z. P III-Mediated Intramolecular Cyclopropanation and Synthesis of Cyclopropa[ c]coumarins. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Duan J, Mao Y, Xian A, Rong B, Xu G, Li Z, Zhao L, Zhu N, Guo K. Copper-catalyzed regioselective [3+2] annulation of malonate-tethered acyl oximes with isatins. Chem Commun (Camb) 2021; 57:3379-3382. [DOI: 10.1039/d0cc07995b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A copper-catalyzed regioselective [3+2] annulation of malonate-tethered acyl oximes with isatins was developed, affording valuable 2,3-dihydrooxazole-spirooxindoles in moderate to good yields with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Yiyang Mao
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Anmei Xian
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Binsen Rong
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Zhenjiang Li
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Lili Zhao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| |
Collapse
|
23
|
Liu T, Xu F, Liu X, Huang Z, Long L, Xu G, Xiao H, Chen Z. Switching the Regioselectivity Access to Pyrroles and Isoquinolines from Ketoxime Acetates and Ynals. ACS OMEGA 2020; 5:31473-31484. [PMID: 33324860 PMCID: PMC7726942 DOI: 10.1021/acsomega.0c05272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 05/28/2023]
Abstract
A novel formal [3+2] and [4+2] annulation of ketoxime acetates and ynals for the synthesis of pyrroles and isoquinolines has been developed. By simply switching the catalyst and solvent, the reaction proceeds via two pathways. The reactions are achieved under mild conditions with broad substrate scope and excellent regioselectivity.
Collapse
|
24
|
Jiang KC, Wang L, Chen Q, He MY, Shen MG, Zhang ZH. Rh(III)−catalyzed synthesis of isoquinolines from N-hydroxyoximes and alkynes in γ-valerolactone. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1819326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kuan-Chang Jiang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Liang Wang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
- School of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, China
| | - Qun Chen
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Ming-Yang He
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| | - Ming-Gui Shen
- National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, Key Laboratory of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, China
| | - Zhi-Hui Zhang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, China
| |
Collapse
|
25
|
Yang S, Li H, Li P, Yang J, Wang L. Room temperature iron(ii)-catalyzed radical cyclization of unsaturated oximes with hypervalent iodine reagents. Org Biomol Chem 2020; 18:715-724. [DOI: 10.1039/c9ob02424g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An iron(ii)-catalyzed radical cyclization of oximes with hypervalent iodine reagents was developed, which enabled the construction of the isoxazoline backbone.
Collapse
Affiliation(s)
- Shichao Yang
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P.R. China
| | - Hongji Li
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P.R. China
| | - Pinhua Li
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P.R. China
| | - Jingya Yang
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P.R. China
| | - Lei Wang
- Department of Chemistry
- Huaibei Normal University
- Huaibei
- P.R. China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
26
|
Tang L, Yang Z, Yang F, Huang Y, Chen H, Cheng H, Song W, Ren B, Zhou Q. Catalyst‐Free α‐Aminoxylation of 1,3‐Dicarbonyl Compounds with TEMPO Using Selectfluor as an Oxidant. ChemistrySelect 2019. [DOI: 10.1002/slct.201903856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| | - Zhen Yang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| | - Fang Yang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| | - Yifan Huang
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| | - Hanfei Chen
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| | - Hao Cheng
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| | - Weiyan Song
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| | - Bo Ren
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| | - Qiuju Zhou
- College of Chemistry and Chemical EngineeringXinyang Normal University Xinyang 464000 P. R. China
| |
Collapse
|
27
|
Wang D, Zhang F, Xiao F, Deng GJ. A three-component approach to isoxazolines and isoxazoles under metal-free conditions. Org Biomol Chem 2019; 17:9163-9168. [PMID: 31595941 DOI: 10.1039/c9ob01909j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A 1,3-dipolar cycloaddition of 2-methylquinoline, tert-butyl nitrite (TBN) and alkynes or alkenes for the synthesis of biheteroaryls containing both isoxazoline/isoxazole and quinoline motifs has been developed. In this protocol, TBN serves as a convenient N-O source to convert 2-methylquinoline into intermediate nitrile oxides in situ.
Collapse
Affiliation(s)
- Dahan Wang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan. Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | | | | | | |
Collapse
|
28
|
Ushakov PY, Khatuntseva EA, Nelyubina YV, Tabolin AA, Ioffe SL, Sukhorukov AY. Synthesis of Isoxazolines from Nitroalkanes
via
a [4+1]‐Annulation Strategy. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pavel Yu. Ushakov
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences 119991 Leninsky prospect, 47 Moscow Russian Federation
- Department of ChemistryM. V. Lomonosov Moscow State University 119991 Leninskie gory, 1, str. 3 Moscow Russian Federation
| | - Elizaveta A. Khatuntseva
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences 119991 Leninsky prospect, 47 Moscow Russian Federation
| | - Yulia V. Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds 119991 Vavilov str. 28 Moscow Russian Federation
| | - Andrey A. Tabolin
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences 119991 Leninsky prospect, 47 Moscow Russian Federation
| | - Sema L. Ioffe
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences 119991 Leninsky prospect, 47 Moscow Russian Federation
| | - Alexey Yu. Sukhorukov
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences 119991 Leninsky prospect, 47 Moscow Russian Federation
- D. Mendeleev University of Chemical Technology of Russia 125047 Miusskaya sq., 9 Moscow Russian Federation
- Plekhanov Russian University of Economics 117997 Stremyanny per. 36 Moscow Russian Federation
| |
Collapse
|
29
|
Xu Z, Deng GJ, Zhang F, Chen H, Huang H. Three-Component Cascade Bis-heteroannulation of Aryl or Vinyl Methylketoxime Acetates toward Thieno[3,2-c]isoquinolines. Org Lett 2019; 21:8630-8634. [DOI: 10.1021/acs.orglett.9b03241] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Feng Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- College of Science, Hunan Agricultural University, Changsha 410128, China
| | - Hongbiao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
30
|
Qu Z, Zhang F, Deng GJ, Huang H. Regioselectivity Control in the Oxidative Formal [3 + 2] Annulations of Ketoxime Acetates and Tetrohydroisoquinolines. Org Lett 2019; 21:8239-8243. [DOI: 10.1021/acs.orglett.9b02978] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zhonghua Qu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Feng Zhang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- College of Science, Hunan Agricultural University, Changsha 410128, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
31
|
Lopes EF, Penteado F, Thurow S, Pinz M, Reis AS, Wilhelm EA, Luchese C, Barcellos T, Dalberto B, Alves D, da Silva MS, Lenardão EJ. Synthesis of Isoxazolines by the Electrophilic Chalcogenation of β,γ-Unsaturated Oximes: Fishing Novel Anti-Inflammatory Agents. J Org Chem 2019; 84:12452-12462. [PMID: 31509698 DOI: 10.1021/acs.joc.9b01754] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, we describe a new strategy to prepare chalcogen-functionalized isoxazolines. The strategy involves the reaction of β,γ-unsaturated oximes with electrophilic selenium and tellurium species, affording 19 new selenium- and tellurium-containing isoxazolines in good yields after 1 h at room temperature. The method was efficiently extended to the synthesis of 5 new (bis)isoxazoline ditellurides. One of the prepared compounds, 3-phenyl-5-((phenylselanyl)methyl)-isoxazoline, demonstrated better anti-inflammatory and antiedematogenic effects than the reference drug Celecoxib.
Collapse
Affiliation(s)
- Eric F Lopes
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA , Universidade Federal de Pelotas-UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Filipe Penteado
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA , Universidade Federal de Pelotas-UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Samuel Thurow
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA , Universidade Federal de Pelotas-UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Mikaela Pinz
- Laboratório de Pesquisa em Farmacologia Bioquímica-LaFarBio-CCQFA , Universidade Federal de Pelotas-UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Angelica S Reis
- Laboratório de Pesquisa em Farmacologia Bioquímica-LaFarBio-CCQFA , Universidade Federal de Pelotas-UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica-LaFarBio-CCQFA , Universidade Federal de Pelotas-UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica-LaFarBio-CCQFA , Universidade Federal de Pelotas-UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products , Universidade de Caxias do Sul-UCS , 95070-560 Caxias do Sul , RS , Brazil
| | - Bianca Dalberto
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA , Universidade Federal de Pelotas-UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA , Universidade Federal de Pelotas-UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Marcio S da Silva
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA , Universidade Federal de Pelotas-UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| | - Eder J Lenardão
- Laboratório de Síntese Orgânica Limpa-LASOL-CCQFA , Universidade Federal de Pelotas-UFPel , P.O. Box 354, 96010-900 Pelotas , RS , Brazil
| |
Collapse
|
32
|
Deshmukh DS, Gangwar N, Bhanage BM. Rapid and Atom Economic Synthesis of Isoquinolines and Isoquinolinones by C-H/N-N Activation Using a Homogeneous Recyclable Ruthenium Catalyst in PEG Media. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900366] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dewal S. Deshmukh
- Department of Chemistry; Institute of Chemical Technology; -400019 Mumbai India
| | - Neha Gangwar
- Department of Chemistry; Institute of Chemical Technology; -400019 Mumbai India
| | | |
Collapse
|
33
|
Rawat M, Rawat DS. CuI@Al2O3 catalyzed synthesis of 2-aminonicotinonitrile derivatives under solvent free condition. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Huang H, Qu Z, Ji X, Deng GJ. Three-component bis-heterocycliation for synthesis of 2-aminobenzo[4,5]thieno[3,2-d]thiazoles. Org Chem Front 2019. [DOI: 10.1039/c8qo01365a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A cooperative base system has been developed for the novel three-component synthesis of 2-aminobenzo[4,5]thieno[3,2-d]thiazoles via bis-heterocyclization of methylketoxime acetates.
Collapse
Affiliation(s)
- Huawen Huang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Zhonghua Qu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Xiaochen Ji
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| |
Collapse
|
35
|
Subramanian P, Kaliappan KP. Transition-Metal-Free Multicomponent Approach to Stereoenriched Cyclopentyl-isoxazoles through C-C Bond Cleavage. Chem Asian J 2018; 13:2031-2039. [PMID: 29920954 DOI: 10.1002/asia.201800608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/11/2018] [Indexed: 01/01/2023]
Abstract
An efficient multicomponent reaction for the synthesis of stereoenriched cyclopentyl-isoxazoles from camphor-derived α-oximes, alkynes, and MeOH is reported. Our method involved a series of cascade transformations, including the in situ generation of an IIII catalyst, which catalyzed the addition of MeOH to a sterically hindered ketone. Oxidation of the oxime, and rearrangement of the α-hydroxyiminium ion generated a nitrile oxide in situ, which, upon [3+2] cycloaddition reaction with an alkyne, delivered the regioselective product. This reaction was very selective for the syn-oxime. This multicomponent approach was also extended to the synthesis of a new glycoconjugate, camphoric ester-isoxazole C-galactoside.
Collapse
Affiliation(s)
- Parthasarathi Subramanian
- Department of Chemistry, Indian Institute of Technology Bombay, Main Gate Road, Powai, Mumbai, 400076, India
| | - Krishna P Kaliappan
- Department of Chemistry, Indian Institute of Technology Bombay, Main Gate Road, Powai, Mumbai, 400076, India
| |
Collapse
|
36
|
Zhu CZ, Wei Y, Shi M. Base-Promoted Tandem Cyclization for the Synthesis of Benzonitriles by C−C Bond Construction. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Cheng-Zhi Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis; University of Chinese Academy of Sciences; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 People's Republic of China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Mei Long Road Shanghai 200237 People's Republic of China
- State Key Laboratory and Institute of Elemento-organic Chemistry; Nankai University; Tianjin 300071 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis; University of Chinese Academy of Sciences; Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences; 354 Fenglin Lu Shanghai 200032 People's Republic of China
| |
Collapse
|
37
|
Xia Y, Cai J, Huang H, Deng GJ. Synthesis of polysubstituted pyridines from oxime acetates using NH4I as a dual-function promoter. Org Biomol Chem 2018; 16:124-129. [DOI: 10.1039/c7ob02471a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An NH4I dual-function promoter enables pyridine synthesis through oxime N–O bond reduction and subsequent condensation reactions.
Collapse
Affiliation(s)
- Yujia Xia
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Jinhui Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| |
Collapse
|
38
|
Deshmukh DS, Bhanage BM. N-Tosylhydrazone directed annulation via C–H/N–N bond activation in Ru(ii)/PEG-400 as homogeneous recyclable catalytic system: a green synthesis of isoquinolines. Org Biomol Chem 2018; 16:4864-4873. [DOI: 10.1039/c8ob01082j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A green and sustainable methodology for the synthesis of isoquinolines using Ru(ii)/PEG-400 as homogeneous recyclable catalytic system and N-tosylhydrazone, a rarely explored directing group has been reported.
Collapse
|