1
|
Meng XC, Pan TX, Yang F, Zhu HX, Huang YW, Leng BR, Wang DC, Zhu YL. Energy Transfer (EnT)-Mediated Stereoselective Aryl-Heterofunctionalization of Unactivated Alkynes via Radical Rearrangement. J Org Chem 2025. [PMID: 39757761 DOI: 10.1021/acs.joc.4c02462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
In this study, we present a novel catalyst-free energy transfer mediated radical rearrangement strategy for the aryl-heterofunctionalization of unactivated alkynes, leading to the synthesis of polyfunctional olefins with exceptional stereoselectivity. This innovative approach, driven by visible light, exemplifies green chemistry principles by eliminating the reliance on transition metals, external oxidants, and photocatalysts. The broad applicability of our method is demonstrated through the successful synthesis of a diverse array of compounds, including vinyl sulfones, vinyl selenides, and vinyl sulfides. Preliminary mechanistic insights suggest an energy transfer mechanism, highlighting the efficiency and selectivity of this novel strategy.
Collapse
Affiliation(s)
- Xin-Chao Meng
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Tian-Xiong Pan
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Feng Yang
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hai-Xi Zhu
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yu-Wen Huang
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Bo-Rong Leng
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
- College of Life and Health, Nanjing Polytechnic Institute, Nanjing 211816, P. R. China
| | - De-Cai Wang
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yi-Long Zhu
- Institute of Materia Medica, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
2
|
Luo W, Jiang H, Luo W, Liu C, Zhou J. Halogen Radical-Enabled Dearomatization of N-Arylpropiolamides via Photoinduced Sequential Halogenation/Spirocyclization/Oxidation Process. J Org Chem 2024; 89:18689-18697. [PMID: 39630607 DOI: 10.1021/acs.joc.4c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Here we report a strategy that eliminates the need for photocatalysts and external additives, which provides an operable and mild method for halogen radical-enabled dearomatization of N-arylpropiolamides under an oxygen atmosphere at room temperature. The method is applicable to a wide range of substrates, extending beyond the limited scope of p-methoxyl N-phenylpropynamides. Furthermore, several functional synthetic intermediates and anticancer bioactive molecules were successfully derived from 3-halogenated azaspiro[4.5]trienones.
Collapse
Affiliation(s)
- Wenkun Luo
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Huiling Jiang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Weiwei Luo
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Chao Liu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jun Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
3
|
Bhanja R, Kanti Bera S, Mal P. Sustainable Synthesis through Catalyst-Free Photoinduced Cascaded Bond Formation. Chem Asian J 2024; 19:e202400279. [PMID: 38717944 DOI: 10.1002/asia.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Indexed: 06/12/2024]
Abstract
The beginning of photochemical reactions revolutionized synthetic chemistry through sustainable practices. This review explores cutting-edge developments in leveraging light-induced processes for generating cascaded C-C and C-hetero bonds without catalysts. Significantly, catalyst-free photoinduced methodologies have garnered considerable attention, especially in the creation of varied heterocyclic frameworks for drug design and the synthesis of natural products. The article delves into underlying mechanisms, addresses limitations, and evaluates various methodologies, emphasizing the potential of photocatalyst and transition metal-free photochemical reactions to enhance sustainability. Divided into two sections, it covers recent strides in C-C and C-heteroatom and multiple C-heteroatom bond formation reactions.
Collapse
Affiliation(s)
- Rosalin Bhanja
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, 752050, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, India
| | - Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, 752050, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, 752050, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, India
| |
Collapse
|
4
|
do Carmo Pinheiro R, Souza Marques L, Ten Kathen Jung J, Nogueira CW, Zeni G. Recent Progress in Synthetic and Biological Application of Diorganyl Diselenides. CHEM REC 2024; 24:e202400044. [PMID: 38976862 DOI: 10.1002/tcr.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Indexed: 07/10/2024]
Abstract
Diorganyl diselenides have emerged as privileged structures because they are easy to prepare, have distinct reactivity, and have broad biological activity. They have also been used in the synthesis of natural products as an electrophile in the organoselenylation of aromatic systems and peptides, reductions of alkenes, and nucleophilic substitution. This review summarizes the advancements in methods for the transformations promoted by diorganyl diselenides in the main functions of organic chemistry. Parallel, it will also describe the main findings on pharmacology and toxicology of diorganyl diselenides, emphasizing anti-inflammatory, hypoglycemic, chemotherapeutic, and antimicrobial activities. Therefore, an examination detailing the reactivity and biological characteristics of diorganyl diselenides provides valuable insights for academic researchers and industrial professionals.
Collapse
Affiliation(s)
- Roberto do Carmo Pinheiro
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Luiza Souza Marques
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Juliano Ten Kathen Jung
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul, Brazil, 97105-900
| |
Collapse
|
5
|
Wu Q, Zhang X, Yang Q, Song Z, Ding Q, Peng Y. Synthesis of Selenium-Containing N-Quinazolinyl Acroleins via a 3,3-Radical Rearrangement Cascade Reaction. Org Lett 2024. [PMID: 38189242 DOI: 10.1021/acs.orglett.3c04026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
An effective approach for the construction of 2-aryl-3-(3-oxo-1-aryl-2-(organoselanyl)prop-1-en-1-yl)quinazolin-4(3H)-ones was developed. Excellent to almost quantitative yields were obtained by the cascade reaction of propargyl quinazoline-4-yl ethers, diselenides, and 70% tert-butyl hydrogen peroxide aqueous solution under metal-free and mild conditions. The synthesized hybrids, with conglomeration of quinazolinone, organoselenium, aldehyde, and fully substituted alkene moieties in one molecule, will have the potential for applications in development of new drugs or drug candidates.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Xinqin Zhang
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Qin Yang
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Zhibin Song
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Qiuping Ding
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| |
Collapse
|
6
|
Reddy CR, Srinivasu E, Subbarao M. Seleno/Thio-functionalized ipso-Annulation of N-Propiolyl-2-arylbenzimidazole to Construct Azaspiro[5,5]undecatrienones. J Org Chem 2023; 88:16485-16496. [PMID: 37943010 DOI: 10.1021/acs.joc.3c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Till date, the ipso-cyclization of propiolamides is limited to provide azaspiro[4,5]decatrienones. Herein, we present the first example of ipso-carbocyclization, leading to azaspiro[5,5]-undecatrienones from N-propiolyl-2-arylbenzimidazoles, involving both the radical-based and electrophilic reactions. This report establishes an access to a wide range of chalcogenated (SCN/SCF3/SePh) benzimidazo-fused azaspiro[5,5]undecatrienones in good yields.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ejjirotu Srinivasu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muppidi Subbarao
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Guo S, Shen X, Chen X, Yu H, Han Y, Yan C, Shi Y, Hou H, Zhu S. Photoinduced Copper-Catalyzed 1,2-Difunctionalization of 1,3-Dienes with Aryl Diselenides. J Org Chem 2023; 88:15969-15974. [PMID: 37903348 DOI: 10.1021/acs.joc.3c01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Described herein is a photoinduced copper-catalyzed 1,2-difunctionalization of 1,3-dienes. The selenium atom radical was generated by the visible light irradiation of diselenides, triggering radical addition with 1,3-dienes to form allyl radical intermediate. Subsequent rapid Z/E isomerization allowed for thermodynamically favorable intermediate formation and enabled copper catalyzed stereoselective functionalization with various nucleophiles.
Collapse
Affiliation(s)
- Shengkun Guo
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Xiaoyu Shen
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, P. R. China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, P. R. China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
8
|
Zhang S, Yuan J, Huang G, Ma C, Yang J, Yang L, Xiao Y, Qu L. Visible-Light-Induced Intramolecular Tandem Cyclization of Unactivated Indoloalkynes for the Synthesis of Sulfonylated and Selenylated Indolo[1,2- a]quinolines. J Org Chem 2023; 88:11712-11727. [PMID: 37530760 DOI: 10.1021/acs.joc.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A convenient and efficient visible-light-induced method has been developed for the construction of sulfonated and selenylated indolo[1,2-a]quinolines through sulfonyl or selenyl radical-initiated tandem cyclization of unactivated alkynes with sodium sulfinates or diaryl diselenides under mild conditions. This protocol, which simply utilizes visible light as the safe and eco-friendly energy source and an inexpensive and nontoxic organic dye as a photocatalyst without the aid of an external photocatalyst, provides various sulfonyl- and selenyl-containing indolo[1,2-a]quinolines in moderate to good yields.
Collapse
Affiliation(s)
- Shouren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China
| | - Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Guangchao Huang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Chengjia Ma
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jingjing Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Yongmei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
9
|
Synthesis and Application Dichalcogenides as Radical Reagents with Photochemical Technology. Molecules 2023; 28:molecules28041998. [PMID: 36838986 PMCID: PMC9963440 DOI: 10.3390/molecules28041998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Dichalcogenides (disulfides and diselenides), as reactants for organic transformations, are important and widely used because of their potential to react with nucleophiles, electrophilic reagents, and radical precursors. In recent years, in combination with photochemical technology, the application of dichalcogenides as stable radical reagents has opened up a new route to the synthesis of various sulfur- and selenium-containing compounds. In this paper, synthetic strategies for disulfides and diselenides and their applications with photochemical technology are reviewed: (i) Cyclization of dichalcogenides with alkenes and alkynes; (ii) direct selenylation/sulfuration of C-H/C-C/C-N bonds; (iii) visible-light-enabled seleno- and sulfur-bifunctionalization of alkenes/alkynes; and (iv) Direct construction of the C(sp)-S bond. In addition, the scopes, limitations, and mechanisms of some reactions are also described.
Collapse
|
10
|
Liu D, Lu X, Chai Z, Yang H, Sun Y, Yu F. Progress in Construction of 2 H-Pyrrol-2-ones Skeleton. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
11
|
Patil DV, Hong YT, Kim HY, Oh K. Visible-Light-Induced Three-Component Selenofunctionalization of Alkenes: An Aerobic Selenol Oxidation Approach. Org Lett 2022; 24:8465-8469. [DOI: 10.1021/acs.orglett.2c03186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Dilip V. Patil
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Young Taek Hong
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
12
|
Roy M, Jamatia R, Samanta A, Mohar K, Srimani D. Change in the Product Selectivity in the Visible Light-Induced Selenium Radical-Mediated 1,4-Aryl Migration Process. Org Lett 2022; 24:8180-8185. [DOI: 10.1021/acs.orglett.2c03260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mithu Roy
- Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam 781039, India
| | - Ramen Jamatia
- Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam 781039, India
| | - Arup Samanta
- Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam 781039, India
| | - Kailash Mohar
- Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
13
|
Raji Reddy C, Subbarao M, Kolgave DH, Ajaykumar U, Vinaya PP. Access to Diverse Seleno-spirocyclohexadienones via Ag(II)-Catalyzed Selenylative ipso-Annulation with Se and Boronic Acids. ACS OMEGA 2022; 7:38045-38052. [PMID: 36312410 PMCID: PMC9608386 DOI: 10.1021/acsomega.2c05394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/30/2022] [Indexed: 05/29/2023]
Abstract
An efficient and straightforward synthesis of diversified seleno-azaspiro-2,5-cyclohexadienones from N-(4-methoxy aryl)propiolamides using elemental selenium and boronic acids has been demonstrated. The reaction proceeds through silver-catalyzed oxidative dearomatization in the presence of potassium persulfate (K2S2O8) as the oxidant. Further, this approach was extended to N-(4-methoxy aryl)propiolates and biaryl ynones to access the corresponding selenylated oxospiro-2,5-cyclohexadienones and spiro[5,5]trienones, respectively. The present three-component method offers the diverse substitutions on selenium involving two C-Se and one C-C bond formations.
Collapse
|
14
|
Yang M, Hua J, Wang H, Ma T, Liu C, He W, Zhu N, Hu Y, Fang Z, Guo K. Photomediated Spirocyclization of N-Benzyl Propiolamide with N-Iodosuccinimide for Access to Azaspiro[4.5]deca-6,9-diene-3,8-dione. J Org Chem 2022; 87:8445-8457. [PMID: 35678323 DOI: 10.1021/acs.joc.2c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A metal- and oxidant-free route for affording azaspiro[4.5]deca-6,9-diene-3,8-dione via photomediated iodinated spirocyclization of N-(4-methoxybenzyl) propiolamide has been developed. The reaction underwent a radical addition/ipso-cyclization/dearomatization process at room temperature and successfully constructed C-C and C-I bonds. This green and convenient approach could be generally expanded to produce a range of iodinated spirocyclization products in moderate to good yields.
Collapse
Affiliation(s)
- Man Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hao Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tao Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yujing Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
15
|
Zhou T, Liu R, Wang X, Rui M, Zhao X, Lu K. Visible‐light Induced Ipso‐Difluoromethylation of N‐arylpropiolamides to Synthesize 3‐difluoromethyl Spiro[4.5]trienones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ting Zhou
- Tianjin University of Science and Technology Chemistry Tianjin CHINA
| | - Ruiyue Liu
- Tianjin University of Science and Technology Chemistry Tianjin CHINA
| | - Xiuxiu Wang
- Tianjin University of Science and Technology Chemistry Tianjin CHINA
| | - Mingyang Rui
- Tianjin University of Science and Technology Chemistry Tianjin CHINA
| | - Xia Zhao
- Tianjin University of Science and Technology Chemistry Tianjin CHINA
| | - Kui Lu
- Tianjin University of Science & Technology Department of Pharmaceutical Engineering No.29, 13th AvenueTianjin Economic and Technological Development Area 300457 Tianjin CHINA
| |
Collapse
|
16
|
Zhang Z, Wang S, Tan P, Gu X, Sun W, Liu C, Chen J, Li J, Sun K. K 2S 2O 8/I 2-Promoted Electrophilic Selenylative Cyclization To Access Seleno-Benzo[ b]azepines. Org Lett 2022; 24:2288-2293. [PMID: 35319211 DOI: 10.1021/acs.orglett.2c00387] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel and simple organoselenium-involved 7-membered cyclization to access diverse seleno-benzo[b]azepines has been developed. This protocol involves an electrophilic cyclization process and is accomplished under mild conditions. Discussion of the mechanism rationalizes the regioselectivity observed in transformation. The studies of further transformation of seleno-benzo[b]azepines and large-scale experiment reveal the promising utility of this methodology.
Collapse
Affiliation(s)
- Zhen Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Shilong Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Pengpeng Tan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xiaowen Gu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Wenjie Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Chang Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Jinchun Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Jiazhu Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
17
|
Du Y, Li X, Zhang B, Yu Z, Zhang D, Shi H, Xu L. Divergent Synthesis of Chalcogenylated Quinolin-2-ones and Spiro[4,5]trienones via Intramolecular Cyclization of N-Arylpropynamides Mediated by Diselenides/Disulfides and PhICl2. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0041-1737291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe reaction of N-arylpropynamides with (dichloroiodo)benzene (PhICl2) and diselenides/disulfides resulted in a divergent synthesis of chalcogenylated quinolinones and spiro[4.5]trienes through intramolecular electrophilic cyclization and chalcogenylation. The chalcogenyl functional group was introduced by an electrophilic reactive organosulfenyl chloride or selenenyl chloride species, generated in situ from the reaction of disulfides/diselenides and PhICl2. Notably, the divergent cyclization pathways were determined by the substituent type on the aniline ring in N-arylpropynamide substrates. Substrates bearing a fluoro, methoxy or trifluoromethoxy group at the para-position of the aniline underwent an alternative spiralization pathway to give the 3-chalcogenylated spiro[4,5]trienones.
Collapse
|
18
|
Vaskevych AI, Savinchuk NO, Vaskevych RI, Rusanov EB, Vovk MV. Chalcogenation/pyrrolo(pyrido)annulation of 2-(3-butenyl)quinazolin-4(3H)-ones by arylsulfenyl(selenyl) chlorides. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Azeredo JB, Penteado F, Nascimento V, Sancineto L, Braga AL, Lenardao EJ, Santi C. "Green Is the Color": An Update on Ecofriendly Aspects of Organoselenium Chemistry. Molecules 2022; 27:1597. [PMID: 35268698 PMCID: PMC8911681 DOI: 10.3390/molecules27051597] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Organoselenium compounds have been successfully applied in biological, medicinal and material sciences, as well as a powerful tool for modern organic synthesis, attracting the attention of the scientific community. This great success is mainly due to the breaking of paradigm demonstrated by innumerous works, that the selenium compounds were toxic and would have a potential impact on the environment. In this update review, we highlight the relevance of these compounds in several fields of research as well as the possibility to synthesize them through more environmentally sustainable methodologies, involving catalytic processes, flow chemistry, electrosynthesis, as well as by the use of alternative energy sources, including mechanochemical, photochemistry, sonochemical and microwave irradiation.
Collapse
Affiliation(s)
- Juliano B. Azeredo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Uruguaiana, Uruguaiana 97501-970, RS, Brazil;
| | - Filipe Penteado
- Laboratório de Síntese Orgânica Limpa-LaSOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil; (F.P.); (E.J.L.)
| | - Vanessa Nascimento
- Laboratório SupraSelen, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, Universidade Federal Fluminense, Niteroi 24020-150, RJ, Brazil
| | - Luca Sancineto
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy;
| | - Antonio L. Braga
- Departamento de Química, Universidade Federal de Santa Catarina—UFSC, Florianopolis 88040-900, SC, Brazil;
| | - Eder João Lenardao
- Laboratório de Síntese Orgânica Limpa-LaSOL-CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, Pelotas 96010-900, RS, Brazil; (F.P.); (E.J.L.)
| | - Claudio Santi
- Group of Catalysis Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06100 Perugia, Italy;
| |
Collapse
|
20
|
Cheng YZ, Feng Z, Zhang X, You SL. Visible-light induced dearomatization reactions. Chem Soc Rev 2022; 51:2145-2170. [PMID: 35212320 DOI: 10.1039/c9cs00311h] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dearomatization reactions provide rapid access to structurally complex three-dimensional molecules from simple aromatic compounds. Plenty of reports have demonstrated their utilities in the synthesis of natural products, medicinal chemistry, and materials science in the last decades. Recently, visible-light mediated photocatalysis has emerged as a powerful tool to promote many kinds of transformations. The dearomatization reactions induced by visible-light have also made significant progress during the past several years. This review provides an overview of visible-light induced dearomatization reactions classified based on the manner in which aromaticity is disrupted.
Collapse
Affiliation(s)
- Yuan-Zheng Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
21
|
Wang X, Lei J, Guo S, Zhang Y, Ye Y, Tang S, Sun K. Radical selenation of C(sp 3)-H bonds to asymmetric selenides and mechanistic study. Chem Commun (Camb) 2022; 58:1526-1529. [PMID: 35050276 DOI: 10.1039/d1cc06323e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenides are important structural motifs with a broad range of biological activities and versatile transformational abilities. In this study, a novel and mild method was developed for the facile synthesis of asymmetric selenides under metal-free conditions. The key features of this reaction include good functional-group tolerance, the use of readily available reagents and cheap, low-toxicity solvent, and amenability to gram-scale synthesis. The results of preliminary radical-trapping experiments and a kinetic isotope effect study support a radical process.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China.
| | - Jia Lei
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China.
| | - Sa Guo
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China.
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China.
| | - Yong Ye
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China.
| |
Collapse
|
22
|
Kim KS, Maeng N, Kim DY. Synthesis of selenated γ-lactones via Oxone-promoted selenylation and cyclization of alkenoic acids with diselenides. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
Yuan JW, Chen Q, Wu WT, Zhao JJ, Yang LR, Xiao YM, Mao P, Qu LB. Selectfluor-mediated construction of 3-arylselenenyl and 3,4-bisarylselenenyl spiro[4.5]trienones via cascade annulation of N-phenylpropiolamides with diselenides. NEW J CHEM 2022. [DOI: 10.1039/d2nj00869f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A cascade annulation of N-phenylpropiolamides with diselenides leading to the construction of 3-arylselenenyl spiro[4.5]trienones was realized under mild conditions with Selectfluor as the sole oxidant.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qian Chen
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wen-Tao Wu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jian-Jun Zhao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yong-Mei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Pu Mao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
24
|
Mo K, Zhou X, Wu J, Zhao Y. Radical-induced denitration of N-( p-nitrophenyl)propiolamides coupled with dearomatization: access to phosphonylated/trifluoromethylated azaspiro[4.5]-trienones. Chem Commun (Camb) 2021; 58:1306-1309. [PMID: 34913445 DOI: 10.1039/d1cc05724c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A robust dearomative denitration of nitroarene derivatives induced by a radical ipso-cyclization process has been developed, delivering valuable phosphonated or trifluoromethylated azaspiro[4.5]trienones with good functional group tolerance. This represents a convenient and powerful approach to activate nitroarenes in a radical manner.
Collapse
Affiliation(s)
- Kangdong Mo
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Xiaocong Zhou
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Ju Wu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Zhejiang, China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Zhejiang, China.
| |
Collapse
|
25
|
Chalcogenative spirocyclization of N-aryl propiolamides with diselenides/disulfides promoted by Selectfluor. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
A practical and efficient synthetic route to construct a variety of 3-arylselenenyl/3-arylthio spiro[4.5]trienones was developed using Selectfluor reagent as a mild oxidant. This reaction proceeds via a sequence of electrophilic cation addition, spirocyclization and dearomatization, then offers an approach to introduce Se/S-centered cation into the C–C triple bonds. The utility of this protocol were justified by the excellent compatibility of a wide range of functional groups, good yields and scalability under mild reaction conditions.
Collapse
|
26
|
Maiti D, Halder A, Sasidharan Pillai A, De Sarkar S. Synthesis of Polysubstituted Furans through Electrochemical Selenocyclization of Homopropargylic Alcohols. J Org Chem 2021; 86:16084-16094. [PMID: 34606280 DOI: 10.1021/acs.joc.1c01688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The current method represents an electrochemically driven synthetic route to access polysubstituted selenofuran derivatives through the diselenide-promoted cyclization of homopropargyl alcohols. The tandem electro-oxidative transformation operates at ambient temperature and in the absence of an external oxidant. This mild and efficient methodology exhibits good functional group compatibility, providing a broad range of substrate scopes up to 84% isolated yield. Further conversion of the seleno-functionality afforded other valuable furan derivatives.
Collapse
Affiliation(s)
- Debabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Atreyee Halder
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Aswathy Sasidharan Pillai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
27
|
Kim Y, Jang J, Kim DY. Electrochemical Oxidative Selenolactonization of Alkenoic Acids with Diselenides: Synthesis of Selenated γ‐Lactones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yebin Kim
- Department of Chemistry and Department of ICT Environmental Health System Soonchunhyang University Asan 31538 Chungnam Republic of Korea
| | - Jihoon Jang
- Department of Chemistry and Department of ICT Environmental Health System Soonchunhyang University Asan 31538 Chungnam Republic of Korea
| | - Dae Young Kim
- Department of Chemistry and Department of ICT Environmental Health System Soonchunhyang University Asan 31538 Chungnam Republic of Korea
| |
Collapse
|
28
|
Xia D, Duan XF. Iron-Catalyzed Dearomatization of Biaryl Ynones with Aldehydes via Double C-H Functionalization in Eco-Benign Solvents: Highly Atom-Economical Synthesis of Acylated Spiro[5.5]trienones. J Org Chem 2021; 86:15263-15275. [PMID: 34643395 DOI: 10.1021/acs.joc.1c01870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The multiple C-H bonds of biaryl ynones render the 6-exo-trig regioselective C-H activation dearomatization to spiro[5.5]trienones challenging since the competing reactions of C-H bonds on Ar1 or the ortho-C-H bonds on Ar3 may result in 5-exo-trig cyclization to indenones or 6-exo-trig ortho-dearomatization, respectively. We here report an unprecendented dearomatization of biaryl ynones with aldehydes via double C-H functionalization where a regiospecific remote unactivated para-C-H functionalization of biaryl ynones efficiently furnishes acylated spiro[5.5]trienones. This cascade cyclization features a green catalyst and solvent and high atom- and step-economy.
Collapse
Affiliation(s)
- Dong Xia
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
29
|
Halder A, Mahanty K, Maiti D, De Sarkar S. Highly Diastereoselective Synthesis of Dihydro-benzoimidazo-[1,3]-thiazines via Electro-oxidative Selenocyclization of Thioallyl Benzoimidazoles. Chem Asian J 2021; 16:3895-3899. [PMID: 34609085 DOI: 10.1002/asia.202101033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/02/2021] [Indexed: 11/10/2022]
Abstract
The current methodology reveals a green and proficient electro-oxidative tandem selenocyclization of thioallyl benzoimidazoles manufacturing selenylated dihydro-benzoimidazo-thiazine derivatives. Both C-Se and C-N bond formation were achieved via this mild protocol which exhibits good functional group tolerability affording an extensive range of substrate scope up to 96% isolated yields. Complete control over the regioselective formation of the six-membered heterocycle and stereoselective construction of the contiguous stereocenters was established. The practical electrochemical method operates in an undivided cell at ambient temperature without using any metal and external chemical oxidant.
Collapse
Affiliation(s)
- Atreyee Halder
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Kingshuk Mahanty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Debabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
30
|
Recchi AMS, Rosa PHP, Back DF, Zeni G. Selenium-promoted electrophilic cyclization of arylpropiolamides: synthesis of 3-organoselenyl spiro[4,5]trienones. Org Biomol Chem 2021; 18:3544-3551. [PMID: 32342088 DOI: 10.1039/d0ob00609b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes a selenium-promoted electrophilic cyclization of arylpropiolamides allowing the synthesis of 3-organoselenyl spiro[4,5]trienones via a 5-endo-dig ipso-mode. The 3-organoselenyl-quinolinone derivative formation via 6-endo-dig was avoided using an electrophilic organoselenium species in a metal-free protocol. The use of phenylselenyl bromide (1.3 equiv.), as the electrophilic source, in nitromethane (3 mL) at 90 °C enabled the cyclization of N-(2-methoxyphenyl)-N-methyl-3-phenylpropiolamides, giving 3-organoselenyl[4,5]triene-2,6-dione derivatives. The extension of the standard conditions to the N-(4-methoxyphenyl)-phenylpropiolamides led to the corresponding 3-organoselenyl spiro[4,5]trienones having the carbonyl group at the 8-position. Besides, we demonstrated a general application of our approach by using 3-organoselenyl spiro[4,5]trienones as substrates in Suzuki cross-coupling reactions, which gave the cross-coupled products in good yields.
Collapse
Affiliation(s)
- Ana Maria S Recchi
- Laboratorio de Sintese, Reatividade, Avaliaçao Farmacologica e Toxicologica de Organocalcogenios, CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brasil.
| | | | | | | |
Collapse
|
31
|
Wang YC, Huang K, Lai X, Shi Z, Liu JB, Qiu G. Radical bromination-induced ipso cyclization- ortho cyclization sequence of N-hydroxylethyl- N-arylpropiolamides. Org Biomol Chem 2021; 19:1940-1944. [PMID: 33569553 DOI: 10.1039/d1ob00010a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A facile procedure is reported for the synthesis of various 2-bromo-1-phenyl-5,6-dihydro-3H,7aH-benzo[b]pyrrolo[2,1-c][1,4]oxazin-3-ones via a radical bromination-induced ipso cyclization-ortho cyclization sequence of N-arylpropiolamides in the presence of TBAB and oxone. The radical cyclization sequence involves a radical bromo α-addition into the alkyne, ipso-cyclization, and ortho-trapping of the spirocyclic intermediate.
Collapse
Affiliation(s)
- Yu-Chao Wang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Keke Huang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Xiaojing Lai
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China. and College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Zhongning Shi
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Jin-Biao Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Guanyinsheng Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
32
|
Dong W, Yuan Y, Liang C, Wu F, Zhang S, Xie X, Zhang Z. Photocatalytic Radical Ortho-Dearomative Cyclization: Access to Spiro[4.5]deca-1,7,9-trien-6-ones. J Org Chem 2021; 86:3697-3705. [PMID: 33464083 DOI: 10.1021/acs.joc.0c02477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A highly efficient ortho-dearomative cyclization reaction between alkynes and 2-bromo-2-(2-methoxybenzyl)malonate via visible light-induced photoredox catalysis has been reported. In the presence of 1 mol % fac-Ir(ppy)3, a variety of spiro[4.5]deca-1,7,9-trien-6-ones were obtained in moderate to excellent yields under mild conditions. Under the optimized reaction conditions, a sample reaction of 3 mmol scale proceeded smoothly to give the desired products in 84% yield with a low catalyst loading of 0.1 mol %.
Collapse
Affiliation(s)
- Wuheng Dong
- Medicine Center, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China.,Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, Guangxi 545006, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yao Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Caiyun Liang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou, Guangxi 545006, China
| | - Feng Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Siyuan Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaomin Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
33
|
Rafique J, Rampon DS, Azeredo JB, Coelho FL, Schneider PH, Braga AL. Light-mediated Seleno-Functionalization of Organic Molecules: Recent Advances. CHEM REC 2021; 21:2739-2761. [PMID: 33656248 DOI: 10.1002/tcr.202100006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 01/21/2023]
Abstract
Organoselenium compounds constitute an important class of substances with applications in the biological, medicinal and material sciences as well as in modern organic synthesis, attracting considerable attention from the scientific community. Therefore, the construction of the C-Se bond via facile, efficient and sustainable strategies to access complex scaffolds from simple substrates are an appealing and hot topic. Visible light can be regarded as an alternative source of energy and is associated with environmentally-friendly processes. Recently, the use of visible-light mediated seleno-functionalization has emerged as an ideal and powerful route to obtain high-value selenylated products, with diminished cost and waste. This approach, involving photo-excited substrates/catalyst and single-electron transfer (SET) between substrates in the presence of visible light has been successfully used in the versatile and direct insertion of organoselenium moieties in activated and unactivated C(sp3 )-H, C(sp2 )-H, C(sp)-H bonds as well as C-heteroatom bonds. In most cases, ease of operation and accessibility of the light source (LEDs or commercial CFL bulbs) makes this approach more attractive and sustainable than the traditional strategies.
Collapse
Affiliation(s)
- Jamal Rafique
- Instituto de Química (INQUI), Universidade Federal de Mato Grosso do Sul -UFMS, Campo Grande, 79074-460, MS -, Brazil
| | - Daniel S Rampon
- Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, 81531-990, PR Brazil
| | - Juliano B Azeredo
- Departamento de Farmácia, Universidade Federal do Pampa, Uruguaiana, 97500-970, RS -, Brazil
| | - Felipe L Coelho
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970, RS, Brazil
| | - Paulo H Schneider
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970, RS, Brazil
| | - Antonio L Braga
- Departamento de Química, Universidade Federal de Santa Catarina-UFSC, Florianópolis, 88040-900, SC, Brazil
| |
Collapse
|
34
|
Chen Y, Lu F, Li R, Guan Z, He Y. Visible‐light‐mediated Synthesis of Bromo‐containing Azaspirotrienediones from
N
‐phenylpropynamides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yuan Chen
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Fo‐Yun Lu
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Rui‐Xue Li
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Yan‐Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
35
|
Zeni G, Godoi B, Jurinic CK, Belladona AL, Schumacher RF. Transition Metal-Free Synthesis of Carbo- and Heterocycles via Reaction of Alkynes with Organylchalcogenides. CHEM REC 2021; 21:2880-2895. [PMID: 33394571 DOI: 10.1002/tcr.202000152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/09/2022]
Abstract
This manuscript intends to overview the most recent advances in the synthesis of carbo- and heterocycles through reactions of alkynes with organyl chalcogenides (S, Se, Te) under metal-free conditions. Firstly, the use of electrophilic chalcogenyl halides as a selective reagent for alkyne carbon-carbon triple bond activation will be presented. After that, radical cyclization protocols employing electrochemical oxidative conditions, light-induced photoredox catalysis, or mild oxidants with direct chalcogenyl group installation will be discussed accompanied by the proposed mechanisms.
Collapse
Affiliation(s)
- Gilson Zeni
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil, 97105-900
| | - Benhur Godoi
- Programa de Pós-graduação em Ambiente e Tecnologias Sustentáveis - PPGATS, Federal University of Fronteira Sul, Brazil, RS, 97900-000
| | - Carla K Jurinic
- Programa de Pós-graduação em Ambiente e Tecnologias Sustentáveis - PPGATS, Federal University of Fronteira Sul, Brazil, RS, 97900-000
| | - Andrei L Belladona
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil, 97105-900
| | - Ricardo F Schumacher
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil, 97105-900
| |
Collapse
|
36
|
Hou H, Sun Y, Pan Y, Yu H, Han Y, Shi Y, Yan C, Zhu S. Visible-Light Mediated Diarylselenylative Cyclization of 1,6-Enynes. J Org Chem 2021; 86:1273-1280. [PMID: 33283502 DOI: 10.1021/acs.joc.0c02529] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We herein described a selenylative cyclization reaction of enynes by the utilization of diselenides as radical sources. The visible-light irradiation of the reaction mixture enables the generation of the selenium atom radical to trigger the radical addition/cyclization/selenation sequences. Both terminal alkyne and internal alkyne derived 1,6-enynes were tested and suitable for the current synthetic protocol, delivering various kinds of selenium-containing cycles in good yields.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yue Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
37
|
Wang X, Zhang Y, Sun K, Meng J, Zhang B. Study on the Application of Photoelectric Technology in the Synthesis of Selenium-Containing Heterocycles. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202109046] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Alves AJS, Alves NG, Soares MIL, Pinho e Melo TMVD. Strategies and methodologies for the construction of spiro-γ-lactams: an update. Org Chem Front 2021. [DOI: 10.1039/d0qo01564d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review gives an insight into the most recent synthetic methodologies towards spiro-γ-lactams, a class of compounds that are present in a wide range of synthetic bioactive and naturally occurring molecules.
Collapse
Affiliation(s)
- Américo J. S. Alves
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | - Nuno G. Alves
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | - Maria I. L. Soares
- University of Coimbra
- Coimbra Chemistry Centre and Department of Chemistry
- 3004-535 Coimbra
- Portugal
| | | |
Collapse
|
39
|
Zeng FL, Chen XL, Sun K, Zhu HL, Yuan XY, Liu Y, Qu LB, Zhao YF, Yu B. Visible-light-induced metal-free cascade cyclization of N-arylpropiolamides to 3-phosphorylated, trifluoromethylated and thiocyanated azaspiro[4.5]trienones. Org Chem Front 2021. [DOI: 10.1039/d0qo01410a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photocatalytic strategies for the preparation of 3-functionalized azaspiro[4.5]trienones via a radical-initiated cascade annulation reaction was developed.
Collapse
Affiliation(s)
- Fan-Lin Zeng
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xiao-Lan Chen
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Kai Sun
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Hu-Lin Zhu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Xiao-Ya Yuan
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yan Liu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Ling-Bo Qu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yu-Fen Zhao
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Bing Yu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
40
|
Lapcinska S, Arsenyan P. Selenocysteinyl electrophiles efficiently promote the formation of coumarin and quinolinone cores by 6- endo-dig cyclization. NEW J CHEM 2021. [DOI: 10.1039/d1nj02633j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Efficient methods have been disclosed for the construction of nitrogen and oxygen containing heterocyclic systems attached to selenocysteine or selenoglutathione.
Collapse
Affiliation(s)
- Sindija Lapcinska
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Pavel Arsenyan
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia
| |
Collapse
|
41
|
Yu K, Kong X, Yang J, Li G, Xu B, Chen Q. Electrochemical Oxidative Halogenation of N-Aryl Alkynamides for the Synthesis of Spiro[4.5]trienones. J Org Chem 2020; 86:917-928. [DOI: 10.1021/acs.joc.0c02429] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ke Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xianqiang Kong
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiajun Yang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Guodong Li
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
42
|
Sonawane AD, Sonawane RA, Ninomiya M, Koketsu M. Synthesis of Seleno‐Heterocycles
via
Electrophilic/Radical Cyclization of Alkyne Containing Heteroatoms. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000490] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Amol D. Sonawane
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Rohini A. Sonawane
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Masayuki Ninomiya
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular ScienceFaculty of EngineeringGifu University 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
43
|
Sahoo SR, Sarkar D, Henkel F, Reuter H. Copper(i) catalyzed synthesis of selanyl methylene 4-chromanol and aurone derivatives. Org Biomol Chem 2020; 18:4619-4627. [PMID: 32519714 DOI: 10.1039/d0ob00632g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient copper-catalyzed cyclization cascade approach towards highly functionalized methylene 4-chromanol and aurone derivatives has been developed from reactions of ynols via 6-exo-dig and 5-exo-dig cyclization respectively. The catalysis involves alkyne activation via diorgano-diselenides and also their regioselective incorporation into the methylene 4-chromanol and aurone derivative core and is an open-air transformation.
Collapse
Affiliation(s)
- Sushree Ranjan Sahoo
- Organic Synthesis and Molecular Engineering Laboratory, Department of Chemistry, NIT, Rourkela, India.
| | - Debayan Sarkar
- Organic Synthesis and Molecular Engineering Laboratory, Department of Chemistry, NIT, Rourkela, India.
| | - Felix Henkel
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastraβe-6, 49076 Osnabrück, Germany
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastraβe-6, 49076 Osnabrück, Germany
| |
Collapse
|
44
|
Hua J, Fang Z, Bian M, Ma T, Yang M, Xu J, Liu C, He W, Zhu N, Yang Z, Guo K. Electrochemical Synthesis of Spiro[4.5]trienones through Radical-Initiated Dearomative Spirocyclization. CHEMSUSCHEM 2020; 13:2053-2059. [PMID: 32012457 DOI: 10.1002/cssc.202000098] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/30/2020] [Indexed: 06/10/2023]
Abstract
A novel and green route has been developed for the electrochemical synthesis of spiro[4.5]trienones through radical-initiated dearomative spirocyclization of alkynes with diselenides. This metal-free and oxidant-free electrosynthesis reaction was performed in an undivided cell under mild conditions. A variety of selenation spiro[4.5]trienones products were prepared in moderate-to-good yields, showing a broad scope and functional group tolerance. Moreover, the developed continuous-flow system combined with electrosynthesis possesses the potential to achieve scaled-up reactions, overcoming the low efficiency of conventional electrochemical scaled-up reactions.
Collapse
Affiliation(s)
- Jiawei Hua
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Mixue Bian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Tao Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Man Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Jia Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - ChengKou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| | - Zhao Yang
- College of Engineering, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210003, P.R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, P.R. China
| |
Collapse
|
45
|
Zhou XJ, Liu HY, Mo ZY, Ma XL, Chen YY, Tang HT, Pan YM, Xu YL. Visible-Light-Promoted Selenylative Spirocyclization of Indolyl-ynones toward the Formation of 3-Selenospiroindolenine Anticancer Agents. Chem Asian J 2020; 15:1536-1539. [PMID: 32207240 DOI: 10.1002/asia.202000298] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/20/2020] [Indexed: 12/23/2022]
Abstract
A metal-free and efficient visible-light-induced spirocyclization of indolyl-ynones with diselenides at room temperature under air atmosphere to prepare 3-selenospiroindolenines in moderate to good yields has been developed. The resulting products were tested for in vitro anticancer activity by MTT assay, and compounds 3 c and 3 e showed potent cancer cell-growth inhibition activities.
Collapse
Affiliation(s)
- Xiu-Jie Zhou
- Pharmacy School, Guilin Medical University, 541004, People's Republic of China, Guilin
| | - Hao-Yang Liu
- Pharmacy School, Guilin Medical University, 541004, People's Republic of China, Guilin
| | - Zu-Yu Mo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 541004, People's Republic of China, Guilin
| | - Xian-Li Ma
- Pharmacy School, Guilin Medical University, 541004, People's Republic of China, Guilin
| | - Yan-Yan Chen
- Pharmacy School, Guilin Medical University, 541004, People's Republic of China, Guilin
| | - Hai-Tao Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 541004, People's Republic of China, Guilin
| | - Ying-Ming Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, 541004, People's Republic of China, Guilin
| | - Yan-Li Xu
- Pharmacy School, Guilin Medical University, 541004, People's Republic of China, Guilin
| |
Collapse
|
46
|
Liu T, Li Y, Jiang L, Wang J, Jin K, Zhang R, Duan C. Photo-mediated synthesis of halogenated spiro[4,5]trienones of N-aryl alkynamides with PhI(OCOCF 3) 2 and KBr/KCl. Org Biomol Chem 2020; 18:1933-1939. [PMID: 32101242 DOI: 10.1039/d0ob00057d] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel and convenient photo-mediated halogenated spirocyclization of N-(p-methoxyaryl)propiolamides has been developed. The photolysis of phenyliodine bis(trifluoroacetate) (PIFA) as an iodination reagent led to iodinated ipso-cyclization under the irradiation of a xenon lamp, while brominated ipso-cyclization or chlorinated ipso-cyclization was achieved by irradiating a mixture of PIFA and KBr/KCl under a blue LED. The present protocol simply utilizes light as the safe and clean energy source and doesn't require any external photocatalyst providing various 3-halospiro[4,5]trienones in good to excellent yields (up to 93%).
Collapse
Affiliation(s)
- Tong Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Yaming Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Linlin Jiang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Jiaao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Kun Jin
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Rong Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China.
| |
Collapse
|
47
|
Sahoo SR, Das B, Sarkar D, Henkel F, Reuter H. Visible Light Assisted Selenylative Intramolecular Dearomative Carbo-Spirocyclisation (IDCS) of Homologated-Ynones. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Biswajit Das
- Department of Chemistry; NIT Rourkela; Rourkela Odisha India
| | - Debayan Sarkar
- Department of Chemistry; NIT Rourkela; Rourkela Odisha India
| | - F. Henkel
- Institute of Chemistry of New Materials; University of Osnabrück; Barbarastraße 6 49076 Osnabrück Germany
| | - H. Reuter
- Institute of Chemistry of New Materials; University of Osnabrück; Barbarastraße 6 49076 Osnabrück Germany
| |
Collapse
|
48
|
Peng X, Liu RX, Xiao XY, Yang L. Fe-catalyzed Decarbonylative Alkylative Spirocyclization of N-Arylcinnamamides: Access to Alkylated 1-Azaspirocyclohexadienones. Molecules 2020; 25:E432. [PMID: 31972970 PMCID: PMC7037460 DOI: 10.3390/molecules25030432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
For the convenient introduction of simple linear/branched alkyl groups into biologically important azaspirocyclohexadienones, a practical Fe-catalyzed decarbonylative cascade spiro-cyclization of N-aryl cinnamamides with aliphatic aldehydes to provide alkylated 1-azaspiro-cyclohexadienones was developed. Aliphatic aldehydes were oxidative decarbonylated into primary, secondary and tertiary alkyl radicals conveniently and allows for the subsequent cascade construction of dual C(sp3)-C(sp3) and C=O bonds via radical addition, spirocyclization and oxidation sequence.
Collapse
Affiliation(s)
| | | | | | - Luo Yang
- Key Laboratory for Environmentally Friendly Chemistry and Application of the Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan 411105, China; (X.P.); (R.-X.L.); (X.-Y.X.)
| |
Collapse
|
49
|
Nair AM, Shinde AH, Kumar S, Volla CMR. Metal-free spirocyclization of N-arylpropiolamides with glyoxylic acids: access to complex azaspiro-fused tricycles. Chem Commun (Camb) 2020; 56:12367-12370. [DOI: 10.1039/d0cc04800c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient K2S2O8-mediated oxidative cascade spirocyclization of N-arylpropiolamides with aryl glyoxylic acids was demonstrated for constructing azaspiro[4,5]-trienones and complex azaspiro-fused architectures.
Collapse
Affiliation(s)
- Akshay M. Nair
- Department of Chemistry
- Indian Institute of Technology Bombay
- Powai
- India
| | - Anand H. Shinde
- Department of Chemistry
- Indian Institute of Technology Bombay
- Powai
- India
| | - Shreemoyee Kumar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Powai
- India
| | | |
Collapse
|
50
|
Su Y, Zhang R, Xue W, Liu X, Zhao Y, Wang KH, Huang D, Huo C, Hu Y. Visible-light-promoted acyl radical cascade reaction for accessing acylated isoquinoline-1,3(2H,4H)-dione derivatives. Org Biomol Chem 2020; 18:1940-1948. [DOI: 10.1039/d0ob00086h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A visible-light-promoted radical acylation/cyclization cascade reaction of N-methacryloylbenzamides with α-keto acids was developed to construct acylated isoquinoline-dione derivatives.
Collapse
Affiliation(s)
- Yingpeng Su
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Rong Zhang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Wenxuan Xue
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Xuan Liu
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Yanan Zhao
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Congde Huo
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| |
Collapse
|