1
|
Krishna Rao MV, Kareem S, Vali SR, Subba Reddy BV. Recent advances in metal directed C-H amidation/amination using sulfonyl azides and phosphoryl azides. Org Biomol Chem 2023; 21:8426-8462. [PMID: 37831479 DOI: 10.1039/d3ob01160g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Transition metal-catalyzed C-N bond formation reactions have gained popularity as a method for selectively transforming common C-H bonds into N-functionalized molecules. This approach is particularly useful for synthesizing aminated molecules, which require aminating reagents and amidated building blocks. Over the past two decades, significant advancements have been achieved in transition-metal-catalyzed C-H functionalization, with organic azides emerging as promising amino sources and internal oxidants. This review focuses on recent developments in utilizing sulfonyl and phosphoryl azides as building blocks for directed intra- and intermolecular C-H functionalization reactions. Specifically, it discusses methods for synthesizing sulfonamidates and phosphoramidates using sulfonyl and phosphoryl azides, respectively. The article highlights the potential of C-H functionalization reactions with organic azides for efficiently and sustainably synthesizing N-functionalized molecules, providing valuable insights into the latest advancements in this field.
Collapse
Affiliation(s)
- M V Krishna Rao
- Department of Fluoro & Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India.
| | - Shaik Kareem
- Department of Fluoro & Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India.
| | - Shaik Ramjan Vali
- Department of Fluoro & Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India.
| | - B V Subba Reddy
- Department of Fluoro & Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India.
| |
Collapse
|
2
|
Song JL, Chen SY, Xiao L, Xie XL, Zheng YC, Shang-Shi Z, Shu B. Rh(III)‐Catalyzed N‐Arylation of Alkyl Dioxazolones with Arylboronic Acids for the Synthesis of N‐Aryl Amides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia-Lin Song
- Guangdong Pharmaceutical University School of Pharmacy CHINA
| | - Shao-Yong Chen
- Guangdong Pharmaceutical University Center for Drug Research and Development CHINA
| | - Lin Xiao
- Guangdong Pharmaceutical University Center for Drug Research and Development CHINA
| | - Xiao-Ling Xie
- Guangdong Pharmaceutical University School of Pharmacy CHINA
| | - Yi-Chuan Zheng
- Guangdong Pharmaceutical University Center for Drug Research and Development CHINA
| | - Zhang Shang-Shi
- Guangdong Pharmaceutical University Center for Drug Research and development Higher Education Mega Center 510006 GuangZhou CHINA
| | - Bing Shu
- Guangdong Pharmaceutical University School of Pharmacy CHINA
| |
Collapse
|
3
|
Zhu JX, Chen ZC, Du W, Chen YC. Asymmetric Auto-Tandem Palladium Catalysis for 2,4-Dienyl Carbonates: Ligand-Controlled Divergent Synthesis. Angew Chem Int Ed Engl 2022; 61:e202200880. [PMID: 35156289 DOI: 10.1002/anie.202200880] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/16/2023]
Abstract
Developing new asymmetric auto-tandem catalysis processes, especially in a divergent manner, is highly attractive but extremely challenging. Presented herein is a palladium-catalyzed auto-tandem reaction between 2,4-dienyl carbonates and o-TsNH arylimines or trifluoroacetophenones that proceeds through a consecutive N-allylation, vinylogous addition, π-σ-π isomerization, and another N-allylation sequence. Importantly, switchable diastereodivergent synthesis could be achieved by tuning the chiral bisphosphine ligands, which led to the construction of a broad spectrum of fused tetrahydroquinoline architectures with moderate to excellent enantioselectivity. Ligand control even enabled effective access to regiodivergent azetidine or chemodivergent β-H elimination with fair enantioselectivity, further showing the versatility of the current auto-tandem catalysis.
Collapse
Affiliation(s)
- Jian-Xiang Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.,College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
4
|
Zhu J, Chen Z, Du W, Chen Y. Asymmetric Auto‐Tandem Palladium Catalysis for 2,4‐Dienyl Carbonates: Ligand‐Controlled Divergent Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jian‐Xiang Zhu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Zhi‐Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Ying‐Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
- College of Pharmacy Third Military Medical University Chongqing 400038 China
| |
Collapse
|
5
|
Jiang Y, Mao Z, Guan Y, Pan H, Zhang X. Ru-catalyzed direct arene C–H amidation of pyrrolo[2,3-d]pyrimidines with sulfonyl azides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Tang JJ, Yu X, Yamamoto Y, Bao M. Visible-Light-Promoted Iron-Catalyzed N-Arylation of Dioxazolones with Arylboronic Acids. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing-Jing Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
7
|
Li RL, Fang QY, Li MY, Wang XS, Zhao LM. A rearrangement of saccharin-derived cyclic ketimines with 3-chlorooxindoles leading to spiro-1,3-benzothiazine oxindoles. Chem Commun (Camb) 2021; 57:11322-11325. [PMID: 34636375 DOI: 10.1039/d1cc04179g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An unusual rearrangement of saccharin-derived cyclic ketimines (SDCIs) and 3-chlorooxindoles has been developed to provide a series of spiro-1,3-benzothiazine oxindoles. The reaction features simple manipulations, short reaction times, mild reaction conditions and inexpensive reagents. It is the first example where SDCIs serve as a ring-opening reagent in organic synthesis.
Collapse
Affiliation(s)
- Rui-Li Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Qing-Yun Fang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Mei-Yuan Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| |
Collapse
|
8
|
Galla MS, Bora D, Shankaraiah N. The Role of Sulphonamides and N-Sulphonyl Ketimines/Aldimines as Directing Groups in the Field of C-H Activation. Chem Asian J 2021; 16:1661-1684. [PMID: 33955142 DOI: 10.1002/asia.202100304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Sulphonamides and N-sulphonyl ketimines/aldimines have turned out to be versatile motifs in the field of synthetic and medicinal chemistry. The field of C-H activation/functionalization flourished remarkably due to their synthetic applicability and directing group plays a remarkable role to achieve regioselectivity in these reactions. The current review summarizes recent tactics by utilizing sulphonamides and N-sulphonyl ketimines/aldimines as directing groups for C-H activation or functionalization. As a directing group, they also facilitate site selectivity and late-stage functionalization of drug molecules in order to construct complex scaffolds of therapeutic importance by C-H activation.
Collapse
Affiliation(s)
- Mary Sravani Galla
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Darshana Bora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| |
Collapse
|
9
|
Cao XT, Wei SN, Sun HT, Li M, Zheng ZL, Wang G. Iridium-catalyzed regioselective C-H sulfonamidation of 1,2,4-thiadiazoles with sulfonyl azides in water. RSC Adv 2021; 11:22000-22004. [PMID: 35480792 PMCID: PMC9034132 DOI: 10.1039/d1ra04450h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
We have developed a regioselective C-N cross-coupling of 1,2,4-thiadiazoles with sulfonyl azides through iridium catalysis in water. This method tactically linked the 1,2,4-thiadiazoles and sulfonamides together, and the novel molecules increased the diversity of 1,2,4-thiadiazoles which may have potential applications.
Collapse
Affiliation(s)
- Xian-Ting Cao
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Su-Ning Wei
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Hao-Tian Sun
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Meng Li
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Zuo-Ling Zheng
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Guannan Wang
- College of Medical Engineering, Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| |
Collapse
|
10
|
Liu Z, Ebadi A, Toughani M, Mert N, Vessally E. Direct sulfonamidation of (hetero)aromatic C-H bonds with sulfonyl azides: a novel and efficient route to N-(hetero)aryl sulfonamides. RSC Adv 2020; 10:37299-37313. [PMID: 35521237 PMCID: PMC9057145 DOI: 10.1039/d0ra04255b] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
N-Aryl sulfonamides belong to a highly important class of organosulfur compounds which are found in a number of FDA-approved drugs such as dofetilide, dronedarone, ibutilide, sotalol, sulfadiazine, sulfamethizole, vemurafenib, and many more. There is therefore continuing interest in the development of novel and convenient protocols for the preparation of these pharmaceutically important compounds. Recently, direct sulfonamidation of (hetero)aromatic C–H bonds with easily available sulfonyl azides has emerged as an attractive and powerful strategy to access N-(hetero)aryl sulfonamides where non-toxic nitrogen gas forms as the sole by-product. This review highlights recent advances and developments (2012–2020) in this fast growing research area with emphasis on the mechanistic features of the reactions. N-Aryl sulfonamides belong to a highly important class of organosulfur compounds which are found in a number of FDA-approved drugs such as dofetilide, dronedarone, ibutilide, sotalol, sulfadiazine, sulfamethizole, vemurafenib, and many more.![]()
Collapse
Affiliation(s)
- Zhi Liu
- School of Electrical and Automation Engineering, East China Jiaotong University Nanchang 330013 China
| | - Abdolghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University Jouybar Iran
| | - Mohsen Toughani
- Department of Fishery, Babol Branch, Islamic Azad University Babol Iran
| | - Nihat Mert
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Yuzuncu Yil 65080, Van Turkey
| | | |
Collapse
|
11
|
Shi G, Khan R, Zhang X, Yang Y, Zhan Y, Li J, Luo Y, Fan B. Rhodium‐Catalyzed Direct
ortho
C−H Thiolation of Cyclic
N
‐Sulfonyl Ketimines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Guangrui Shi
- Key Laboratory of Chemistry in Ethnic Medicinal ResourcesYunnan Minzu University Kunming 650500 China
| | - Ruhima Khan
- Key Laboratory of Chemistry in Ethnic Medicinal ResourcesYunnan Minzu University Kunming 650500 China
| | - Xuexin Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal ResourcesYunnan Minzu University Kunming 650500 China
| | - Yong Yang
- Chongqing Academy of Chinese Materia Medica Chongqing 400065 China
| | - Yong Zhan
- Chongqing Academy of Chinese Materia Medica Chongqing 400065 China
| | - Juan Li
- Chongqing Academy of Chinese Materia Medica Chongqing 400065 China
| | - Yang Luo
- Chongqing Academy of Chinese Materia Medica Chongqing 400065 China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal ResourcesYunnan Minzu University Kunming 650500 China
- School of Chemistry and EnvironmentYunnan Minzu University Kunming 650500 China
| |
Collapse
|
12
|
Jiao LY, Ning ZH, Hong Q, Peng XH, Yin XM, Liu S, Chen H, Li Z, Sun M, Ma XX. Iridium-catalyzed ortho-selective carbon–hydrogen amidation of benzamides with sulfonyl azides in ionic liquid. RSC Adv 2020; 10:29712-29722. [PMID: 35518216 PMCID: PMC9056170 DOI: 10.1039/d0ra05527a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
An efficient and convenient iridium(iii) catalyzed ortho-C–H bond amidation of weakly coordinating benzamides treated with readily available sulfonyl azides as the amino source has been described. In this transformation, ionic liquids represents an ideal reaction medium, giving rise to a broad range of amidation products under mild conditions in the open air. This protocol offers moderate to excellent chemical yields, exclusive regioselectivities, and good functional group tolerance. Ir-catalyzed ortho-C–H amidation of benzamides with sulfonyl azides has been conducted effectively in ionic liquid reaction medium.![]()
Collapse
|
13
|
Ojha S, Panda N. Palladium‐Catalyzed
ortho
‐Benzoylation of Sulfonamides through C−H Activation: Expedient Synthesis of Cyclic
N
‐Sulfonyl Ketimines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Subhadra Ojha
- Department of Chemistry National Institute of Technology Rourkela Odisha 769008 India
| | - Niranjan Panda
- Department of Chemistry National Institute of Technology Rourkela Odisha 769008 India
| |
Collapse
|
14
|
Ding Y, Zhang SY, Chen YC, Fan SX, Tian JS, Loh TP. Regioselective C–H Amidation of (Alkyl)arenes by Iron(II) Catalysis. Org Lett 2019; 21:2736-2739. [DOI: 10.1021/acs.orglett.9b00697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yao Ding
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Shen-Yuan Zhang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yu-Chen Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shuai-Xin Fan
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jie-Sheng Tian
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
15
|
Mishra A, Mukherjee U, Sarkar W, Meduri SL, Bhowmik A, Deb I. Diastereoselective Spirocyclization of Cyclic N-Sulfonyl Ketimines with Nitroalkenes via Iridium-Catalyzed Redox-Neutral Cascade Reaction. Org Lett 2019; 21:2056-2059. [DOI: 10.1021/acs.orglett.9b00295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aniket Mishra
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Upasana Mukherjee
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Writhabrata Sarkar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sudha Lahari Meduri
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arup Bhowmik
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Indubhusan Deb
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
16
|
Pan C, Yang Z, Xiong H, Teng J, Wang Y, Yu JT. Synthesis of dihydroquinolinones via iridium-catalyzed cascade C-H amidation and intramolecular aza-Michael addition. Chem Commun (Camb) 2019; 55:1915-1918. [PMID: 30676590 DOI: 10.1039/c8cc09751h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An iridium-catalyzed annulation of chalcones with sulfonyl azides via cascade C-H amidation and intramolecular aza-Michael addition was developed, affording a variety of 2-aryl-2,3-dihydro-4-quinolones in moderate to good yields. This reaction features easy operation, readily available starting materials, and the cascade formation of two C-N bonds in one pot.
Collapse
Affiliation(s)
- Changduo Pan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | | | | | | | | | | |
Collapse
|
17
|
Li Y, Liu CF, Liu XY, Xu YJ, Dong L. Rhodium(iii)-catalyzed tandem reaction: efficient synthesis of dihydrobenzo thiadiazine 1-oxide derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo00112c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A tandem annulation reaction triggered by rhodium(iii)-catalyzed C–H bond functionalizations has been well developed for highly efficient synthesis of dihydrobenzo thiadiazine 1-oxide derivatives from free NH-sulfoximine and two-component benzyl azides.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Chen-Fei Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Xin-Yang Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| | - Yan-Jun Xu
- College of Chemistry and Material Science
- Sichuan Normal University
- Chengdu
- China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
18
|
Mishra A, Mukherjee U, Vats TK, Deb I. Ir(III)/MPAA-Catalyzed Mild and Selective C–H Amidation of N-Sulfonyl Ketimines: Access To Benzosultam-Fused Quinazolines/Quinazolinones. J Org Chem 2018; 83:3756-3767. [DOI: 10.1021/acs.joc.8b00125] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aniket Mishra
- Organic and Medicinal Chemistry Division, Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Upasana Mukherjee
- Organic and Medicinal Chemistry Division, Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tripta Kumari Vats
- Organic and Medicinal Chemistry Division, Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Indubhusan Deb
- Organic and Medicinal Chemistry Division, Indian Institute of Chemical Biology, 4-Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|